|
|
|
@ -4,6 +4,8 @@ |
|
|
|
|
# include <array> |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
std::size_t const TestSamples = 10000; |
|
|
|
|
|
|
|
|
|
int test_linearRand() |
|
|
|
|
{ |
|
|
|
|
int Error = 0; |
|
|
|
@ -15,7 +17,7 @@ int test_linearRand() |
|
|
|
|
glm::u8vec2 AMin(std::numeric_limits<glm::u8>::max()); |
|
|
|
|
glm::u8vec2 AMax(std::numeric_limits<glm::u8>::min()); |
|
|
|
|
{ |
|
|
|
|
for(std::size_t i = 0; i < 100000; ++i) |
|
|
|
|
for(std::size_t i = 0; i < TestSamples; ++i) |
|
|
|
|
{ |
|
|
|
|
glm::u8vec2 A = glm::linearRand(glm::u8vec2(Min), glm::u8vec2(Max)); |
|
|
|
|
AMin = glm::min(AMin, A); |
|
|
|
@ -36,7 +38,7 @@ int test_linearRand() |
|
|
|
|
glm::u16vec2 BMin(std::numeric_limits<glm::u16>::max()); |
|
|
|
|
glm::u16vec2 BMax(std::numeric_limits<glm::u16>::min()); |
|
|
|
|
{ |
|
|
|
|
for(std::size_t i = 0; i < 100000; ++i) |
|
|
|
|
for(std::size_t i = 0; i < TestSamples; ++i) |
|
|
|
|
{ |
|
|
|
|
glm::u16vec2 B = glm::linearRand(glm::u16vec2(Min), glm::u16vec2(Max)); |
|
|
|
|
BMin = glm::min(BMin, B); |
|
|
|
@ -57,7 +59,7 @@ int test_linearRand() |
|
|
|
|
glm::u32vec2 CMin(std::numeric_limits<glm::u32>::max()); |
|
|
|
|
glm::u32vec2 CMax(std::numeric_limits<glm::u32>::min()); |
|
|
|
|
{ |
|
|
|
|
for(std::size_t i = 0; i < 100000; ++i) |
|
|
|
|
for(std::size_t i = 0; i < TestSamples; ++i) |
|
|
|
|
{ |
|
|
|
|
glm::u32vec2 C = glm::linearRand(glm::u32vec2(Min), glm::u32vec2(Max)); |
|
|
|
|
CMin = glm::min(CMin, C); |
|
|
|
@ -78,7 +80,7 @@ int test_linearRand() |
|
|
|
|
glm::u64vec2 DMin(std::numeric_limits<glm::u64>::max()); |
|
|
|
|
glm::u64vec2 DMax(std::numeric_limits<glm::u64>::min()); |
|
|
|
|
{ |
|
|
|
|
for(std::size_t i = 0; i < 100000; ++i) |
|
|
|
|
for(std::size_t i = 0; i < TestSamples; ++i) |
|
|
|
|
{ |
|
|
|
|
glm::u64vec2 D = glm::linearRand(glm::u64vec2(Min), glm::u64vec2(Max)); |
|
|
|
|
DMin = glm::min(DMin, D); |
|
|
|
@ -101,7 +103,7 @@ int test_linearRand() |
|
|
|
|
glm::i8vec2 AMin(std::numeric_limits<glm::i8>::max()); |
|
|
|
|
glm::i8vec2 AMax(std::numeric_limits<glm::i8>::min()); |
|
|
|
|
{ |
|
|
|
|
for(std::size_t i = 0; i < 100000; ++i) |
|
|
|
|
for(std::size_t i = 0; i < TestSamples; ++i) |
|
|
|
|
{ |
|
|
|
|
glm::i8vec2 A = glm::linearRand(glm::i8vec2(Min), glm::i8vec2(Max)); |
|
|
|
|
AMin = glm::min(AMin, A); |
|
|
|
@ -122,7 +124,7 @@ int test_linearRand() |
|
|
|
|
glm::i16vec2 BMin(std::numeric_limits<glm::i16>::max()); |
|
|
|
|
glm::i16vec2 BMax(std::numeric_limits<glm::i16>::min()); |
|
|
|
|
{ |
|
|
|
|
for(std::size_t i = 0; i < 100000; ++i) |
|
|
|
|
for(std::size_t i = 0; i < TestSamples; ++i) |
|
|
|
|
{ |
|
|
|
|
glm::i16vec2 B = glm::linearRand(glm::i16vec2(Min), glm::i16vec2(Max)); |
|
|
|
|
BMin = glm::min(BMin, B); |
|
|
|
@ -143,7 +145,7 @@ int test_linearRand() |
|
|
|
|
glm::i32vec2 CMin(std::numeric_limits<glm::i32>::max()); |
|
|
|
|
glm::i32vec2 CMax(std::numeric_limits<glm::i32>::min()); |
|
|
|
|
{ |
|
|
|
|
for(std::size_t i = 0; i < 100000; ++i) |
|
|
|
|
for(std::size_t i = 0; i < TestSamples; ++i) |
|
|
|
|
{ |
|
|
|
|
glm::i32vec2 C = glm::linearRand(glm::i32vec2(Min), glm::i32vec2(Max)); |
|
|
|
|
CMin = glm::min(CMin, C); |
|
|
|
@ -164,7 +166,7 @@ int test_linearRand() |
|
|
|
|
glm::i64vec2 DMin(std::numeric_limits<glm::i64>::max()); |
|
|
|
|
glm::i64vec2 DMax(std::numeric_limits<glm::i64>::min()); |
|
|
|
|
{ |
|
|
|
|
for(std::size_t i = 0; i < 100000; ++i) |
|
|
|
|
for(std::size_t i = 0; i < TestSamples; ++i) |
|
|
|
|
{ |
|
|
|
|
glm::i64vec2 D = glm::linearRand(glm::i64vec2(Min), glm::i64vec2(Max)); |
|
|
|
|
DMin = glm::min(DMin, D); |
|
|
|
@ -183,7 +185,7 @@ int test_linearRand() |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for(std::size_t i = 0; i < 100000; ++i) |
|
|
|
|
for(std::size_t i = 0; i < TestSamples; ++i) |
|
|
|
|
{ |
|
|
|
|
glm::f32vec2 const A(glm::linearRand(glm::f32vec2(static_cast<float>(Min)), glm::f32vec2(static_cast<float>(Max)))); |
|
|
|
|
if(!glm::all(glm::lessThanEqual(A, glm::f32vec2(static_cast<float>(Max))))) |
|
|
|
@ -202,7 +204,7 @@ int test_linearRand() |
|
|
|
|
{ |
|
|
|
|
float ResultFloat = 0.0f; |
|
|
|
|
double ResultDouble = 0.0f; |
|
|
|
|
for(std::size_t i = 0; i < 100000; ++i) |
|
|
|
|
for(std::size_t i = 0; i < TestSamples; ++i) |
|
|
|
|
{ |
|
|
|
|
ResultFloat += glm::linearRand(-1.0f, 1.0f); |
|
|
|
|
ResultDouble += glm::linearRand(-1.0, 1.0); |
|
|
|
@ -221,7 +223,7 @@ int test_circularRand() |
|
|
|
|
int Error = 0; |
|
|
|
|
|
|
|
|
|
{ |
|
|
|
|
std::size_t Max = 100000; |
|
|
|
|
std::size_t Max = TestSamples; |
|
|
|
|
float ResultFloat = 0.0f; |
|
|
|
|
double ResultDouble = 0.0f; |
|
|
|
|
double Radius = 2.0f; |
|
|
|
@ -245,7 +247,7 @@ int test_sphericalRand() |
|
|
|
|
int Error = 0; |
|
|
|
|
|
|
|
|
|
{ |
|
|
|
|
std::size_t Max = 100000; |
|
|
|
|
std::size_t Max = TestSamples; |
|
|
|
|
float ResultFloatA = 0.0f; |
|
|
|
|
float ResultFloatB = 0.0f; |
|
|
|
|
float ResultFloatC = 0.0f; |
|
|
|
@ -283,14 +285,14 @@ int test_diskRand() |
|
|
|
|
float ResultFloat = 0.0f; |
|
|
|
|
double ResultDouble = 0.0f; |
|
|
|
|
|
|
|
|
|
for(std::size_t i = 0; i < 100000; ++i) |
|
|
|
|
for(std::size_t i = 0; i < TestSamples; ++i) |
|
|
|
|
{ |
|
|
|
|
ResultFloat += glm::length(glm::diskRand(2.0f)); |
|
|
|
|
ResultDouble += glm::length(glm::diskRand(2.0)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Error += ResultFloat < 200000.f ? 0 : 1; |
|
|
|
|
Error += ResultDouble < 200000.0 ? 0 : 1; |
|
|
|
|
Error += ResultFloat < float(TestSamples) * 2.f ? 0 : 1; |
|
|
|
|
Error += ResultDouble < double(TestSamples) * 2.0 ? 0 : 1; |
|
|
|
|
assert(!Error); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -305,14 +307,14 @@ int test_ballRand() |
|
|
|
|
float ResultFloat = 0.0f; |
|
|
|
|
double ResultDouble = 0.0f; |
|
|
|
|
|
|
|
|
|
for(std::size_t i = 0; i < 100000; ++i) |
|
|
|
|
for(std::size_t i = 0; i < TestSamples; ++i) |
|
|
|
|
{ |
|
|
|
|
ResultFloat += glm::length(glm::ballRand(2.0f)); |
|
|
|
|
ResultDouble += glm::length(glm::ballRand(2.0)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Error += ResultFloat < 200000.f ? 0 : 1; |
|
|
|
|
Error += ResultDouble < 200000.0 ? 0 : 1; |
|
|
|
|
Error += ResultFloat < float(TestSamples) * 2.f ? 0 : 1; |
|
|
|
|
Error += ResultDouble < double(TestSamples) * 2.0 ? 0 : 1; |
|
|
|
|
assert(!Error); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|