You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
633 lines
19 KiB
633 lines
19 KiB
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
// OpenGL Mathematics Copyright (c) 2005 - 2012 G-Truc Creation (www.g-truc.net) |
|
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
// Created : 2010-09-16 |
|
// Updated : 2010-09-16 |
|
// Licence : This source is under MIT licence |
|
// File : test/gtx/bit.cpp |
|
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
#include <glm/glm.hpp> |
|
#include <glm/gtc/type_precision.hpp> |
|
#include <glm/gtx/bit.hpp> |
|
#include <iostream> |
|
#include <vector> |
|
#include <ctime> |
|
|
|
#include <emmintrin.h> |
|
|
|
enum result |
|
{ |
|
SUCCESS, |
|
FAIL, |
|
ASSERT, |
|
STATIC_ASSERT |
|
}; |
|
|
|
namespace extractField |
|
{ |
|
template <typename genType, typename sizeType> |
|
struct type |
|
{ |
|
genType Value; |
|
sizeType BitFirst; |
|
sizeType BitCount; |
|
genType Return; |
|
result Result; |
|
}; |
|
|
|
typedef type<glm::uint64, glm::uint> typeU64; |
|
|
|
#if(((GLM_COMPILER & GLM_COMPILER_GCC) == GLM_COMPILER_GCC) && (GLM_COMPILER < GLM_COMPILER_GCC44)) |
|
typeU64 const Data64[] = |
|
{ |
|
{0xffffffffffffffffLLU, 8, 0, 0x0000000000000000LLU, SUCCESS}, |
|
{0x0000000000000000LLU, 0,64, 0x0000000000000000LLU, SUCCESS}, |
|
{0xffffffffffffffffLLU, 0,64, 0xffffffffffffffffLLU, SUCCESS}, |
|
{0x0f0f0f0f0f0f0f0fLLU, 0,64, 0x0f0f0f0f0f0f0f0fLLU, SUCCESS}, |
|
{0x0000000000000000LLU, 8, 0, 0x0000000000000000LLU, SUCCESS}, |
|
{0x8000000000000000LLU,63, 1, 0x0000000000000001LLU, SUCCESS}, |
|
{0x7fffffffffffffffLLU,63, 1, 0x0000000000000000LLU, SUCCESS}, |
|
{0x0000000000000300LLU, 8, 8, 0x0000000000000003LLU, SUCCESS}, |
|
{0x000000000000ff00LLU, 8, 8, 0x00000000000000ffLLU, SUCCESS}, |
|
{0xfffffffffffffff0LLU, 0, 5, 0x0000000000000010LLU, SUCCESS}, |
|
{0x00000000000000ffLLU, 1, 3, 0x0000000000000007LLU, SUCCESS}, |
|
{0x00000000000000ffLLU, 0, 3, 0x0000000000000007LLU, SUCCESS}, |
|
{0x0000000000000000LLU, 0, 2, 0x0000000000000000LLU, SUCCESS}, |
|
{0xffffffffffffffffLLU, 0, 8, 0x00000000000000ffLLU, SUCCESS}, |
|
{0xffffffff00000000LLU,32,32, 0x00000000ffffffffLLU, SUCCESS}, |
|
{0xfffffffffffffff0LLU, 0, 8, 0x0000000000000000LLU, FAIL}, |
|
{0xffffffffffffffffLLU,32,32, 0x0000000000000000LLU, FAIL}, |
|
//{0xffffffffffffffffLLU,64, 1, 0x0000000000000000LLU, ASSERT}, // Throw an assert |
|
//{0xffffffffffffffffLLU, 0,65, 0x0000000000000000LLU, ASSERT}, // Throw an assert |
|
//{0xffffffffffffffffLLU,33,32, 0x0000000000000000LLU, ASSERT}, // Throw an assert |
|
}; |
|
#else |
|
typeU64 const Data64[] = |
|
{ |
|
{0xffffffffffffffff, 8, 0, 0x0000000000000000, SUCCESS}, |
|
{0x0000000000000000, 0,64, 0x0000000000000000, SUCCESS}, |
|
{0xffffffffffffffff, 0,64, 0xffffffffffffffff, SUCCESS}, |
|
{0x0f0f0f0f0f0f0f0f, 0,64, 0x0f0f0f0f0f0f0f0f, SUCCESS}, |
|
{0x0000000000000000, 8, 0, 0x0000000000000000, SUCCESS}, |
|
{0x8000000000000000,63, 1, 0x0000000000000001, SUCCESS}, |
|
{0x7fffffffffffffff,63, 1, 0x0000000000000000, SUCCESS}, |
|
{0x0000000000000300, 8, 8, 0x0000000000000003, SUCCESS}, |
|
{0x000000000000ff00, 8, 8, 0x00000000000000ff, SUCCESS}, |
|
{0xfffffffffffffff0, 0, 5, 0x0000000000000010, SUCCESS}, |
|
{0x00000000000000ff, 1, 3, 0x0000000000000007, SUCCESS}, |
|
{0x00000000000000ff, 0, 3, 0x0000000000000007, SUCCESS}, |
|
{0x0000000000000000, 0, 2, 0x0000000000000000, SUCCESS}, |
|
{0xffffffffffffffff, 0, 8, 0x00000000000000ff, SUCCESS}, |
|
{0xffffffff00000000,32,32, 0x00000000ffffffff, SUCCESS}, |
|
{0xfffffffffffffff0, 0, 8, 0x0000000000000000, FAIL}, |
|
{0xffffffffffffffff,32,32, 0x0000000000000000, FAIL}, |
|
//{0xffffffffffffffff,64, 1, 0x0000000000000000, ASSERT}, // Throw an assert |
|
//{0xffffffffffffffff, 0,65, 0x0000000000000000, ASSERT}, // Throw an assert |
|
//{0xffffffffffffffff,33,32, 0x0000000000000000, ASSERT}, // Throw an assert |
|
}; |
|
#endif |
|
|
|
int test() |
|
{ |
|
glm::uint32 count = sizeof(Data64) / sizeof(typeU64); |
|
|
|
for(glm::uint32 i = 0; i < count; ++i) |
|
{ |
|
glm::uint64 Return = glm::extractField( |
|
Data64[i].Value, |
|
Data64[i].BitFirst, |
|
Data64[i].BitCount); |
|
|
|
bool Compare = Data64[i].Return == Return; |
|
|
|
if(Data64[i].Result == SUCCESS && Compare) |
|
continue; |
|
else if(Data64[i].Result == FAIL && !Compare) |
|
continue; |
|
|
|
std::cout << "glm::extractfield test fail on test " << i << std::endl; |
|
return 1; |
|
} |
|
|
|
return 0; |
|
} |
|
}//extractField |
|
|
|
namespace bitRevert |
|
{ |
|
template <typename genType> |
|
struct type |
|
{ |
|
genType Value; |
|
genType Return; |
|
result Result; |
|
}; |
|
|
|
typedef type<glm::uint64> typeU64; |
|
|
|
#if(((GLM_COMPILER & GLM_COMPILER_GCC) == GLM_COMPILER_GCC) && (GLM_COMPILER < GLM_COMPILER_GCC44)) |
|
typeU64 const Data64[] = |
|
{ |
|
{0xffffffffffffffffLLU, 0xffffffffffffffffLLU, SUCCESS}, |
|
{0x0000000000000000LLU, 0x0000000000000000LLU, SUCCESS}, |
|
{0xf000000000000000LLU, 0x000000000000000fLLU, SUCCESS}, |
|
}; |
|
#else |
|
typeU64 const Data64[] = |
|
{ |
|
{0xffffffffffffffff, 0xffffffffffffffff, SUCCESS}, |
|
{0x0000000000000000, 0x0000000000000000, SUCCESS}, |
|
{0xf000000000000000, 0x000000000000000f, SUCCESS}, |
|
}; |
|
#endif |
|
|
|
int test() |
|
{ |
|
glm::uint32 count = sizeof(Data64) / sizeof(typeU64); |
|
|
|
for(glm::uint32 i = 0; i < count; ++i) |
|
{ |
|
glm::uint64 Return = glm::bitRevert( |
|
Data64[i].Value); |
|
|
|
bool Compare = Data64[i].Return == Return; |
|
|
|
if(Data64[i].Result == SUCCESS && Compare) |
|
continue; |
|
else if(Data64[i].Result == FAIL && !Compare) |
|
continue; |
|
|
|
std::cout << "glm::extractfield test fail on test " << i << std::endl; |
|
return 1; |
|
} |
|
|
|
return 0; |
|
} |
|
}//bitRevert |
|
|
|
inline glm::uint64 fastBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
|
{ |
|
glm::uint64 REG1; |
|
glm::uint64 REG2; |
|
|
|
REG1 = x; |
|
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); |
|
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); |
|
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); |
|
REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); |
|
|
|
REG2 = y; |
|
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); |
|
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); |
|
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); |
|
REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); |
|
|
|
return REG1 | (REG2 << 1); |
|
} |
|
|
|
inline glm::uint64 interleaveBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
|
{ |
|
glm::uint64 REG1; |
|
glm::uint64 REG2; |
|
|
|
REG1 = x; |
|
REG2 = y; |
|
|
|
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); |
|
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); |
|
|
|
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); |
|
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); |
|
|
|
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
|
|
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); |
|
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); |
|
|
|
REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); |
|
REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); |
|
|
|
return REG1 | (REG2 << 1); |
|
} |
|
|
|
inline glm::uint64 loopBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
|
{ |
|
static glm::uint64 const Mask[5] = |
|
{ |
|
0x5555555555555555, |
|
0x3333333333333333, |
|
0x0F0F0F0F0F0F0F0F, |
|
0x00FF00FF00FF00FF, |
|
0x0000FFFF0000FFFF |
|
}; |
|
|
|
glm::uint64 REG1 = x; |
|
glm::uint64 REG2 = y; |
|
for(int i = 4; i >= 0; --i) |
|
{ |
|
REG1 = ((REG1 << (1 << i)) | REG1) & Mask[i]; |
|
REG2 = ((REG2 << (1 << i)) | REG2) & Mask[i]; |
|
} |
|
|
|
return REG1 | (REG2 << 1); |
|
} |
|
|
|
/* |
|
const int N = 1024; |
|
|
|
int32_t b1[N]; // 2 x arrays of input bit sets |
|
int32_t b2[N]; |
|
int32_t b3[N]; // 1 x array of output bit sets |
|
|
|
for (int i = 0; i < N; i += 4) |
|
{ |
|
__m128i v1 = _mm_loadu_si128(&b1[i]); // load input bits sets |
|
__m128i v2 = _mm_loadu_si128(&b2[i]); |
|
__m128i v3 = _mm_and_si128(v1, v2); // do the bitwise AND |
|
_mm_storeu_si128(&b3[i], v3); // store the result |
|
} |
|
If you just want to AND an array in-place with a fixed mask then it would simplify to this: |
|
|
|
const int N = 1024; |
|
|
|
int32_t b1[N]; // input/output array of bit sets |
|
|
|
const __m128i v2 = _mm_set1_epi32(0x12345678); // mask |
|
|
|
for (int i = 0; i < N; i += 4) |
|
{ |
|
__m128i v1 = _mm_loadu_si128(&b1[i]); // load input bits sets |
|
__m128i v3 = _mm_and_si128(v1, v2); // do the bitwise AND |
|
_mm_storeu_si128(&b1[i], v3); // store the result |
|
} |
|
Note: for better performance make sure your input/output arrays are 16 byte aligned and then use _mm_load_si128/_mm_store_si128 rather than their unaligned counterparts as above. |
|
*/ |
|
|
|
inline glm::uint64 sseBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
|
{ |
|
GLM_ALIGN(16) glm::uint32 const Array[4] = {x, 0, y, 0}; |
|
|
|
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); |
|
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); |
|
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); |
|
__m128i const Mask1 = _mm_set1_epi32(0x33333333); |
|
__m128i const Mask0 = _mm_set1_epi32(0x55555555); |
|
|
|
__m128i Reg1; |
|
__m128i Reg2; |
|
|
|
// REG1 = x; |
|
// REG2 = y; |
|
Reg1 = _mm_load_si128((__m128i*)Array); |
|
|
|
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); |
|
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); |
|
Reg2 = _mm_slli_si128(Reg1, 2); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask4); |
|
|
|
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); |
|
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); |
|
Reg2 = _mm_slli_si128(Reg1, 1); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask3); |
|
|
|
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
Reg2 = _mm_slli_epi32(Reg1, 4); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask2); |
|
|
|
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); |
|
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); |
|
Reg2 = _mm_slli_epi32(Reg1, 2); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask1); |
|
|
|
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); |
|
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); |
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask0); |
|
|
|
//return REG1 | (REG2 << 1); |
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
Reg2 = _mm_srli_si128(Reg2, 8); |
|
Reg1 = _mm_or_si128(Reg1, Reg2); |
|
|
|
GLM_ALIGN(16) glm::uint64 Result[2]; |
|
_mm_store_si128((__m128i*)Result, Reg1); |
|
|
|
return Result[0]; |
|
} |
|
|
|
inline glm::uint64 sseUnalignedBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
|
{ |
|
glm::uint32 const Array[4] = {x, 0, y, 0}; |
|
|
|
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); |
|
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); |
|
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); |
|
__m128i const Mask1 = _mm_set1_epi32(0x33333333); |
|
__m128i const Mask0 = _mm_set1_epi32(0x55555555); |
|
|
|
__m128i Reg1; |
|
__m128i Reg2; |
|
|
|
// REG1 = x; |
|
// REG2 = y; |
|
Reg1 = _mm_loadu_si128((__m128i*)Array); |
|
|
|
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); |
|
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); |
|
Reg2 = _mm_slli_si128(Reg1, 2); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask4); |
|
|
|
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); |
|
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); |
|
Reg2 = _mm_slli_si128(Reg1, 1); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask3); |
|
|
|
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
Reg2 = _mm_slli_epi32(Reg1, 4); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask2); |
|
|
|
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); |
|
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); |
|
Reg2 = _mm_slli_epi32(Reg1, 2); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask1); |
|
|
|
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); |
|
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); |
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask0); |
|
|
|
//return REG1 | (REG2 << 1); |
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
Reg2 = _mm_srli_si128(Reg2, 8); |
|
Reg1 = _mm_or_si128(Reg1, Reg2); |
|
|
|
glm::uint64 Result[2]; |
|
_mm_storeu_si128((__m128i*)Result, Reg1); |
|
|
|
return Result[0]; |
|
} |
|
|
|
inline __m128i _mm_bit_interleave_si128(__m128i x, __m128i y) |
|
{ |
|
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); |
|
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); |
|
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); |
|
__m128i const Mask1 = _mm_set1_epi32(0x33333333); |
|
__m128i const Mask0 = _mm_set1_epi32(0x55555555); |
|
|
|
__m128i Reg1; |
|
__m128i Reg2; |
|
|
|
// REG1 = x; |
|
// REG2 = y; |
|
Reg1 = _mm_unpacklo_epi64(x, y); |
|
|
|
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); |
|
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); |
|
Reg2 = _mm_slli_si128(Reg1, 2); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask4); |
|
|
|
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); |
|
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); |
|
Reg2 = _mm_slli_si128(Reg1, 1); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask3); |
|
|
|
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
Reg2 = _mm_slli_epi32(Reg1, 4); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask2); |
|
|
|
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); |
|
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); |
|
Reg2 = _mm_slli_epi32(Reg1, 2); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask1); |
|
|
|
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); |
|
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); |
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask0); |
|
|
|
//return REG1 | (REG2 << 1); |
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
Reg2 = _mm_srli_si128(Reg2, 8); |
|
Reg1 = _mm_or_si128(Reg1, Reg2); |
|
|
|
return Reg1; |
|
} |
|
|
|
|
|
inline __m128i _mm_bit_interleave_si128(__m128i x) |
|
{ |
|
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); |
|
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); |
|
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); |
|
__m128i const Mask1 = _mm_set1_epi32(0x33333333); |
|
__m128i const Mask0 = _mm_set1_epi32(0x55555555); |
|
|
|
__m128i Reg1; |
|
__m128i Reg2; |
|
|
|
// REG1 = x; |
|
// REG2 = y; |
|
//Reg1 = _mm_unpacklo_epi64(x, y); |
|
Reg1 = x; |
|
|
|
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); |
|
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); |
|
Reg2 = _mm_slli_si128(Reg1, 2); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask4); |
|
|
|
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); |
|
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); |
|
Reg2 = _mm_slli_si128(Reg1, 1); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask3); |
|
|
|
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
Reg2 = _mm_slli_epi32(Reg1, 4); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask2); |
|
|
|
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); |
|
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); |
|
Reg2 = _mm_slli_epi32(Reg1, 2); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask1); |
|
|
|
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); |
|
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); |
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
Reg1 = _mm_and_si128(Reg1, Mask0); |
|
|
|
//return REG1 | (REG2 << 1); |
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
Reg2 = _mm_srli_si128(Reg2, 8); |
|
Reg1 = _mm_or_si128(Reg1, Reg2); |
|
|
|
return Reg1; |
|
} |
|
|
|
namespace bitfieldInterleave |
|
{ |
|
int test() |
|
{ |
|
glm::uint32 x_max = 1 << 13; |
|
glm::uint32 y_max = 1 << 12; |
|
|
|
// ALU |
|
std::vector<glm::uint64> Data(x_max * y_max); |
|
std::vector<glm::u32vec2> Param(x_max * y_max); |
|
for(glm::uint32 i = 0; i < Param.size(); ++i) |
|
Param[i] = glm::u32vec2(i % x_max, i / y_max); |
|
|
|
{ |
|
for(glm::uint32 y = 0; y < (1 << 10); ++y) |
|
for(glm::uint32 x = 0; x < (1 << 10); ++x) |
|
{ |
|
glm::uint64 A = glm::bitfieldInterleave(x, y); |
|
glm::uint64 B = fastBitfieldInterleave(x, y); |
|
glm::uint64 C = loopBitfieldInterleave(x, y); |
|
glm::uint64 D = interleaveBitfieldInterleave(x, y); |
|
glm::uint64 E = sseBitfieldInterleave(x, y); |
|
glm::uint64 F = sseUnalignedBitfieldInterleave(x, y); |
|
assert(A == B); |
|
assert(A == C); |
|
assert(A == D); |
|
assert(A == E); |
|
assert(A == F); |
|
} |
|
} |
|
|
|
{ |
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::cout << "glm::bitfieldInterleave Time " << Time << " clocks" << std::endl; |
|
} |
|
|
|
{ |
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
Data[i] = fastBitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::cout << "fastBitfieldInterleave Time " << Time << " clocks" << std::endl; |
|
} |
|
|
|
{ |
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
Data[i] = loopBitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::cout << "loopBitfieldInterleave Time " << Time << " clocks" << std::endl; |
|
} |
|
|
|
{ |
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
Data[i] = interleaveBitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::cout << "interleaveBitfieldInterleave Time " << Time << " clocks" << std::endl; |
|
} |
|
|
|
{ |
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
Data[i] = sseBitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::cout << "sseBitfieldInterleave Time " << Time << " clocks" << std::endl; |
|
} |
|
|
|
{ |
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
Data[i] = sseUnalignedBitfieldInterleave(Param[i].x, Param[i].y); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::cout << "sseUnalignedBitfieldInterleave Time " << Time << " clocks" << std::endl; |
|
} |
|
|
|
{ |
|
// SIMD |
|
glm::int32 simd_x_max = 1 << 13; |
|
glm::int32 simd_y_max = 1 << 12; |
|
|
|
std::vector<__m128i> SimdData(x_max * y_max); |
|
std::vector<__m128i> SimdParam(x_max * y_max); |
|
for(int i = 0; i < SimdParam.size(); ++i) |
|
SimdParam[i] = _mm_set_epi32(i % simd_x_max, 0, i / simd_y_max, 0); |
|
|
|
std::clock_t LastTime = std::clock(); |
|
|
|
for(std::size_t i = 0; i < Data.size(); ++i) |
|
SimdData[i] = _mm_bit_interleave_si128(SimdParam[i]); |
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
std::cout << "_mm_bit_interleave_si128 Time " << Time << " clocks" << std::endl; |
|
} |
|
|
|
|
|
|
|
return 0; |
|
} |
|
} |
|
|
|
int main() |
|
{ |
|
//__m64 REG3 = _mm_set1_pi32(static_cast<int>(0x80000000)); |
|
//__m64 REG1 = _mm_set1_pi32(0xFFFFFFFF); |
|
//__m64 REG2 = _mm_set1_pi32(0x55555555); |
|
//__m128i REG = _mm_set_epi64(REG1, REG2); |
|
|
|
|
|
int Error = 0; |
|
Error += ::bitfieldInterleave::test(); |
|
Error += ::extractField::test(); |
|
Error += ::bitRevert::test(); |
|
|
|
while(true); |
|
|
|
return Error; |
|
}
|
|
|