Added initial commit for GLM_GTX_matrix_decompose #227
	
		
	
				
					
				
			
							parent
							
								
									842cea8747
								
							
						
					
					
						commit
						3b7aadc2e3
					
				
				 7 changed files with 312 additions and 7 deletions
			
			
		| @ -0,0 +1,66 @@ | |||||||
|  | ///////////////////////////////////////////////////////////////////////////////////
 | ||||||
|  | /// OpenGL Mathematics (glm.g-truc.net)
 | ||||||
|  | ///
 | ||||||
|  | /// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
 | ||||||
|  | /// Permission is hereby granted, free of charge, to any person obtaining a copy
 | ||||||
|  | /// of this software and associated documentation files (the "Software"), to deal
 | ||||||
|  | /// in the Software without restriction, including without limitation the rights
 | ||||||
|  | /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | ||||||
|  | /// copies of the Software, and to permit persons to whom the Software is
 | ||||||
|  | /// furnished to do so, subject to the following conditions:
 | ||||||
|  | /// 
 | ||||||
|  | /// The above copyright notice and this permission notice shall be included in
 | ||||||
|  | /// all copies or substantial portions of the Software.
 | ||||||
|  | /// 
 | ||||||
|  | /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | ||||||
|  | /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | ||||||
|  | /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | ||||||
|  | /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | ||||||
|  | /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | ||||||
|  | /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | ||||||
|  | /// THE SOFTWARE.
 | ||||||
|  | ///
 | ||||||
|  | /// @ref gtx_decomposition
 | ||||||
|  | /// @file glm/gtx/decomposition.hpp
 | ||||||
|  | /// @date 2014-08-29 / 2014-08-29
 | ||||||
|  | /// @author Christophe Riccio
 | ||||||
|  | /// 
 | ||||||
|  | /// @see core (dependence)
 | ||||||
|  | ///
 | ||||||
|  | /// @defgroup gtx_decomposition GLM_GTX_decomposition
 | ||||||
|  | /// @ingroup gtx
 | ||||||
|  | /// 
 | ||||||
|  | /// @brief Decomposes a model matrix to translations, rotation and scale components
 | ||||||
|  | /// 
 | ||||||
|  | /// <glm/gtx/decomposition.hpp> need to be included to use these functionalities.
 | ||||||
|  | ///////////////////////////////////////////////////////////////////////////////////
 | ||||||
|  | 
 | ||||||
|  | #pragma once | ||||||
|  | 
 | ||||||
|  | // Dependencies
 | ||||||
|  | #include "../mat4x4.hpp" | ||||||
|  | #include "../vec3.hpp" | ||||||
|  | #include "../vec4.hpp" | ||||||
|  | #include "../gtc/quaternion.hpp" | ||||||
|  | #include "../gtc/matrix_transform.hpp" | ||||||
|  | 
 | ||||||
|  | #if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED)) | ||||||
|  | #	pragma message("GLM: GLM_GTX_decomposition extension included") | ||||||
|  | #endif | ||||||
|  | 
 | ||||||
|  | namespace glm | ||||||
|  | { | ||||||
|  | 	/// @addtogroup gtx_decomposition
 | ||||||
|  | 	/// @{
 | ||||||
|  | 
 | ||||||
|  | 	/// Decomposes a model matrix to translations, rotation and scale components 
 | ||||||
|  | 	/// @see gtx_decomposition
 | ||||||
|  | 	template <typename T, precision P> | ||||||
|  | 	GLM_FUNC_DECL bool decompose( | ||||||
|  | 		detail::tmat4x4<T, P> const & modelMatrix, | ||||||
|  | 		detail::tvec3<T, P> & scale, detail::tquat<T, P> & orientation, detail::tvec3<T, P> & translation, detail::tvec3<T, P> & skew, detail::tvec4<T, P> & perspective); | ||||||
|  | 
 | ||||||
|  | 	/// @}
 | ||||||
|  | }//namespace glm
 | ||||||
|  | 
 | ||||||
|  | #include "matrix_decompose.inl" | ||||||
| @ -0,0 +1,227 @@ | |||||||
|  | /////////////////////////////////////////////////////////////////////////////////// | ||||||
|  | /// OpenGL Mathematics (glm.g-truc.net) | ||||||
|  | /// | ||||||
|  | /// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net) | ||||||
|  | /// Permission is hereby granted, free of charge, to any person obtaining a copy | ||||||
|  | /// of this software and associated documentation files (the "Software"), to deal | ||||||
|  | /// in the Software without restriction, including without limitation the rights | ||||||
|  | /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||||||
|  | /// copies of the Software, and to permit persons to whom the Software is | ||||||
|  | /// furnished to do so, subject to the following conditions: | ||||||
|  | ///  | ||||||
|  | /// The above copyright notice and this permission notice shall be included in | ||||||
|  | /// all copies or substantial portions of the Software. | ||||||
|  | ///  | ||||||
|  | /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||||||
|  | /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||||||
|  | /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||||||
|  | /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||||||
|  | /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||||||
|  | /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | ||||||
|  | /// THE SOFTWARE. | ||||||
|  | /// | ||||||
|  | /// @ref gtx_decomposition | ||||||
|  | /// @file glm/gtx/decomposition.inl | ||||||
|  | /// @date 2014-08-29 / 2014-08-29 | ||||||
|  | /// @author Christophe Riccio | ||||||
|  | /////////////////////////////////////////////////////////////////////////////////// | ||||||
|  | 
 | ||||||
|  | namespace glm | ||||||
|  | { | ||||||
|  | 	/// Make a linear combination of two vectors and return the result. | ||||||
|  | 	// result = (a * ascl) + (b * bscl) | ||||||
|  | 	template <typename T, precision P> | ||||||
|  | 	GLM_FUNC_QUALIFIER detail::tvec3<T, P> combine( | ||||||
|  | 		detail::tvec3<T, P> const & a,  | ||||||
|  | 		detail::tvec3<T, P> const & b, | ||||||
|  | 		T ascl, T bscl) | ||||||
|  | 	{ | ||||||
|  | 	    return (a * ascl) + (b * bscl); | ||||||
|  | 	} | ||||||
|  | 
 | ||||||
|  | 	template <typename T, precision P> | ||||||
|  | 	GLM_FUNC_QUALIFIER void v3Scale(detail::tvec3<T, P> & v, T desiredLength)  | ||||||
|  | 	{ | ||||||
|  | 	    T len = glm::length(v); | ||||||
|  | 	    if(len != 0) | ||||||
|  | 	    { | ||||||
|  | 	        T l = desiredLength / len; | ||||||
|  | 	        v[0] *= l; | ||||||
|  | 	        v[1] *= l; | ||||||
|  | 	        v[2] *= l; | ||||||
|  | 	    } | ||||||
|  | 	} | ||||||
|  | 
 | ||||||
|  | 	/** | ||||||
|  | 	* Matrix decompose | ||||||
|  | 	* http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp | ||||||
|  | 	* Decomposes the mode matrix to translations,rotation scale components | ||||||
|  | 	*  | ||||||
|  | 	*/ | ||||||
|  | 
 | ||||||
|  | 	template <typename T, precision P> | ||||||
|  | 	GLM_FUNC_QUALIFIER bool decompose(detail::tmat4x4<T, P> const & ModelMatrix, detail::tvec3<T, P> & Scale, detail::tquat<T, P> & Orientation, detail::tvec3<T, P> & Translation, detail::tvec3<T, P> & Skew, detail::tvec4<T, P> & Perspective) | ||||||
|  | 	{ | ||||||
|  | 		detail::tmat4x4<T, P> LocalMatrix(ModelMatrix); | ||||||
|  | 
 | ||||||
|  | 	    // Normalize the matrix. | ||||||
|  | 	    if(LocalMatrix[3][3] == static_cast<T>(0)) | ||||||
|  | 	        return false; | ||||||
|  | 
 | ||||||
|  | 		for(length_t i = 0; i < 4; i++) | ||||||
|  | 		for(length_t j = 0; j < 4; j++) | ||||||
|  | 			LocalMatrix[i][j] /= LocalMatrix[3][3]; | ||||||
|  | 
 | ||||||
|  | 		// perspectiveMatrix is used to solve for perspective, but it also provides | ||||||
|  | 		// an easy way to test for singularity of the upper 3x3 component. | ||||||
|  | 		detail::tmat4x4<T, P> PerspectiveMatrix(LocalMatrix); | ||||||
|  | 
 | ||||||
|  | 	    for(length_t i = 0; i < 3; i++) | ||||||
|  | 	        PerspectiveMatrix[i][3] = 0; | ||||||
|  | 	    PerspectiveMatrix[3][3] = 1; | ||||||
|  | 
 | ||||||
|  | 	    /// TODO: Fixme! | ||||||
|  | 	    if(determinant(PerspectiveMatrix) == static_cast<T>(0)) | ||||||
|  | 	        return false; | ||||||
|  | 
 | ||||||
|  | 	    // First, isolate perspective.  This is the messiest. | ||||||
|  | 	    if(LocalMatrix[0][3] != 0 || LocalMatrix[1][3] != 0 || LocalMatrix[2][3] != 0) | ||||||
|  | 	    { | ||||||
|  | 			// rightHandSide is the right hand side of the equation. | ||||||
|  | 			detail::tvec4<T, P> RightHandSide; | ||||||
|  | 			RightHandSide[0] = LocalMatrix[0][3]; | ||||||
|  | 			RightHandSide[1] = LocalMatrix[1][3]; | ||||||
|  | 			RightHandSide[2] = LocalMatrix[2][3]; | ||||||
|  | 			RightHandSide[3] = LocalMatrix[3][3]; | ||||||
|  | 
 | ||||||
|  | 			// Solve the equation by inverting PerspectiveMatrix and multiplying | ||||||
|  | 			// rightHandSide by the inverse.  (This is the easiest way, not | ||||||
|  | 			// necessarily the best.) | ||||||
|  | 			detail::tmat4x4<T, P> InversePerspectiveMatrix = glm::inverse(PerspectiveMatrix);//   inverse(PerspectiveMatrix, inversePerspectiveMatrix); | ||||||
|  | 			detail::tmat4x4<T, P> TransposedInversePerspectiveMatrix = glm::transpose(InversePerspectiveMatrix);//   transposeMatrix4(inversePerspectiveMatrix, transposedInversePerspectiveMatrix); | ||||||
|  | 
 | ||||||
|  | 			Perspective = TransposedInversePerspectiveMatrix * RightHandSide; | ||||||
|  | 			//  v4MulPointByMatrix(rightHandSide, transposedInversePerspectiveMatrix, perspectivePoint); | ||||||
|  | 
 | ||||||
|  | 			// Clear the perspective partition | ||||||
|  | 			LocalMatrix[0][3] = LocalMatrix[1][3] = LocalMatrix[2][3] = 0; | ||||||
|  | 			LocalMatrix[3][3] = 1; | ||||||
|  | 	    } | ||||||
|  | 	    else | ||||||
|  | 	    { | ||||||
|  | 			// No perspective. | ||||||
|  | 			Perspective = detail::tvec4<T, P>(0, 0, 0, 1); | ||||||
|  | 	    } | ||||||
|  | 
 | ||||||
|  | 	    // Next take care of translation (easy). | ||||||
|  | 	    Translation = detail::tvec3<T, P>(LocalMatrix[3]); | ||||||
|  | 	    LocalMatrix[3] = detail::tvec4<T, P>(0, 0, 0, LocalMatrix[3].w); | ||||||
|  | 
 | ||||||
|  | 	    detail::tvec3<T, P> Row[3], Pdum3; | ||||||
|  | 
 | ||||||
|  | 	    // Now get scale and shear. | ||||||
|  | 	    for(length_t i = 0; i < 3; ++i) | ||||||
|  | 	        Row[i] = LocalMatrix[i]; | ||||||
|  | 
 | ||||||
|  | 	    // Compute X scale factor and normalize first row. | ||||||
|  | 	    Scale.x = length(Row[0]);// v3Length(Row[0]); | ||||||
|  | 
 | ||||||
|  | 	    v3Scale(Row[0], 1.0); | ||||||
|  | 
 | ||||||
|  | 	    // Compute XY shear factor and make 2nd row orthogonal to 1st. | ||||||
|  | 	    Skew.z = dot(Row[0], Row[1]); | ||||||
|  | 	    Row[1] = combine(Row[1], Row[0], 1.0, -Skew.z); | ||||||
|  | 
 | ||||||
|  | 	    // Now, compute Y scale and normalize 2nd row. | ||||||
|  | 	    Scale.y = length(Row[1]); | ||||||
|  | 	    v3Scale(Row[1], 1.0); | ||||||
|  | 	    Skew.z /= Scale.y; | ||||||
|  | 
 | ||||||
|  | 	    // Compute XZ and YZ shears, orthogonalize 3rd row. | ||||||
|  | 	    Skew.y = glm::dot(Row[0], Row[2]); | ||||||
|  | 	    Row[2] = combine(Row[2], Row[0], 1.0, -Skew.y); | ||||||
|  | 	    Skew.x = glm::dot(Row[1], Row[2]); | ||||||
|  | 	    Row[2] = combine(Row[2], Row[1], 1.0, -Skew.x); | ||||||
|  | 
 | ||||||
|  | 	    // Next, get Z scale and normalize 3rd row. | ||||||
|  | 	    Scale.z = length(Row[2]); | ||||||
|  | 	    v3Scale(Row[2], 1.0); | ||||||
|  | 	    Skew.y /= Scale.z; | ||||||
|  | 	    Skew.x /= Scale.z; | ||||||
|  | 
 | ||||||
|  | 	    // At this point, the matrix (in rows[]) is orthonormal. | ||||||
|  | 	    // Check for a coordinate system flip.  If the determinant | ||||||
|  | 	    // is -1, then negate the matrix and the scaling factors. | ||||||
|  | 	    Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3); | ||||||
|  | 	    if(dot(Row[0], Pdum3) < 0) | ||||||
|  | 	    { | ||||||
|  | 	        for(length_t i = 0; i < 3; i++) | ||||||
|  | 	        { | ||||||
|  | 	            Scale.x *= static_cast<T>(-1); | ||||||
|  | 	            Row[i] *= static_cast<T>(-1); | ||||||
|  | 	        } | ||||||
|  | 	    } | ||||||
|  | 
 | ||||||
|  | 	    // Now, get the rotations out, as described in the gem. | ||||||
|  | 
 | ||||||
|  | 	    // FIXME - Add the ability to return either quaternions (which are | ||||||
|  | 	    // easier to recompose with) or Euler angles (rx, ry, rz), which | ||||||
|  | 	    // are easier for authors to deal with. The latter will only be useful | ||||||
|  | 	    // when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I | ||||||
|  | 	    // will leave the Euler angle code here for now. | ||||||
|  | 
 | ||||||
|  | 	    // ret.rotateY = asin(-Row[0][2]); | ||||||
|  | 	    // if (cos(ret.rotateY) != 0) { | ||||||
|  | 	    //     ret.rotateX = atan2(Row[1][2], Row[2][2]); | ||||||
|  | 	    //     ret.rotateZ = atan2(Row[0][1], Row[0][0]); | ||||||
|  | 	    // } else { | ||||||
|  | 	    //     ret.rotateX = atan2(-Row[2][0], Row[1][1]); | ||||||
|  | 	    //     ret.rotateZ = 0; | ||||||
|  | 	    // } | ||||||
|  | 
 | ||||||
|  | 	    T s, t, x, y, z, w; | ||||||
|  | 
 | ||||||
|  | 	    t = Row[0][0] + Row[1][1] + Row[2][2] + 1.0; | ||||||
|  | 
 | ||||||
|  | 	    if(t > 1e-4) | ||||||
|  | 	    { | ||||||
|  | 	        s = 0.5 / sqrt(t); | ||||||
|  | 	        w = 0.25 / s; | ||||||
|  | 	        x = (Row[2][1] - Row[1][2]) * s; | ||||||
|  | 	        y = (Row[0][2] - Row[2][0]) * s; | ||||||
|  | 	        z = (Row[1][0] - Row[0][1]) * s; | ||||||
|  | 	    } | ||||||
|  | 	    else if(Row[0][0] > Row[1][1] && Row[0][0] > Row[2][2]) | ||||||
|  | 	    {  | ||||||
|  | 	        s = sqrt (1.0 + Row[0][0] - Row[1][1] - Row[2][2]) * 2.0; // S=4*qx  | ||||||
|  | 	        x = 0.25 * s; | ||||||
|  | 	        y = (Row[0][1] + Row[1][0]) / s;  | ||||||
|  | 	        z = (Row[0][2] + Row[2][0]) / s;  | ||||||
|  | 	        w = (Row[2][1] - Row[1][2]) / s; | ||||||
|  | 	    } | ||||||
|  | 	    else if(Row[1][1] > Row[2][2]) | ||||||
|  | 	    {  | ||||||
|  | 	        s = sqrt (1.0 + Row[1][1] - Row[0][0] - Row[2][2]) * 2.0; // S=4*qy | ||||||
|  | 	        x = (Row[0][1] + Row[1][0]) / s;  | ||||||
|  | 	        y = 0.25 * s; | ||||||
|  | 	        z = (Row[1][2] + Row[2][1]) / s;  | ||||||
|  | 	        w = (Row[0][2] - Row[2][0]) / s; | ||||||
|  | 	    } | ||||||
|  | 	    else | ||||||
|  | 	    {  | ||||||
|  | 	        s = sqrt(1.0 + Row[2][2] - Row[0][0] - Row[1][1]) * 2.0; // S=4*qz | ||||||
|  | 	        x = (Row[0][2] + Row[2][0]) / s; | ||||||
|  | 	        y = (Row[1][2] + Row[2][1]) / s;  | ||||||
|  | 	        z = 0.25 * s; | ||||||
|  | 	        w = (Row[1][0] - Row[0][1]) / s; | ||||||
|  | 	    } | ||||||
|  | 
 | ||||||
|  | 	    Orientation.x = x; | ||||||
|  | 	    Orientation.y = y; | ||||||
|  | 	    Orientation.z = z; | ||||||
|  | 	    Orientation.w = w; | ||||||
|  | 
 | ||||||
|  | 	    return true; | ||||||
|  | 
 | ||||||
|  | 	} | ||||||
|  | }//namespace glm | ||||||
| @ -0,0 +1,17 @@ | |||||||
|  | ///////////////////////////////////////////////////////////////////////////////////////////////////
 | ||||||
|  | // OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
 | ||||||
|  | ///////////////////////////////////////////////////////////////////////////////////////////////////
 | ||||||
|  | // Created : 2014-08-31
 | ||||||
|  | // Updated : 2014-08-31
 | ||||||
|  | // Licence : This source is under MIT licence
 | ||||||
|  | // File    : test/gtx/decomposition.cpp
 | ||||||
|  | ///////////////////////////////////////////////////////////////////////////////////////////////////
 | ||||||
|  | 
 | ||||||
|  | #include <glm/gtx/matrix_decompose.hpp> | ||||||
|  | 
 | ||||||
|  | int main() | ||||||
|  | { | ||||||
|  | 	int Error(0); | ||||||
|  | 
 | ||||||
|  | 	return Error; | ||||||
|  | } | ||||||
					Loading…
					
					
				
		Reference in New Issue