|
|
|
@ -19,7 +19,7 @@ namespace glm |
|
|
|
|
T const & epsilon) |
|
|
|
|
{ |
|
|
|
|
bool result = true; |
|
|
|
|
for(int i = 0; result && i < 2 ; ++i) |
|
|
|
|
for(length_t i = 0; result && i < 2 ; ++i) |
|
|
|
|
result = isNull(m[i], epsilon); |
|
|
|
|
return result; |
|
|
|
|
} |
|
|
|
@ -32,7 +32,7 @@ namespace glm |
|
|
|
|
) |
|
|
|
|
{ |
|
|
|
|
bool result = true; |
|
|
|
|
for(int i = 0; result && i < 3 ; ++i) |
|
|
|
|
for(length_t i = 0; result && i < 3 ; ++i) |
|
|
|
|
result = isNull(m[i], epsilon); |
|
|
|
|
return result; |
|
|
|
|
} |
|
|
|
@ -45,7 +45,7 @@ namespace glm |
|
|
|
|
) |
|
|
|
|
{ |
|
|
|
|
bool result = true; |
|
|
|
|
for(int i = 0; result && i < 4 ; ++i) |
|
|
|
|
for(length_t i = 0; result && i < 4 ; ++i) |
|
|
|
|
result = isNull(m[i], epsilon); |
|
|
|
|
return result; |
|
|
|
|
} |
|
|
|
@ -58,13 +58,13 @@ namespace glm |
|
|
|
|
) |
|
|
|
|
{ |
|
|
|
|
bool result = true; |
|
|
|
|
for(int i(0); result && i < matType<T, P>::col_size(); ++i) |
|
|
|
|
for(length_t i(0); result && i < m[0].length(); ++i) |
|
|
|
|
{ |
|
|
|
|
for(int j(0); result && j < i ; ++j) |
|
|
|
|
for(length_t j(0); result && j < i ; ++j) |
|
|
|
|
result = abs(m[i][j]) <= epsilon; |
|
|
|
|
if(result) |
|
|
|
|
result = abs(m[i][i] - 1) <= epsilon; |
|
|
|
|
for(int j(i + 1); result && j < matType<T, P>::row_size(); ++j) |
|
|
|
|
for(length_t j(i + 1); result && j < m.length(); ++j) |
|
|
|
|
result = abs(m[i][j]) <= epsilon; |
|
|
|
|
} |
|
|
|
|
return result; |
|
|
|
@ -78,12 +78,12 @@ namespace glm |
|
|
|
|
) |
|
|
|
|
{ |
|
|
|
|
bool result(true); |
|
|
|
|
for(int i(0); result && i < m.length(); ++i) |
|
|
|
|
for(length_t i(0); result && i < m.length(); ++i) |
|
|
|
|
result = isNormalized(m[i], epsilon); |
|
|
|
|
for(int i(0); result && i < m.length(); ++i) |
|
|
|
|
for(length_t i(0); result && i < m.length(); ++i) |
|
|
|
|
{ |
|
|
|
|
typename detail::tmat2x2<T, P>::col_type v; |
|
|
|
|
for(int j(0); j < m.length(); ++j) |
|
|
|
|
for(length_t j(0); j < m.length(); ++j) |
|
|
|
|
v[j] = m[j][i]; |
|
|
|
|
result = isNormalized(v, epsilon); |
|
|
|
|
} |
|
|
|
@ -98,12 +98,12 @@ namespace glm |
|
|
|
|
) |
|
|
|
|
{ |
|
|
|
|
bool result(true); |
|
|
|
|
for(int i(0); result && i < m.length(); ++i) |
|
|
|
|
for(length_t i(0); result && i < m.length(); ++i) |
|
|
|
|
result = isNormalized(m[i], epsilon); |
|
|
|
|
for(int i(0); result && i < m.length(); ++i) |
|
|
|
|
for(length_t i(0); result && i < m.length(); ++i) |
|
|
|
|
{ |
|
|
|
|
typename detail::tmat3x3<T, P>::col_type v; |
|
|
|
|
for(int j(0); j < m.length(); ++j) |
|
|
|
|
for(length_t j(0); j < m.length(); ++j) |
|
|
|
|
v[j] = m[j][i]; |
|
|
|
|
result = isNormalized(v, epsilon); |
|
|
|
|
} |
|
|
|
@ -118,12 +118,12 @@ namespace glm |
|
|
|
|
) |
|
|
|
|
{ |
|
|
|
|
bool result(true); |
|
|
|
|
for(int i(0); result && i < m.length(); ++i) |
|
|
|
|
for(length_t i(0); result && i < m.length(); ++i) |
|
|
|
|
result = isNormalized(m[i], epsilon); |
|
|
|
|
for(int i(0); result && i < m.length(); ++i) |
|
|
|
|
for(length_t i(0); result && i < m.length(); ++i) |
|
|
|
|
{ |
|
|
|
|
typename detail::tmat4x4<T, P>::col_type v; |
|
|
|
|
for(int j(0); j < m.length(); ++j) |
|
|
|
|
for(length_t j(0); j < m.length(); ++j) |
|
|
|
|
v[j] = m[j][i]; |
|
|
|
|
result = isNormalized(v, epsilon); |
|
|
|
|
} |
|
|
|
@ -138,15 +138,15 @@ namespace glm |
|
|
|
|
) |
|
|
|
|
{ |
|
|
|
|
bool result(true); |
|
|
|
|
for(int i(0); result && i < m.length() - 1; ++i) |
|
|
|
|
for(int j(i + 1); result && j < m.length(); ++j) |
|
|
|
|
for(length_t i(0); result && i < m.length() - 1; ++i) |
|
|
|
|
for(length_t j(i + 1); result && j < m.length(); ++j) |
|
|
|
|
result = areOrthogonal(m[i], m[j], epsilon); |
|
|
|
|
|
|
|
|
|
if(result) |
|
|
|
|
{ |
|
|
|
|
matType<T, P> tmp = transpose(m); |
|
|
|
|
for(int i(0); result && i < m.length() - 1 ; ++i) |
|
|
|
|
for(int j(i + 1); result && j < m.length(); ++j) |
|
|
|
|
for(length_t i(0); result && i < m.length() - 1 ; ++i) |
|
|
|
|
for(length_t j(i + 1); result && j < m.length(); ++j) |
|
|
|
|
result = areOrthogonal(tmp[i], tmp[j], epsilon); |
|
|
|
|
} |
|
|
|
|
return result; |
|
|
|
|