|
|
|
@ -7,6 +7,7 @@ |
|
|
|
|
// File : test/gtc/quaternion.cpp
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
#define GLM_FORCE_RADIANS |
|
|
|
|
#include <glm/gtc/quaternion.hpp> |
|
|
|
|
#include <glm/gtc/epsilon.hpp> |
|
|
|
|
#include <glm/vector_relational.hpp> |
|
|
|
@ -16,28 +17,28 @@ int test_quat_angle() |
|
|
|
|
int Error = 0; |
|
|
|
|
|
|
|
|
|
{ |
|
|
|
|
glm::quat Q = glm::angleAxis(45.0f, glm::vec3(0, 0, 1)); |
|
|
|
|
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1)); |
|
|
|
|
glm::quat N = glm::normalize(Q); |
|
|
|
|
float L = glm::length(N); |
|
|
|
|
Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1; |
|
|
|
|
float A = glm::angle(N); |
|
|
|
|
Error += glm::epsilonEqual(A, 45.0f, 0.01f) ? 0 : 1; |
|
|
|
|
Error += glm::epsilonEqual(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1; |
|
|
|
|
} |
|
|
|
|
{ |
|
|
|
|
glm::quat Q = glm::angleAxis(45.0f, glm::normalize(glm::vec3(0, 1, 1))); |
|
|
|
|
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::normalize(glm::vec3(0, 1, 1))); |
|
|
|
|
glm::quat N = glm::normalize(Q); |
|
|
|
|
float L = glm::length(N); |
|
|
|
|
Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1; |
|
|
|
|
float A = glm::angle(N); |
|
|
|
|
Error += glm::epsilonEqual(A, 45.0f, 0.01f) ? 0 : 1; |
|
|
|
|
Error += glm::epsilonEqual(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1; |
|
|
|
|
} |
|
|
|
|
{ |
|
|
|
|
glm::quat Q = glm::angleAxis(45.0f, glm::normalize(glm::vec3(1, 2, 3))); |
|
|
|
|
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::normalize(glm::vec3(1, 2, 3))); |
|
|
|
|
glm::quat N = glm::normalize(Q); |
|
|
|
|
float L = glm::length(N); |
|
|
|
|
Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1; |
|
|
|
|
float A = glm::angle(N); |
|
|
|
|
Error += glm::epsilonEqual(A, 45.0f, 0.01f) ? 0 : 1; |
|
|
|
|
Error += glm::epsilonEqual(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return Error; |
|
|
|
@ -48,9 +49,9 @@ int test_quat_angleAxis() |
|
|
|
|
int Error = 0; |
|
|
|
|
|
|
|
|
|
glm::quat A = glm::angleAxis(0.0f, glm::vec3(0, 0, 1)); |
|
|
|
|
glm::quat B = glm::angleAxis(90.0f, glm::vec3(0, 0, 1)); |
|
|
|
|
glm::quat B = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1)); |
|
|
|
|
glm::quat C = glm::mix(A, B, 0.5f); |
|
|
|
|
glm::quat D = glm::angleAxis(45.0f, glm::vec3(0, 0, 1)); |
|
|
|
|
glm::quat D = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1)); |
|
|
|
|
|
|
|
|
|
Error += glm::epsilonEqual(C.x, D.x, 0.01f) ? 0 : 1; |
|
|
|
|
Error += glm::epsilonEqual(C.y, D.y, 0.01f) ? 0 : 1; |
|
|
|
@ -65,9 +66,9 @@ int test_quat_mix() |
|
|
|
|
int Error = 0; |
|
|
|
|
|
|
|
|
|
glm::quat A = glm::angleAxis(0.0f, glm::vec3(0, 0, 1)); |
|
|
|
|
glm::quat B = glm::angleAxis(90.0f, glm::vec3(0, 0, 1)); |
|
|
|
|
glm::quat B = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1)); |
|
|
|
|
glm::quat C = glm::mix(A, B, 0.5f); |
|
|
|
|
glm::quat D = glm::angleAxis(45.0f, glm::vec3(0, 0, 1)); |
|
|
|
|
glm::quat D = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1)); |
|
|
|
|
|
|
|
|
|
Error += glm::epsilonEqual(C.x, D.x, 0.01f) ? 0 : 1; |
|
|
|
|
Error += glm::epsilonEqual(C.y, D.y, 0.01f) ? 0 : 1; |
|
|
|
@ -92,19 +93,19 @@ int test_quat_normalize() |
|
|
|
|
int Error(0); |
|
|
|
|
|
|
|
|
|
{ |
|
|
|
|
glm::quat Q = glm::angleAxis(45.0f, glm::vec3(0, 0, 1)); |
|
|
|
|
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1)); |
|
|
|
|
glm::quat N = glm::normalize(Q); |
|
|
|
|
float L = glm::length(N); |
|
|
|
|
Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1; |
|
|
|
|
} |
|
|
|
|
{ |
|
|
|
|
glm::quat Q = glm::angleAxis(45.0f, glm::vec3(0, 0, 2)); |
|
|
|
|
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 2)); |
|
|
|
|
glm::quat N = glm::normalize(Q); |
|
|
|
|
float L = glm::length(N); |
|
|
|
|
Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1; |
|
|
|
|
} |
|
|
|
|
{ |
|
|
|
|
glm::quat Q = glm::angleAxis(45.0f, glm::vec3(1, 2, 3)); |
|
|
|
|
glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(1, 2, 3)); |
|
|
|
|
glm::quat N = glm::normalize(Q); |
|
|
|
|
float L = glm::length(N); |
|
|
|
|
Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1; |
|
|
|
@ -170,7 +171,7 @@ int test_quat_slerp() |
|
|
|
|
// certainly not a 135° rotation
|
|
|
|
|
glm::quat Y45rot3 = glm::slerp(id , -Y90rot, 0.5f); |
|
|
|
|
float Y45angle3 = glm::angle(Y45rot3); |
|
|
|
|
Error += glm::epsilonEqual(Y45angle3, 45.f, Epsilon) ? 0 : 1; |
|
|
|
|
Error += glm::epsilonEqual(Y45angle3, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1; |
|
|
|
|
Error += glm::all(glm::epsilonEqual(Ym45rot2, Y45rot3, Epsilon)) ? 0 : 1; |
|
|
|
|
|
|
|
|
|
// Same, but inverted
|
|
|
|
@ -188,7 +189,7 @@ int test_quat_slerp() |
|
|
|
|
// Must be 90° rotation on almost any axis that is on the XZ plane
|
|
|
|
|
glm::quat XZ90rot = glm::slerp(id, -Y90rot, 0.5f); |
|
|
|
|
float XZ90angle = glm::angle(XZ90rot); // Must be PI/4 = 0.78;
|
|
|
|
|
Error += glm::epsilonEqual(XZ90angle, 45.f, Epsilon) ? 0 : 1; |
|
|
|
|
Error += glm::epsilonEqual(XZ90angle, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1; |
|
|
|
|
|
|
|
|
|
// Testing almost equal quaternions (this test should pass through the linear interpolation)
|
|
|
|
|
// Must be 0 0.00X 0 0.99999
|
|
|
|
|