|
|
|
@ -1,11 +1,11 @@ |
|
|
|
|
/// @ref gtx_matrix_interpolation |
|
|
|
|
|
|
|
|
|
#include "../gtc/constants.hpp" |
|
|
|
|
#include "../ext/scalar_constants.hpp" |
|
|
|
|
|
|
|
|
|
namespace glm |
|
|
|
|
{ |
|
|
|
|
template<typename T, qualifier Q> |
|
|
|
|
GLM_FUNC_QUALIFIER void axisAngle(mat<4, 4, T, Q> const& m, vec<3, T, Q> & axis, T& angle) |
|
|
|
|
GLM_FUNC_QUALIFIER void axisAngle(mat<4, 4, T, Q> const& m, vec<3, T, Q>& axis, T& angle) |
|
|
|
|
{ |
|
|
|
|
T epsilon = static_cast<T>(0.01); |
|
|
|
|
T epsilon2 = static_cast<T>(0.1); |
|
|
|
@ -15,12 +15,11 @@ namespace glm |
|
|
|
|
if ((abs(m[1][0] + m[0][1]) < epsilon2) && (abs(m[2][0] + m[0][2]) < epsilon2) && (abs(m[2][1] + m[1][2]) < epsilon2) && (abs(m[0][0] + m[1][1] + m[2][2] - static_cast<T>(3.0)) < epsilon2)) |
|
|
|
|
{ |
|
|
|
|
angle = static_cast<T>(0.0); |
|
|
|
|
axis.x = static_cast<T>(1.0); |
|
|
|
|
axis.y = static_cast<T>(0.0); |
|
|
|
|
axis.z = static_cast<T>(0.0); |
|
|
|
|
axis = vec<3, T, Q>( |
|
|
|
|
static_cast<T>(1.0), static_cast<T>(0.0), static_cast<T>(0.0)); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
angle = static_cast<T>(3.1415926535897932384626433832795); |
|
|
|
|
angle = pi<T>(); |
|
|
|
|
T xx = (m[0][0] + static_cast<T>(1.0)) * static_cast<T>(0.5); |
|
|
|
|
T yy = (m[1][1] + static_cast<T>(1.0)) * static_cast<T>(0.5); |
|
|
|
|
T zz = (m[2][2] + static_cast<T>(1.0)) * static_cast<T>(0.5); |
|
|
|
@ -74,9 +73,7 @@ namespace glm |
|
|
|
|
} |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
T s = sqrt((m[2][1] - m[1][2]) * (m[2][1] - m[1][2]) + (m[2][0] - m[0][2]) * (m[2][0] - m[0][2]) + (m[1][0] - m[0][1]) * (m[1][0] - m[0][1])); |
|
|
|
|
if (glm::abs(s) < T(0.001)) |
|
|
|
|
s = static_cast<T>(1); |
|
|
|
|
|
|
|
|
|
T const angleCos = (m[0][0] + m[1][1] + m[2][2] - static_cast<T>(1)) * static_cast<T>(0.5); |
|
|
|
|
if(angleCos >= static_cast<T>(1.0)) |
|
|
|
|
{ |
|
|
|
@ -90,9 +87,9 @@ namespace glm |
|
|
|
|
{ |
|
|
|
|
angle = acos(angleCos); |
|
|
|
|
} |
|
|
|
|
axis.x = (m[1][2] - m[2][1]) / s; |
|
|
|
|
axis.y = (m[2][0] - m[0][2]) / s; |
|
|
|
|
axis.z = (m[0][1] - m[1][0]) / s; |
|
|
|
|
|
|
|
|
|
axis = glm::normalize(glm::vec<3, T, Q>( |
|
|
|
|
m[1][2] - m[2][1], m[2][0] - m[0][2], m[0][1] - m[1][0])); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template<typename T, qualifier Q> |
|
|
|
|