|
|
|
@ -1,6 +1,7 @@ |
|
|
|
|
#define GLM_ENABLE_EXPERIMENTAL |
|
|
|
|
#include <glm/glm.hpp> |
|
|
|
|
#include <glm/gtx/pca.hpp> |
|
|
|
|
#include <glm/gtc/epsilon.hpp> |
|
|
|
|
|
|
|
|
|
#include <vector> |
|
|
|
|
#include <random> |
|
|
|
@ -18,7 +19,7 @@ namespace _1aga |
|
|
|
|
{ |
|
|
|
|
// x,y,z coordinates copied from RCSB PDB file of 1AGA
|
|
|
|
|
// w coordinate randomized with standard normal distribution
|
|
|
|
|
constexpr double _1aga[] = { |
|
|
|
|
static const double _1aga[] = { |
|
|
|
|
3.219, -0.637, 19.462, 2.286, |
|
|
|
|
4.519, 0.024, 18.980, -0.828, |
|
|
|
|
4.163, 1.425, 18.481, -0.810, |
|
|
|
@ -146,17 +147,17 @@ namespace _1aga |
|
|
|
|
3.830, 3.522, 5.367, -0.302, |
|
|
|
|
5.150, 4.461, 2.116, -1.615 |
|
|
|
|
}; |
|
|
|
|
constexpr size_t _1agaSize = sizeof(_1aga) / (4 * sizeof(double)); |
|
|
|
|
static const size_t _1agaSize = sizeof(_1aga) / (4 * sizeof(double)); |
|
|
|
|
|
|
|
|
|
outTestData.resize(_1agaSize); |
|
|
|
|
for(size_t i = 0; i < _1agaSize; ++i) |
|
|
|
|
for(size_t d = 0; d < vec::length(); ++d) |
|
|
|
|
for(size_t d = 0; d < static_cast<size_t>(vec::length()); ++d) |
|
|
|
|
outTestData[i][d] = static_cast<typename vec::value_type>(_1aga[i * 4 + d]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void getExpectedCovarDataPtr(const double*& ptr) |
|
|
|
|
{ |
|
|
|
|
static constexpr double _1agaCovar4x4d[] = { |
|
|
|
|
static const double _1agaCovar4x4d[] = { |
|
|
|
|
9.624340680272107, -0.000066573696146, -4.293213765684049, 0.018793741874528, |
|
|
|
|
-0.000066573696146, 9.624439378684805, 5.351138726379443, -0.115692591458806, |
|
|
|
|
-4.293213765684049, 5.351138726379443, 35.628485496346691, 0.908742392542202, |
|
|
|
@ -167,7 +168,7 @@ namespace _1aga |
|
|
|
|
void getExpectedCovarDataPtr(const float*& ptr) |
|
|
|
|
{ |
|
|
|
|
// note: the value difference to `_1agaCovar4x4d` is due to the numeric error propagation during computation of the covariance matrix.
|
|
|
|
|
static constexpr float _1agaCovar4x4f[] = { |
|
|
|
|
static const float _1agaCovar4x4f[] = { |
|
|
|
|
9.624336242675781f, -0.000066711785621f, -4.293214797973633f, 0.018793795257807f, |
|
|
|
|
-0.000066711785621f, 9.624438285827637f, 5.351140022277832f, -0.115692682564259f, |
|
|
|
|
-4.293214797973633f, 5.351140022277832f, 35.628479003906250f, 0.908742427825928f, |
|
|
|
@ -191,10 +192,10 @@ namespace _1aga |
|
|
|
|
template<glm::length_t D, typename T> void getExpectedEigenvaluesEigenvectorsDataPtr(const T*& evals, const T*& evecs); |
|
|
|
|
template<> void getExpectedEigenvaluesEigenvectorsDataPtr<2, float>(const float*& evals, const float*& evecs) |
|
|
|
|
{ |
|
|
|
|
static constexpr float expectedEvals[] = { |
|
|
|
|
static const float expectedEvals[] = { |
|
|
|
|
9.624471664428711f, 9.624302864074707f |
|
|
|
|
}; |
|
|
|
|
static constexpr float expectedEvecs[] = { |
|
|
|
|
static const float expectedEvecs[] = { |
|
|
|
|
-0.443000972270966f, 0.896521151065826f, |
|
|
|
|
0.896521151065826f, 0.443000972270966f |
|
|
|
|
}; |
|
|
|
@ -203,10 +204,10 @@ namespace _1aga |
|
|
|
|
} |
|
|
|
|
template<> void getExpectedEigenvaluesEigenvectorsDataPtr<2, double>(const double*& evals, const double*& evecs) |
|
|
|
|
{ |
|
|
|
|
static constexpr double expectedEvals[] = { |
|
|
|
|
static const double expectedEvals[] = { |
|
|
|
|
9.624472899262972, 9.624307159693940 |
|
|
|
|
}; |
|
|
|
|
static constexpr double expectedEvecs[] = { |
|
|
|
|
static const double expectedEvecs[] = { |
|
|
|
|
-0.449720461624363, 0.893169360421846, |
|
|
|
|
0.893169360421846, 0.449720461624363 |
|
|
|
|
}; |
|
|
|
@ -215,10 +216,10 @@ namespace _1aga |
|
|
|
|
} |
|
|
|
|
template<> void getExpectedEigenvaluesEigenvectorsDataPtr<3, float>(const float*& evals, const float*& evecs) |
|
|
|
|
{ |
|
|
|
|
static constexpr float expectedEvals[] = { |
|
|
|
|
static const float expectedEvals[] = { |
|
|
|
|
37.327442169189453f, 9.624311447143555f, 7.925499439239502f |
|
|
|
|
}; |
|
|
|
|
static constexpr float expectedEvecs[] = { |
|
|
|
|
static const float expectedEvecs[] = { |
|
|
|
|
-0.150428697466850f, 0.187497511506081f, 0.970678031444550f, |
|
|
|
|
0.779980957508087f, 0.625803351402283f, -0.000005212802080f, |
|
|
|
|
0.607454538345337f, -0.757109522819519f, 0.240383237600327f |
|
|
|
@ -228,10 +229,10 @@ namespace _1aga |
|
|
|
|
} |
|
|
|
|
template<> void getExpectedEigenvaluesEigenvectorsDataPtr<3, double>(const double*& evals, const double*& evecs) |
|
|
|
|
{ |
|
|
|
|
static constexpr double expectedEvals[] = { |
|
|
|
|
static const double expectedEvals[] = { |
|
|
|
|
37.327449427468345, 9.624314341614987, 7.925501786220276 |
|
|
|
|
}; |
|
|
|
|
static constexpr double expectedEvecs[] = { |
|
|
|
|
static const double expectedEvecs[] = { |
|
|
|
|
-0.150428640509585, 0.187497426513576, 0.970678082149394, |
|
|
|
|
0.779981605126846, 0.625802441381904, -0.000004919018357, |
|
|
|
|
0.607453635908278, -0.757110308615089, 0.240383154173870 |
|
|
|
@ -241,10 +242,10 @@ namespace _1aga |
|
|
|
|
} |
|
|
|
|
template<> void getExpectedEigenvaluesEigenvectorsDataPtr<4, float>(const float*& evals, const float*& evecs) |
|
|
|
|
{ |
|
|
|
|
static constexpr float expectedEvals[] = { |
|
|
|
|
static const float expectedEvals[] = { |
|
|
|
|
37.347740173339844f, 9.624703407287598f, 7.940164566040039f, 1.061712265014648f |
|
|
|
|
}; |
|
|
|
|
static constexpr float expectedEvecs[] = { |
|
|
|
|
static const float expectedEvecs[] = { |
|
|
|
|
-0.150269940495491f, 0.187220811843872f, 0.970467865467072f, 0.023652425035834f, |
|
|
|
|
0.779159665107727f, 0.626788496971130f, -0.000105984276161f, -0.006797631736845f, |
|
|
|
|
0.608242213726044f, -0.755563497543335f, 0.238818943500519f, 0.046158745884895f, |
|
|
|
@ -255,10 +256,10 @@ namespace _1aga |
|
|
|
|
} |
|
|
|
|
template<> void getExpectedEigenvaluesEigenvectorsDataPtr<4, double>(const double*& evals, const double*& evecs) |
|
|
|
|
{ |
|
|
|
|
static constexpr double expectedEvals[] = { |
|
|
|
|
static const double expectedEvals[] = { |
|
|
|
|
37.347738991879226, 9.624706889211053, 7.940170752816341, 1.061708639965897 |
|
|
|
|
}; |
|
|
|
|
static constexpr double expectedEvecs[] = { |
|
|
|
|
static const double expectedEvecs[] = { |
|
|
|
|
-0.150269954805403, 0.187220917596058, 0.970467838469868, 0.023652551509145, |
|
|
|
|
0.779159831346545, 0.626788431871120, -0.000105940250315, -0.006797622027466, |
|
|
|
|
0.608241962267880, -0.755563776664248, 0.238818902950296, 0.046158707986616, |
|
|
|
@ -299,13 +300,23 @@ vec computeCenter(const std::vector<vec>& testData) |
|
|
|
|
std::fill(c, c + vec::length(), 0.0); |
|
|
|
|
|
|
|
|
|
for(vec const& v : testData) |
|
|
|
|
for(size_t d = 0; d < vec::length(); ++d) |
|
|
|
|
for(size_t d = 0; d < static_cast<size_t>(vec::length()); ++d) |
|
|
|
|
c[d] += static_cast<double>(v[d]); |
|
|
|
|
|
|
|
|
|
vec cVec; |
|
|
|
|
for(size_t d = 0; d < vec::length(); ++d) |
|
|
|
|
for(size_t d = 0; d < static_cast<size_t>(vec::length()); ++d) |
|
|
|
|
cVec[d] = static_cast<typename vec::value_type>(c[d] / static_cast<double>(testData.size())); |
|
|
|
|
return std::move(cVec); |
|
|
|
|
return cVec; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template<glm::length_t D, typename T, glm::qualifier Q> |
|
|
|
|
bool matrixEpsilonEqual(glm::mat<D, D, T, Q> const& a, glm::mat<D, D, T, Q> const& b) |
|
|
|
|
{ |
|
|
|
|
for (int c = 0; c < D; ++c) |
|
|
|
|
for (int r = 0; r < D; ++r) |
|
|
|
|
if (!glm::epsilonEqual(a[c][r], b[c][r], static_cast<T>(0.000001))) |
|
|
|
|
return false; |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Test sorting of Eigenvalue&Eigenvector lists. Use exhaustive search.
|
|
|
|
@ -313,26 +324,22 @@ template<glm::length_t D, typename T, glm::qualifier Q> |
|
|
|
|
int testEigenvalueSort() |
|
|
|
|
{ |
|
|
|
|
// Test input data: four arbitrary values
|
|
|
|
|
constexpr glm::vec<D, T, Q> refVal |
|
|
|
|
{ |
|
|
|
|
glm::vec<4, T, Q> |
|
|
|
|
{ |
|
|
|
|
static const glm::vec<D, T, Q> refVal( |
|
|
|
|
glm::vec<4, T, Q>( |
|
|
|
|
10, 8, 6, 4 |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
) |
|
|
|
|
); |
|
|
|
|
// Test input data: four arbitrary vectors, which can be matched to the above values
|
|
|
|
|
constexpr glm::mat<D, D, T, Q> refVec |
|
|
|
|
{ |
|
|
|
|
glm::mat<4, 4, T, Q> |
|
|
|
|
{ |
|
|
|
|
static const glm::mat<D, D, T, Q> refVec( |
|
|
|
|
glm::mat<4, 4, T, Q>( |
|
|
|
|
10, 20, 5, 40, |
|
|
|
|
8, 16, 4, 32, |
|
|
|
|
6, 12, 3, 24, |
|
|
|
|
4, 8, 2, 16 |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
) |
|
|
|
|
); |
|
|
|
|
// Permutations of test input data for exhaustive check, based on `D` (1 <= D <= 4)
|
|
|
|
|
constexpr int permutationCount[] |
|
|
|
|
static const int permutationCount[] |
|
|
|
|
{ |
|
|
|
|
0, |
|
|
|
|
1, |
|
|
|
@ -341,7 +348,7 @@ int testEigenvalueSort() |
|
|
|
|
24 |
|
|
|
|
}; |
|
|
|
|
// The permutations t perform, based on `D` (1 <= D <= 4)
|
|
|
|
|
constexpr glm::ivec4 permutation[] |
|
|
|
|
static const glm::ivec4 permutation[] |
|
|
|
|
{ |
|
|
|
|
{ 0, 1, 2, 3 }, |
|
|
|
|
{ 1, 0, 2, 3 }, // last for D = 2
|
|
|
|
@ -368,32 +375,11 @@ int testEigenvalueSort() |
|
|
|
|
{ 3, 2, 0, 1 }, |
|
|
|
|
{ 3, 2, 1, 0 } // last for D = 4
|
|
|
|
|
}; |
|
|
|
|
// Lambda utility to check the result
|
|
|
|
|
auto checkResult = [&refVal,&refVec](glm::vec<D, T, Q> const& value, glm::mat<D, D, T, Q> const& vector) |
|
|
|
|
{ |
|
|
|
|
constexpr T epsilon = static_cast<T>(0.0000001); |
|
|
|
|
// check that values are ordered ascending
|
|
|
|
|
for(int i = 1; i < D; ++i) |
|
|
|
|
{ |
|
|
|
|
if(value[0] < value[1]) |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
// check that values and vectors are equal to the reference values
|
|
|
|
|
for(int i = 0; i < D; ++i) |
|
|
|
|
{ |
|
|
|
|
if(!glm::equal<T>(refVal[i], value[i], epsilon)) |
|
|
|
|
return false; |
|
|
|
|
for(int j = 0; j < D; ++j) |
|
|
|
|
{ |
|
|
|
|
if(!glm::equal<T>(refVec[i][j], vector[i][j], epsilon)) |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
return true; // all matched
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
// initial sanity check
|
|
|
|
|
if(!checkResult(refVal, refVec)) |
|
|
|
|
if(!glm::all(glm::epsilonEqual(refVal, refVal, static_cast<T>(0.000001)))) |
|
|
|
|
return 1; |
|
|
|
|
if(!matrixEpsilonEqual(refVec, refVec)) |
|
|
|
|
return 1; |
|
|
|
|
|
|
|
|
|
// Exhaustive search through all permutations
|
|
|
|
@ -409,8 +395,10 @@ int testEigenvalueSort() |
|
|
|
|
|
|
|
|
|
glm::sortEigenvalues(testVal, testVec); |
|
|
|
|
|
|
|
|
|
if(!checkResult(testVal, testVec)) |
|
|
|
|
return 2 + p; |
|
|
|
|
if (!glm::all(glm::epsilonEqual(testVal, refVal, static_cast<T>(0.000001)))) |
|
|
|
|
return 2 + p * 2; |
|
|
|
|
if (!matrixEpsilonEqual(testVec, refVec)) |
|
|
|
|
return 2 + 1 + p * 2; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return 0; |
|
|
|
@ -435,7 +423,7 @@ int testCovar(unsigned int dataSize, unsigned int randomEngineSeed) |
|
|
|
|
return 1; |
|
|
|
|
|
|
|
|
|
// #2: test function variant consitency with random data
|
|
|
|
|
std::default_random_engine rndEng{ randomEngineSeed }; |
|
|
|
|
std::default_random_engine rndEng(randomEngineSeed); |
|
|
|
|
std::normal_distribution<T> normalDist; |
|
|
|
|
testData.resize(dataSize); |
|
|
|
|
// some common offset of all data
|
|
|
|
@ -458,11 +446,11 @@ int testCovar(unsigned int dataSize, unsigned int randomEngineSeed) |
|
|
|
|
mat c3 = glm::computeCovarianceMatrix(testData.data(), testData.size(), center); |
|
|
|
|
mat c4 = glm::computeCovarianceMatrix<D, T, Q>(testData.rbegin(), testData.rend(), center); |
|
|
|
|
|
|
|
|
|
if(c1 != c2) |
|
|
|
|
if(!matrixEpsilonEqual(c1, c2)) |
|
|
|
|
return 1; |
|
|
|
|
if(c1 != c3) |
|
|
|
|
if(!matrixEpsilonEqual(c1, c3)) |
|
|
|
|
return 1; |
|
|
|
|
if(c1 != c4) |
|
|
|
|
if(!matrixEpsilonEqual(c1, c4)) |
|
|
|
|
return 1; |
|
|
|
|
|
|
|
|
|
return 0; |
|
|
|
@ -506,7 +494,7 @@ int smokeTest() |
|
|
|
|
for(int x = -5; x <= 5; ++x) |
|
|
|
|
for(int y = -7; y <= 7; ++y) |
|
|
|
|
for(int z = -3; z <= 3; ++z) |
|
|
|
|
pts.push_back(vec3{ x, y, z }); |
|
|
|
|
pts.push_back(vec3(x, y, z)); |
|
|
|
|
|
|
|
|
|
mat3 covar = glm::computeCovarianceMatrix(pts.data(), pts.size()); |
|
|
|
|
mat3 eVec; |
|
|
|
@ -532,11 +520,11 @@ int smokeTest() |
|
|
|
|
std::swap(eVec[1], eVec[2]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if(!glm::all(glm::equal(glm::abs(eVec[0]), vec3{ 0, 1, 0 }))) |
|
|
|
|
if(!glm::all(glm::equal(glm::abs(eVec[0]), vec3(0, 1, 0)))) |
|
|
|
|
return 2; |
|
|
|
|
if(!glm::all(glm::equal(glm::abs(eVec[1]), vec3{ 1, 0, 0 }))) |
|
|
|
|
if(!glm::all(glm::equal(glm::abs(eVec[1]), vec3(1, 0, 0)))) |
|
|
|
|
return 3; |
|
|
|
|
if(!glm::all(glm::equal(glm::abs(eVec[2]), vec3{ 0, 0, 1 }))) |
|
|
|
|
if(!glm::all(glm::equal(glm::abs(eVec[2]), vec3(0, 0, 1)))) |
|
|
|
|
return 4; |
|
|
|
|
|
|
|
|
|
return 0; |
|
|
|
@ -544,24 +532,24 @@ int smokeTest() |
|
|
|
|
|
|
|
|
|
int rndTest(unsigned int randomEngineSeed) |
|
|
|
|
{ |
|
|
|
|
std::default_random_engine rndEng{ randomEngineSeed }; |
|
|
|
|
std::default_random_engine rndEng(randomEngineSeed); |
|
|
|
|
std::normal_distribution<double> normalDist; |
|
|
|
|
|
|
|
|
|
// construct orthonormal system
|
|
|
|
|
glm::dvec3 x{ normalDist(rndEng), normalDist(rndEng), normalDist(rndEng) }; |
|
|
|
|
glm::dvec3 x(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); |
|
|
|
|
double l = glm::length(x); |
|
|
|
|
while(l < 0.000001) |
|
|
|
|
x = glm::dvec3{ normalDist(rndEng), normalDist(rndEng), normalDist(rndEng) }; |
|
|
|
|
x = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); |
|
|
|
|
x = glm::normalize(x); |
|
|
|
|
glm::dvec3 y{ normalDist(rndEng), normalDist(rndEng), normalDist(rndEng) }; |
|
|
|
|
glm::dvec3 y(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); |
|
|
|
|
l = glm::length(y); |
|
|
|
|
while(l < 0.000001) |
|
|
|
|
y = glm::dvec3{ normalDist(rndEng), normalDist(rndEng), normalDist(rndEng) }; |
|
|
|
|
y = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); |
|
|
|
|
while(glm::abs(glm::dot(x, y)) < 0.000001) |
|
|
|
|
{ |
|
|
|
|
y = glm::dvec3{ normalDist(rndEng), normalDist(rndEng), normalDist(rndEng) }; |
|
|
|
|
y = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); |
|
|
|
|
while(l < 0.000001) |
|
|
|
|
y = glm::dvec3{ normalDist(rndEng), normalDist(rndEng), normalDist(rndEng) }; |
|
|
|
|
y = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); |
|
|
|
|
} |
|
|
|
|
y = glm::normalize(y); |
|
|
|
|
glm::dvec3 z = glm::normalize(glm::cross(x, y)); |
|
|
|
@ -574,13 +562,13 @@ int rndTest(unsigned int randomEngineSeed) |
|
|
|
|
|
|
|
|
|
// generate input point data
|
|
|
|
|
std::vector<glm::dvec3> ptData; |
|
|
|
|
constexpr int patters[] = { |
|
|
|
|
static const int patters[] = { |
|
|
|
|
8, 0, 0, |
|
|
|
|
4, 1, 2, |
|
|
|
|
0, 2, 0, |
|
|
|
|
0, 0, 4 |
|
|
|
|
}; |
|
|
|
|
glm::dvec3 offset{ normalDist(rndEng), normalDist(rndEng), normalDist(rndEng) }; |
|
|
|
|
glm::dvec3 offset(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); |
|
|
|
|
for(int p = 0; p < 4; ++p) |
|
|
|
|
for(int xs = 1; xs >= -1; xs -= 2) |
|
|
|
|
for(int ys = 1; ys >= -1; ys -= 2) |
|
|
|
|