|
|
|
@ -11,6 +11,10 @@ |
|
|
|
|
#include <glm/gtc/type_precision.hpp> |
|
|
|
|
#include <glm/gtx/bit.hpp> |
|
|
|
|
#include <iostream> |
|
|
|
|
#include <vector> |
|
|
|
|
#include <ctime> |
|
|
|
|
|
|
|
|
|
#include <emmintrin.h> |
|
|
|
|
|
|
|
|
|
enum result |
|
|
|
|
{ |
|
|
|
@ -162,10 +166,447 @@ namespace bitRevert |
|
|
|
|
} |
|
|
|
|
}//bitRevert
|
|
|
|
|
|
|
|
|
|
inline glm::uint64 fastBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
|
|
|
|
{ |
|
|
|
|
glm::uint64 REG1; |
|
|
|
|
glm::uint64 REG2; |
|
|
|
|
|
|
|
|
|
REG1 = x; |
|
|
|
|
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); |
|
|
|
|
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); |
|
|
|
|
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
|
|
|
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); |
|
|
|
|
REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); |
|
|
|
|
|
|
|
|
|
REG2 = y; |
|
|
|
|
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); |
|
|
|
|
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); |
|
|
|
|
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
|
|
|
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); |
|
|
|
|
REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); |
|
|
|
|
|
|
|
|
|
return REG1 | (REG2 << 1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
inline glm::uint64 interleaveBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
|
|
|
|
{ |
|
|
|
|
glm::uint64 REG1; |
|
|
|
|
glm::uint64 REG2; |
|
|
|
|
|
|
|
|
|
REG1 = x; |
|
|
|
|
REG2 = y; |
|
|
|
|
|
|
|
|
|
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); |
|
|
|
|
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); |
|
|
|
|
|
|
|
|
|
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); |
|
|
|
|
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); |
|
|
|
|
|
|
|
|
|
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
|
|
|
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
|
|
|
|
|
|
|
|
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); |
|
|
|
|
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); |
|
|
|
|
|
|
|
|
|
REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); |
|
|
|
|
REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); |
|
|
|
|
|
|
|
|
|
return REG1 | (REG2 << 1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
inline glm::uint64 loopBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
|
|
|
|
{ |
|
|
|
|
static glm::uint64 const Mask[5] =
|
|
|
|
|
{ |
|
|
|
|
0x5555555555555555, |
|
|
|
|
0x3333333333333333, |
|
|
|
|
0x0F0F0F0F0F0F0F0F, |
|
|
|
|
0x00FF00FF00FF00FF, |
|
|
|
|
0x0000FFFF0000FFFF |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
glm::uint64 REG1 = x; |
|
|
|
|
glm::uint64 REG2 = y; |
|
|
|
|
for(int i = 4; i >= 0; --i) |
|
|
|
|
{ |
|
|
|
|
REG1 = ((REG1 << (1 << i)) | REG1) & Mask[i]; |
|
|
|
|
REG2 = ((REG2 << (1 << i)) | REG2) & Mask[i]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return REG1 | (REG2 << 1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
const int N = 1024; |
|
|
|
|
|
|
|
|
|
int32_t b1[N]; // 2 x arrays of input bit sets
|
|
|
|
|
int32_t b2[N]; |
|
|
|
|
int32_t b3[N]; // 1 x array of output bit sets
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < N; i += 4) |
|
|
|
|
{ |
|
|
|
|
__m128i v1 = _mm_loadu_si128(&b1[i]); // load input bits sets
|
|
|
|
|
__m128i v2 = _mm_loadu_si128(&b2[i]); |
|
|
|
|
__m128i v3 = _mm_and_si128(v1, v2); // do the bitwise AND
|
|
|
|
|
_mm_storeu_si128(&b3[i], v3); // store the result
|
|
|
|
|
} |
|
|
|
|
If you just want to AND an array in-place with a fixed mask then it would simplify to this: |
|
|
|
|
|
|
|
|
|
const int N = 1024; |
|
|
|
|
|
|
|
|
|
int32_t b1[N]; // input/output array of bit sets
|
|
|
|
|
|
|
|
|
|
const __m128i v2 = _mm_set1_epi32(0x12345678); // mask
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < N; i += 4) |
|
|
|
|
{ |
|
|
|
|
__m128i v1 = _mm_loadu_si128(&b1[i]); // load input bits sets
|
|
|
|
|
__m128i v3 = _mm_and_si128(v1, v2); // do the bitwise AND
|
|
|
|
|
_mm_storeu_si128(&b1[i], v3); // store the result
|
|
|
|
|
} |
|
|
|
|
Note: for better performance make sure your input/output arrays are 16 byte aligned and then use _mm_load_si128/_mm_store_si128 rather than their unaligned counterparts as above. |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
inline glm::uint64 sseBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
|
|
|
|
{ |
|
|
|
|
GLM_ALIGN(16) glm::uint32 const Array[4] = {x, 0, y, 0}; |
|
|
|
|
|
|
|
|
|
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); |
|
|
|
|
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); |
|
|
|
|
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); |
|
|
|
|
__m128i const Mask1 = _mm_set1_epi32(0x33333333); |
|
|
|
|
__m128i const Mask0 = _mm_set1_epi32(0x55555555); |
|
|
|
|
|
|
|
|
|
__m128i Reg1; |
|
|
|
|
__m128i Reg2; |
|
|
|
|
|
|
|
|
|
// REG1 = x;
|
|
|
|
|
// REG2 = y;
|
|
|
|
|
Reg1 = _mm_load_si128((__m128i*)Array); |
|
|
|
|
|
|
|
|
|
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
|
|
|
|
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
|
|
|
|
Reg2 = _mm_slli_si128(Reg1, 2); |
|
|
|
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
|
|
|
Reg1 = _mm_and_si128(Reg1, Mask4); |
|
|
|
|
|
|
|
|
|
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
|
|
|
|
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
|
|
|
|
Reg2 = _mm_slli_si128(Reg1, 1); |
|
|
|
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
|
|
|
Reg1 = _mm_and_si128(Reg1, Mask3); |
|
|
|
|
|
|
|
|
|
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
|
|
|
|
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
|
|
|
|
Reg2 = _mm_slli_epi32(Reg1, 4); |
|
|
|
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
|
|
|
Reg1 = _mm_and_si128(Reg1, Mask2); |
|
|
|
|
|
|
|
|
|
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
|
|
|
|
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
|
|
|
|
Reg2 = _mm_slli_epi32(Reg1, 2); |
|
|
|
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
|
|
|
Reg1 = _mm_and_si128(Reg1, Mask1); |
|
|
|
|
|
|
|
|
|
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
|
|
|
|
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
|
|
|
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
|
|
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
|
|
|
Reg1 = _mm_and_si128(Reg1, Mask0); |
|
|
|
|
|
|
|
|
|
//return REG1 | (REG2 << 1);
|
|
|
|
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
|
|
|
Reg2 = _mm_srli_si128(Reg2, 8); |
|
|
|
|
Reg1 = _mm_or_si128(Reg1, Reg2); |
|
|
|
|
|
|
|
|
|
GLM_ALIGN(16) glm::uint64 Result[2]; |
|
|
|
|
_mm_store_si128((__m128i*)Result, Reg1); |
|
|
|
|
|
|
|
|
|
return Result[0]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
inline glm::uint64 sseUnalignedBitfieldInterleave(glm::uint32 x, glm::uint32 y) |
|
|
|
|
{ |
|
|
|
|
glm::uint32 const Array[4] = {x, 0, y, 0}; |
|
|
|
|
|
|
|
|
|
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); |
|
|
|
|
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); |
|
|
|
|
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); |
|
|
|
|
__m128i const Mask1 = _mm_set1_epi32(0x33333333); |
|
|
|
|
__m128i const Mask0 = _mm_set1_epi32(0x55555555); |
|
|
|
|
|
|
|
|
|
__m128i Reg1; |
|
|
|
|
__m128i Reg2; |
|
|
|
|
|
|
|
|
|
// REG1 = x;
|
|
|
|
|
// REG2 = y;
|
|
|
|
|
Reg1 = _mm_loadu_si128((__m128i*)Array); |
|
|
|
|
|
|
|
|
|
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
|
|
|
|
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
|
|
|
|
Reg2 = _mm_slli_si128(Reg1, 2); |
|
|
|
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
|
|
|
Reg1 = _mm_and_si128(Reg1, Mask4); |
|
|
|
|
|
|
|
|
|
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
|
|
|
|
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
|
|
|
|
Reg2 = _mm_slli_si128(Reg1, 1); |
|
|
|
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
|
|
|
Reg1 = _mm_and_si128(Reg1, Mask3); |
|
|
|
|
|
|
|
|
|
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
|
|
|
|
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
|
|
|
|
Reg2 = _mm_slli_epi32(Reg1, 4); |
|
|
|
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
|
|
|
Reg1 = _mm_and_si128(Reg1, Mask2); |
|
|
|
|
|
|
|
|
|
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
|
|
|
|
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
|
|
|
|
Reg2 = _mm_slli_epi32(Reg1, 2); |
|
|
|
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
|
|
|
Reg1 = _mm_and_si128(Reg1, Mask1); |
|
|
|
|
|
|
|
|
|
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
|
|
|
|
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
|
|
|
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
|
|
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
|
|
|
Reg1 = _mm_and_si128(Reg1, Mask0); |
|
|
|
|
|
|
|
|
|
//return REG1 | (REG2 << 1);
|
|
|
|
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
|
|
|
Reg2 = _mm_srli_si128(Reg2, 8); |
|
|
|
|
Reg1 = _mm_or_si128(Reg1, Reg2); |
|
|
|
|
|
|
|
|
|
glm::uint64 Result[2]; |
|
|
|
|
_mm_storeu_si128((__m128i*)Result, Reg1); |
|
|
|
|
|
|
|
|
|
return Result[0]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
inline __m128i _mm_bit_interleave_si128(__m128i x, __m128i y) |
|
|
|
|
{ |
|
|
|
|
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); |
|
|
|
|
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); |
|
|
|
|
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); |
|
|
|
|
__m128i const Mask1 = _mm_set1_epi32(0x33333333); |
|
|
|
|
__m128i const Mask0 = _mm_set1_epi32(0x55555555); |
|
|
|
|
|
|
|
|
|
__m128i Reg1; |
|
|
|
|
__m128i Reg2; |
|
|
|
|
|
|
|
|
|
// REG1 = x;
|
|
|
|
|
// REG2 = y;
|
|
|
|
|
Reg1 = _mm_unpacklo_epi64(x, y); |
|
|
|
|
|
|
|
|
|
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
|
|
|
|
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
|
|
|
|
Reg2 = _mm_slli_si128(Reg1, 2); |
|
|
|
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
|
|
|
Reg1 = _mm_and_si128(Reg1, Mask4); |
|
|
|
|
|
|
|
|
|
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
|
|
|
|
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
|
|
|
|
Reg2 = _mm_slli_si128(Reg1, 1); |
|
|
|
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
|
|
|
Reg1 = _mm_and_si128(Reg1, Mask3); |
|
|
|
|
|
|
|
|
|
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
|
|
|
|
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
|
|
|
|
Reg2 = _mm_slli_epi32(Reg1, 4); |
|
|
|
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
|
|
|
Reg1 = _mm_and_si128(Reg1, Mask2); |
|
|
|
|
|
|
|
|
|
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
|
|
|
|
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
|
|
|
|
Reg2 = _mm_slli_epi32(Reg1, 2); |
|
|
|
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
|
|
|
Reg1 = _mm_and_si128(Reg1, Mask1); |
|
|
|
|
|
|
|
|
|
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
|
|
|
|
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
|
|
|
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
|
|
|
Reg1 = _mm_or_si128(Reg2, Reg1); |
|
|
|
|
Reg1 = _mm_and_si128(Reg1, Mask0); |
|
|
|
|
|
|
|
|
|
//return REG1 | (REG2 << 1);
|
|
|
|
|
Reg2 = _mm_slli_epi32(Reg1, 1); |
|
|
|
|
Reg2 = _mm_srli_si128(Reg2, 8); |
|
|
|
|
Reg1 = _mm_or_si128(Reg1, Reg2); |
|
|
|
|
|
|
|
|
|
return Reg1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
namespace bitfieldInterleave |
|
|
|
|
{ |
|
|
|
|
int test() |
|
|
|
|
{ |
|
|
|
|
glm::uint32 x_max = 1 << 13; |
|
|
|
|
glm::uint32 y_max = 1 << 12; |
|
|
|
|
|
|
|
|
|
// ALU
|
|
|
|
|
std::vector<glm::u64vec2> Data(x_max * y_max); |
|
|
|
|
std::vector<glm::u64vec2> ParamX(x_max); |
|
|
|
|
std::vector<glm::u64vec2> ParamY(y_max); |
|
|
|
|
for(glm::uint32 x = 0; x < x_max; ++x) |
|
|
|
|
ParamX[x] = glm::u64vec2(x); |
|
|
|
|
for(glm::uint32 y = 0; y < y_max; ++y) |
|
|
|
|
ParamY[y] = glm::u64vec2(y); |
|
|
|
|
|
|
|
|
|
{ |
|
|
|
|
for(glm::uint32 y = 0; y < (1 << 10); ++y) |
|
|
|
|
for(glm::uint32 x = 0; x < (1 << 10); ++x) |
|
|
|
|
{ |
|
|
|
|
glm::uint64 A = glm::bitfieldInterleave(x, y); |
|
|
|
|
glm::uint64 B = fastBitfieldInterleave(x, y); |
|
|
|
|
glm::uint64 C = loopBitfieldInterleave(x, y); |
|
|
|
|
glm::uint64 D = interleaveBitfieldInterleave(x, y); |
|
|
|
|
glm::uint64 E = sseBitfieldInterleave(x, y); |
|
|
|
|
glm::uint64 F = sseUnalignedBitfieldInterleave(x, y); |
|
|
|
|
assert(A == B); |
|
|
|
|
assert(A == C); |
|
|
|
|
assert(A == D); |
|
|
|
|
assert(A == E); |
|
|
|
|
assert(A == F); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
{ |
|
|
|
|
std::clock_t LastTime = std::clock(); |
|
|
|
|
|
|
|
|
|
for(glm::uint32 y = 0; y < y_max; ++y) |
|
|
|
|
for(glm::uint32 x = 0; x < x_max; ++x) |
|
|
|
|
{ |
|
|
|
|
glm::uint64 Result = glm::bitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x)); |
|
|
|
|
Data[x + y * x_max].x = Result; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
|
|
|
|
|
|
std::cout << "glm::bitfieldInterleave Time " << Time << " clocks" << std::endl; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
{ |
|
|
|
|
std::clock_t LastTime = std::clock(); |
|
|
|
|
|
|
|
|
|
for(glm::uint32 y = 0; y < y_max; ++y) |
|
|
|
|
for(glm::uint32 x = 0; x < x_max; ++x) |
|
|
|
|
{ |
|
|
|
|
glm::uint64 Result = fastBitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x)); |
|
|
|
|
Data[x + y * x_max].x = Result; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
|
|
|
|
|
|
std::cout << "fastBitfieldInterleave Time " << Time << " clocks" << std::endl; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
{ |
|
|
|
|
std::clock_t LastTime = std::clock(); |
|
|
|
|
|
|
|
|
|
for(glm::uint32 y = 0; y < y_max; ++y) |
|
|
|
|
for(glm::uint32 x = 0; x < x_max; ++x) |
|
|
|
|
{ |
|
|
|
|
glm::uint64 Result = loopBitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x)); |
|
|
|
|
Data[x + y * x_max].x = Result; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
|
|
|
|
|
|
std::cout << "loopBitfieldInterleave Time " << Time << " clocks" << std::endl; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
{ |
|
|
|
|
std::clock_t LastTime = std::clock(); |
|
|
|
|
|
|
|
|
|
for(glm::uint32 y = 0; y < y_max; ++y) |
|
|
|
|
for(glm::uint32 x = 0; x < x_max; ++x) |
|
|
|
|
{ |
|
|
|
|
glm::uint64 Result = interleaveBitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x)); |
|
|
|
|
Data[x + y * x_max].x = Result; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
|
|
|
|
|
|
std::cout << "interleaveBitfieldInterleave Time " << Time << " clocks" << std::endl; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
{ |
|
|
|
|
std::clock_t LastTime = std::clock(); |
|
|
|
|
|
|
|
|
|
for(glm::uint32 y = 0; y < y_max; ++y) |
|
|
|
|
for(glm::uint32 x = 0; x < x_max; ++x) |
|
|
|
|
{ |
|
|
|
|
glm::uint64 Result = sseBitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x)); |
|
|
|
|
Data[x + y * x_max].x = Result; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
|
|
|
|
|
|
std::cout << "sseBitfieldInterleave Time " << Time << " clocks" << std::endl; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
{ |
|
|
|
|
std::clock_t LastTime = std::clock(); |
|
|
|
|
|
|
|
|
|
for(glm::uint32 y = 0; y < y_max; ++y) |
|
|
|
|
for(glm::uint32 x = 0; x < x_max; ++x) |
|
|
|
|
{ |
|
|
|
|
glm::uint64 Result = sseUnalignedBitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x)); |
|
|
|
|
Data[x + y * x_max].x = Result; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
|
|
|
|
|
|
std::cout << "sseUnalignedBitfieldInterleave Time " << Time << " clocks" << std::endl; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
{ |
|
|
|
|
// SIMD
|
|
|
|
|
glm::int32 simd_x_max = 1 << 13; |
|
|
|
|
glm::int32 simd_y_max = 1 << 12; |
|
|
|
|
|
|
|
|
|
std::vector<__m128i> SimdData(x_max * y_max); |
|
|
|
|
std::vector<__m128i> SimdParamX(x_max); |
|
|
|
|
std::vector<__m128i> SimdParamY(y_max); |
|
|
|
|
for(int x = 0; x < simd_x_max; ++x) |
|
|
|
|
SimdParamX[x] = _mm_set1_epi32(x); |
|
|
|
|
for(int y = 0; y < simd_y_max; ++y) |
|
|
|
|
SimdParamY[y] = _mm_set1_epi32(y); |
|
|
|
|
|
|
|
|
|
std::clock_t LastTime = std::clock(); |
|
|
|
|
|
|
|
|
|
for(glm::int32 y = 0; y < simd_y_max; ++y) |
|
|
|
|
for(glm::int32 x = 0; x < simd_x_max; ++x) |
|
|
|
|
{ |
|
|
|
|
__m128i Result = _mm_bit_interleave_si128(SimdParamX[x], SimdParamX[y]); |
|
|
|
|
SimdData[x + y * x_max] = Result; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
std::clock_t Time = std::clock() - LastTime; |
|
|
|
|
|
|
|
|
|
std::cout << "_mm_bit_interleave_si128 Time " << Time << " clocks" << std::endl; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return 0; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int main() |
|
|
|
|
{ |
|
|
|
|
//__m64 REG3 = _mm_set1_pi32(static_cast<int>(0x80000000));
|
|
|
|
|
//__m64 REG1 = _mm_set1_pi32(0xFFFFFFFF);
|
|
|
|
|
//__m64 REG2 = _mm_set1_pi32(0x55555555);
|
|
|
|
|
//__m128i REG = _mm_set_epi64(REG1, REG2);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int Error = 0; |
|
|
|
|
Error += ::bitfieldInterleave::test(); |
|
|
|
|
Error += ::extractField::test(); |
|
|
|
|
Error += ::bitRevert::test(); |
|
|
|
|
|
|
|
|
|
while(true); |
|
|
|
|
|
|
|
|
|
return Error; |
|
|
|
|
} |
|
|
|
|