|
|
|
@ -436,6 +436,61 @@ inline __m128i _mm_bit_interleave_si128(__m128i x, __m128i y) |
|
|
|
|
return Reg1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inline __m128i _mm_bit_interleave_si128(__m128i x) |
|
|
|
|
{ |
|
|
|
|
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); |
|
|
|
|
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); |
|
|
|
|
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); |
|
|
|
|
__m128i const Mask1 = _mm_set1_epi32(0x33333333); |
|
|
|
|
__m128i const Mask0 = _mm_set1_epi32(0x55555555); |
|
|
|
|
|
|
|
|
|
__m128i Reg1; |
|
|
|
|
__m128i Reg2; |
|
|
|
|
|
|
|
|
|
// REG1 = x;
|
|
|
|
|
// REG2 = y;
|
|
|
|
|
//Reg1 = _mm_unpacklo_epi64(x, y);
|
|
|
|
|
Reg1 = x; |
|
|
|
|
|
|
|
|
|
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
|
|
|
|
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
|
|
|
|
Reg2 = _mm_slli_si128(Reg1, 2); |
|
|
|
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
|
|
|
Reg1 = _mm_and_si128(Reg1, Mask4); |
|
|
|
|
|
|
|
|
|
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
|
|
|
|
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
|
|
|
|
Reg2 = _mm_slli_si128(Reg1, 1); |
|
|
|
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
|
|
|
Reg1 = _mm_and_si128(Reg1, Mask3); |
|
|
|
|
|
|
|
|
|
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
|
|
|
|
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
|
|
|
|
Reg2 = _mm_slli_epi32(Reg1, 4); |
|
|
|
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
|
|
|
Reg1 = _mm_and_si128(Reg1, Mask2); |
|
|
|
|
|
|
|
|
|
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
|
|
|
|
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
|
|
|
|
Reg2 = _mm_slli_epi32(Reg1, 2); |
|
|
|
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
|
|
|
Reg1 = _mm_and_si128(Reg1, Mask1); |
|
|
|
|
|
|
|
|
|
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
|
|
|
|
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
|
|
|
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
|
|
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
|
|
|
Reg1 = _mm_and_si128(Reg1, Mask0); |
|
|
|
|
|
|
|
|
|
//return REG1 | (REG2 << 1);
|
|
|
|
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
|
|
|
Reg2 = _mm_srli_si128(Reg2, 8); |
|
|
|
|
Reg1 = _mm_or_si128(Reg1, Reg2); |
|
|
|
|
|
|
|
|
|
return Reg1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
namespace bitfieldInterleave |
|
|
|
|
{ |
|
|
|
|
int test() |
|
|
|
@ -444,13 +499,10 @@ namespace bitfieldInterleave |
|
|
|
|
glm::uint32 y_max = 1 << 12; |
|
|
|
|
|
|
|
|
|
// ALU
|
|
|
|
|
std::vector<glm::u64vec2> Data(x_max * y_max); |
|
|
|
|
std::vector<glm::u64vec2> ParamX(x_max); |
|
|
|
|
std::vector<glm::u64vec2> ParamY(y_max); |
|
|
|
|
for(glm::uint32 x = 0; x < x_max; ++x) |
|
|
|
|
ParamX[x] = glm::u64vec2(x); |
|
|
|
|
for(glm::uint32 y = 0; y < y_max; ++y) |
|
|
|
|
ParamY[y] = glm::u64vec2(y); |
|
|
|
|
std::vector<glm::uint64> Data(x_max * y_max); |
|
|
|
|
std::vector<glm::u32vec2> Param(x_max * y_max); |
|
|
|
|
for(glm::uint32 i = 0; i < Param.size(); ++i) |
|
|
|
|
Param[i] = glm::u32vec2(i % x_max, i / y_max); |
|
|
|
|
|
|
|
|
|
{ |
|
|
|
|
for(glm::uint32 y = 0; y < (1 << 10); ++y) |
|
|
|
@ -473,12 +525,8 @@ namespace bitfieldInterleave |
|
|
|
|
{ |
|
|
|
|
std::clock_t LastTime = std::clock(); |
|
|
|
|
|
|
|
|
|
for(glm::uint32 y = 0; y < y_max; ++y) |
|
|
|
|
for(glm::uint32 x = 0; x < x_max; ++x) |
|
|
|
|
{ |
|
|
|
|
glm::uint64 Result = glm::bitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x)); |
|
|
|
|
Data[x + y * x_max].x = Result; |
|
|
|
|
} |
|
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
|
|
|
Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
|
|
|
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
|
|
|
|
|
@ -488,12 +536,8 @@ namespace bitfieldInterleave |
|
|
|
|
{ |
|
|
|
|
std::clock_t LastTime = std::clock(); |
|
|
|
|
|
|
|
|
|
for(glm::uint32 y = 0; y < y_max; ++y) |
|
|
|
|
for(glm::uint32 x = 0; x < x_max; ++x) |
|
|
|
|
{ |
|
|
|
|
glm::uint64 Result = fastBitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x)); |
|
|
|
|
Data[x + y * x_max].x = Result; |
|
|
|
|
} |
|
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
|
|
|
Data[i] = fastBitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
|
|
|
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
|
|
|
|
|
@ -503,12 +547,8 @@ namespace bitfieldInterleave |
|
|
|
|
{ |
|
|
|
|
std::clock_t LastTime = std::clock(); |
|
|
|
|
|
|
|
|
|
for(glm::uint32 y = 0; y < y_max; ++y) |
|
|
|
|
for(glm::uint32 x = 0; x < x_max; ++x) |
|
|
|
|
{ |
|
|
|
|
glm::uint64 Result = loopBitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x)); |
|
|
|
|
Data[x + y * x_max].x = Result; |
|
|
|
|
} |
|
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
|
|
|
Data[i] = loopBitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
|
|
|
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
|
|
|
|
|
@ -518,12 +558,8 @@ namespace bitfieldInterleave |
|
|
|
|
{ |
|
|
|
|
std::clock_t LastTime = std::clock(); |
|
|
|
|
|
|
|
|
|
for(glm::uint32 y = 0; y < y_max; ++y) |
|
|
|
|
for(glm::uint32 x = 0; x < x_max; ++x) |
|
|
|
|
{ |
|
|
|
|
glm::uint64 Result = interleaveBitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x)); |
|
|
|
|
Data[x + y * x_max].x = Result; |
|
|
|
|
} |
|
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
|
|
|
Data[i] = interleaveBitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
|
|
|
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
|
|
|
|
|
@ -533,12 +569,8 @@ namespace bitfieldInterleave |
|
|
|
|
{ |
|
|
|
|
std::clock_t LastTime = std::clock(); |
|
|
|
|
|
|
|
|
|
for(glm::uint32 y = 0; y < y_max; ++y) |
|
|
|
|
for(glm::uint32 x = 0; x < x_max; ++x) |
|
|
|
|
{ |
|
|
|
|
glm::uint64 Result = sseBitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x)); |
|
|
|
|
Data[x + y * x_max].x = Result; |
|
|
|
|
} |
|
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
|
|
|
Data[i] = sseBitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
|
|
|
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
|
|
|
|
|
@ -548,12 +580,8 @@ namespace bitfieldInterleave |
|
|
|
|
{ |
|
|
|
|
std::clock_t LastTime = std::clock(); |
|
|
|
|
|
|
|
|
|
for(glm::uint32 y = 0; y < y_max; ++y) |
|
|
|
|
for(glm::uint32 x = 0; x < x_max; ++x) |
|
|
|
|
{ |
|
|
|
|
glm::uint64 Result = sseUnalignedBitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x)); |
|
|
|
|
Data[x + y * x_max].x = Result; |
|
|
|
|
} |
|
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
|
|
|
Data[i] = sseUnalignedBitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
|
|
|
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
|
|
|
|
|
@ -566,21 +594,14 @@ namespace bitfieldInterleave |
|
|
|
|
glm::int32 simd_y_max = 1 << 12; |
|
|
|
|
|
|
|
|
|
std::vector<__m128i> SimdData(x_max * y_max); |
|
|
|
|
std::vector<__m128i> SimdParamX(x_max); |
|
|
|
|
std::vector<__m128i> SimdParamY(y_max); |
|
|
|
|
for(int x = 0; x < simd_x_max; ++x) |
|
|
|
|
SimdParamX[x] = _mm_set1_epi32(x); |
|
|
|
|
for(int y = 0; y < simd_y_max; ++y) |
|
|
|
|
SimdParamY[y] = _mm_set1_epi32(y); |
|
|
|
|
std::vector<__m128i> SimdParam(x_max * y_max); |
|
|
|
|
for(int i = 0; i < SimdParam.size(); ++i) |
|
|
|
|
SimdParam[i] = _mm_set_epi32(i % simd_x_max, 0, i / simd_y_max, 0); |
|
|
|
|
|
|
|
|
|
std::clock_t LastTime = std::clock(); |
|
|
|
|
|
|
|
|
|
for(glm::int32 y = 0; y < simd_y_max; ++y) |
|
|
|
|
for(glm::int32 x = 0; x < simd_x_max; ++x) |
|
|
|
|
{ |
|
|
|
|
__m128i Result = _mm_bit_interleave_si128(SimdParamX[x], SimdParamX[y]); |
|
|
|
|
SimdData[x + y * x_max] = Result; |
|
|
|
|
} |
|
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
|
|
|
SimdData[i] = _mm_bit_interleave_si128(SimdParam[i]); |
|
|
|
|
|
|
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
|
|
|
|
|
|