/// Returns 2 matrices, r and q, such that r is an upper triangular matrix, the rows of q are orthonormal and span the same subspace than those of the input matrix, and r*q=in.
@ -57,7 +56,7 @@ namespace glm{
/// Given an n-by-m input matrix, r has dimensions min(n,m)-by-m, and q has dimensions n-by-min(n,m).
GLM_FUNC_QUALIFIER void rq_decompose(matType<(C < R ? C : R), R, T, P>& r, matType<C, (C < R ? C : R), T, P>& q, const matType<C, R, T, P>& in) {
// From https://en.wikipedia.org/wiki/QR_decomposition:
// The RQ decomposition transforms a matrix A into the product of an upper triangular matrix R (also known as right-triangular) and an orthogonal matrix Q. The only difference from QR decomposition is the order of these matrices.
// QR decomposition is Gram–Schmidt orthogonalization of columns of A, started from the first column.