You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
		
		
		
		
		
			
		
			
				
					
					
						
							728 lines
						
					
					
						
							23 KiB
						
					
					
				
			
		
		
	
	
							728 lines
						
					
					
						
							23 KiB
						
					
					
				| // stb_dxt.h - v1.08b - DXT1/DXT5 compressor - public domain | |
| // original by fabian "ryg" giesen - ported to C by stb | |
| // use '#define STB_DXT_IMPLEMENTATION' before including to create the implementation | |
| // | |
| // USAGE: | |
| //   call stb_compress_dxt_block() for every block (you must pad) | |
| //     source should be a 4x4 block of RGBA data in row-major order; | |
| //     A is ignored if you specify alpha=0; you can turn on dithering | |
| //     and "high quality" using mode. | |
| // | |
| // version history: | |
| //   v1.08  - (sbt) fix bug in dxt-with-alpha block | |
| //   v1.07  - (stb) bc4; allow not using libc; add STB_DXT_STATIC | |
| //   v1.06  - (stb) fix to known-broken 1.05 | |
| //   v1.05  - (stb) support bc5/3dc (Arvids Kokins), use extern "C" in C++ (Pavel Krajcevski) | |
| //   v1.04  - (ryg) default to no rounding bias for lerped colors (as per S3TC/DX10 spec); | |
| //            single color match fix (allow for inexact color interpolation); | |
| //            optimal DXT5 index finder; "high quality" mode that runs multiple refinement steps. | |
| //   v1.03  - (stb) endianness support | |
| //   v1.02  - (stb) fix alpha encoding bug | |
| //   v1.01  - (stb) fix bug converting to RGB that messed up quality, thanks ryg & cbloom | |
| //   v1.00  - (stb) first release | |
| // | |
| // contributors:  | |
| //   Kevin Schmidt (#defines for "freestanding" compilation) | |
| //   github:ppiastucki (BC4 support) | |
| //  | |
| // LICENSE | |
| // | |
| //   See end of file for license information. | |
|  | |
| #ifndef STB_INCLUDE_STB_DXT_H | |
| #define STB_INCLUDE_STB_DXT_H | |
|  | |
| #ifdef __cplusplus | |
| extern "C" { | |
| #endif | |
|  | |
| #ifdef STB_DXT_STATIC | |
| #define STBDDEF static | |
| #else | |
| #define STBDDEF extern | |
| #endif | |
|  | |
| // compression mode (bitflags) | |
| #define STB_DXT_NORMAL    0 | |
| #define STB_DXT_DITHER    1   // use dithering. dubious win. never use for normal maps and the like! | |
| #define STB_DXT_HIGHQUAL  2   // high quality mode, does two refinement steps instead of 1. ~30-40% slower. | |
|  | |
| STBDDEF void stb_compress_dxt_block(unsigned char *dest, const unsigned char *src_rgba_four_bytes_per_pixel, int alpha, int mode); | |
| STBDDEF void stb_compress_bc4_block(unsigned char *dest, const unsigned char *src_r_one_byte_per_pixel); | |
| STBDDEF void stb_compress_bc5_block(unsigned char *dest, const unsigned char *src_rg_two_byte_per_pixel); | |
| 
 | |
| #define STB_COMPRESS_DXT_BLOCK | |
|  | |
| #ifdef __cplusplus | |
| } | |
| #endif | |
| #endif // STB_INCLUDE_STB_DXT_H | |
|  | |
| #ifdef STB_DXT_IMPLEMENTATION | |
|  | |
| // configuration options for DXT encoder. set them in the project/makefile or just define | |
| // them at the top. | |
|  | |
| // STB_DXT_USE_ROUNDING_BIAS | |
| //     use a rounding bias during color interpolation. this is closer to what "ideal" | |
| //     interpolation would do but doesn't match the S3TC/DX10 spec. old versions (pre-1.03) | |
| //     implicitly had this turned on.  | |
| // | |
| //     in case you're targeting a specific type of hardware (e.g. console programmers): | |
| //     NVidia and Intel GPUs (as of 2010) as well as DX9 ref use DXT decoders that are closer | |
| //     to STB_DXT_USE_ROUNDING_BIAS. AMD/ATI, S3 and DX10 ref are closer to rounding with no bias. | |
| //     you also see "(a*5 + b*3) / 8" on some old GPU designs. | |
| // #define STB_DXT_USE_ROUNDING_BIAS | |
|  | |
| #include <stdlib.h> | |
|  | |
| #if !defined(STBD_ABS) || !defined(STBI_FABS) | |
| #include <math.h> | |
| #endif | |
|  | |
| #ifndef STBD_ABS | |
| #define STBD_ABS(i)           abs(i) | |
| #endif | |
|  | |
| #ifndef STBD_FABS | |
| #define STBD_FABS(x)          fabs(x) | |
| #endif | |
|  | |
| #ifndef STBD_MEMSET | |
| #include <string.h> | |
| #define STBD_MEMSET           memset | |
| #endif | |
|  | |
| static unsigned char stb__Expand5[32]; | |
| static unsigned char stb__Expand6[64]; | |
| static unsigned char stb__OMatch5[256][2]; | |
| static unsigned char stb__OMatch6[256][2]; | |
| static unsigned char stb__QuantRBTab[256+16]; | |
| static unsigned char stb__QuantGTab[256+16]; | |
| 
 | |
| static int stb__Mul8Bit(int a, int b) | |
| { | |
|   int t = a*b + 128; | |
|   return (t + (t >> 8)) >> 8; | |
| } | |
| 
 | |
| static void stb__From16Bit(unsigned char *out, unsigned short v) | |
| { | |
|    int rv = (v & 0xf800) >> 11; | |
|    int gv = (v & 0x07e0) >>  5; | |
|    int bv = (v & 0x001f) >>  0; | |
| 
 | |
|    out[0] = stb__Expand5[rv]; | |
|    out[1] = stb__Expand6[gv]; | |
|    out[2] = stb__Expand5[bv]; | |
|    out[3] = 0; | |
| } | |
| 
 | |
| static unsigned short stb__As16Bit(int r, int g, int b) | |
| { | |
|    return (stb__Mul8Bit(r,31) << 11) + (stb__Mul8Bit(g,63) << 5) + stb__Mul8Bit(b,31); | |
| } | |
| 
 | |
| // linear interpolation at 1/3 point between a and b, using desired rounding type | |
| static int stb__Lerp13(int a, int b) | |
| { | |
| #ifdef STB_DXT_USE_ROUNDING_BIAS | |
|    // with rounding bias | |
|    return a + stb__Mul8Bit(b-a, 0x55); | |
| #else | |
|    // without rounding bias | |
|    // replace "/ 3" by "* 0xaaab) >> 17" if your compiler sucks or you really need every ounce of speed. | |
|    return (2*a + b) / 3; | |
| #endif | |
| } | |
| 
 | |
| // lerp RGB color | |
| static void stb__Lerp13RGB(unsigned char *out, unsigned char *p1, unsigned char *p2) | |
| { | |
|    out[0] = stb__Lerp13(p1[0], p2[0]); | |
|    out[1] = stb__Lerp13(p1[1], p2[1]); | |
|    out[2] = stb__Lerp13(p1[2], p2[2]); | |
| } | |
| 
 | |
| /****************************************************************************/ | |
| 
 | |
| // compute table to reproduce constant colors as accurately as possible | |
| static void stb__PrepareOptTable(unsigned char *Table,const unsigned char *expand,int size) | |
| { | |
|    int i,mn,mx; | |
|    for (i=0;i<256;i++) { | |
|       int bestErr = 256; | |
|       for (mn=0;mn<size;mn++) { | |
|          for (mx=0;mx<size;mx++) { | |
|             int mine = expand[mn]; | |
|             int maxe = expand[mx]; | |
|             int err = STBD_ABS(stb__Lerp13(maxe, mine) - i); | |
|              | |
|             // DX10 spec says that interpolation must be within 3% of "correct" result, | |
|             // add this as error term. (normally we'd expect a random distribution of | |
|             // +-1.5% error, but nowhere in the spec does it say that the error has to be | |
|             // unbiased - better safe than sorry). | |
|             err += STBD_ABS(maxe - mine) * 3 / 100; | |
|              | |
|             if(err < bestErr) | |
|             {  | |
|                Table[i*2+0] = mx; | |
|                Table[i*2+1] = mn; | |
|                bestErr = err; | |
|             } | |
|          } | |
|       } | |
|    } | |
| } | |
| 
 | |
| static void stb__EvalColors(unsigned char *color,unsigned short c0,unsigned short c1) | |
| { | |
|    stb__From16Bit(color+ 0, c0); | |
|    stb__From16Bit(color+ 4, c1); | |
|    stb__Lerp13RGB(color+ 8, color+0, color+4); | |
|    stb__Lerp13RGB(color+12, color+4, color+0); | |
| } | |
| 
 | |
| // Block dithering function. Simply dithers a block to 565 RGB. | |
| // (Floyd-Steinberg) | |
| static void stb__DitherBlock(unsigned char *dest, unsigned char *block) | |
| { | |
|   int err[8],*ep1 = err,*ep2 = err+4, *et; | |
|   int ch,y; | |
| 
 | |
|   // process channels seperately | |
|   for (ch=0; ch<3; ++ch) { | |
|       unsigned char *bp = block+ch, *dp = dest+ch; | |
|       unsigned char *quant = (ch == 1) ? stb__QuantGTab+8 : stb__QuantRBTab+8; | |
|       STBD_MEMSET(err, 0, sizeof(err)); | |
|       for(y=0; y<4; ++y) { | |
|          dp[ 0] = quant[bp[ 0] + ((3*ep2[1] + 5*ep2[0]) >> 4)]; | |
|          ep1[0] = bp[ 0] - dp[ 0]; | |
|          dp[ 4] = quant[bp[ 4] + ((7*ep1[0] + 3*ep2[2] + 5*ep2[1] + ep2[0]) >> 4)]; | |
|          ep1[1] = bp[ 4] - dp[ 4]; | |
|          dp[ 8] = quant[bp[ 8] + ((7*ep1[1] + 3*ep2[3] + 5*ep2[2] + ep2[1]) >> 4)]; | |
|          ep1[2] = bp[ 8] - dp[ 8]; | |
|          dp[12] = quant[bp[12] + ((7*ep1[2] + 5*ep2[3] + ep2[2]) >> 4)]; | |
|          ep1[3] = bp[12] - dp[12]; | |
|          bp += 16; | |
|          dp += 16; | |
|          et = ep1, ep1 = ep2, ep2 = et; // swap | |
|       } | |
|    } | |
| } | |
| 
 | |
| // The color matching function | |
| static unsigned int stb__MatchColorsBlock(unsigned char *block, unsigned char *color,int dither) | |
| { | |
|    unsigned int mask = 0; | |
|    int dirr = color[0*4+0] - color[1*4+0]; | |
|    int dirg = color[0*4+1] - color[1*4+1]; | |
|    int dirb = color[0*4+2] - color[1*4+2]; | |
|    int dots[16]; | |
|    int stops[4]; | |
|    int i; | |
|    int c0Point, halfPoint, c3Point; | |
| 
 | |
|    for(i=0;i<16;i++) | |
|       dots[i] = block[i*4+0]*dirr + block[i*4+1]*dirg + block[i*4+2]*dirb; | |
| 
 | |
|    for(i=0;i<4;i++) | |
|       stops[i] = color[i*4+0]*dirr + color[i*4+1]*dirg + color[i*4+2]*dirb; | |
| 
 | |
|    // think of the colors as arranged on a line; project point onto that line, then choose | |
|    // next color out of available ones. we compute the crossover points for "best color in top | |
|    // half"/"best in bottom half" and then the same inside that subinterval. | |
|    // | |
|    // relying on this 1d approximation isn't always optimal in terms of euclidean distance, | |
|    // but it's very close and a lot faster. | |
|    // http://cbloomrants.blogspot.com/2008/12/12-08-08-dxtc-summary.html | |
|     | |
|    c0Point   = (stops[1] + stops[3]) >> 1; | |
|    halfPoint = (stops[3] + stops[2]) >> 1; | |
|    c3Point   = (stops[2] + stops[0]) >> 1; | |
| 
 | |
|    if(!dither) { | |
|       // the version without dithering is straightforward | |
|       for (i=15;i>=0;i--) { | |
|          int dot = dots[i]; | |
|          mask <<= 2; | |
| 
 | |
|          if(dot < halfPoint) | |
|            mask |= (dot < c0Point) ? 1 : 3; | |
|          else | |
|            mask |= (dot < c3Point) ? 2 : 0; | |
|       } | |
|   } else { | |
|       // with floyd-steinberg dithering | |
|       int err[8],*ep1 = err,*ep2 = err+4; | |
|       int *dp = dots, y; | |
| 
 | |
|       c0Point   <<= 4; | |
|       halfPoint <<= 4; | |
|       c3Point   <<= 4; | |
|       for(i=0;i<8;i++) | |
|          err[i] = 0; | |
| 
 | |
|       for(y=0;y<4;y++) | |
|       { | |
|          int dot,lmask,step; | |
| 
 | |
|          dot = (dp[0] << 4) + (3*ep2[1] + 5*ep2[0]); | |
|          if(dot < halfPoint) | |
|            step = (dot < c0Point) ? 1 : 3; | |
|          else | |
|            step = (dot < c3Point) ? 2 : 0; | |
|          ep1[0] = dp[0] - stops[step]; | |
|          lmask = step; | |
| 
 | |
|          dot = (dp[1] << 4) + (7*ep1[0] + 3*ep2[2] + 5*ep2[1] + ep2[0]); | |
|          if(dot < halfPoint) | |
|            step = (dot < c0Point) ? 1 : 3; | |
|          else | |
|            step = (dot < c3Point) ? 2 : 0; | |
|          ep1[1] = dp[1] - stops[step]; | |
|          lmask |= step<<2; | |
| 
 | |
|          dot = (dp[2] << 4) + (7*ep1[1] + 3*ep2[3] + 5*ep2[2] + ep2[1]); | |
|          if(dot < halfPoint) | |
|            step = (dot < c0Point) ? 1 : 3; | |
|          else | |
|            step = (dot < c3Point) ? 2 : 0; | |
|          ep1[2] = dp[2] - stops[step]; | |
|          lmask |= step<<4; | |
| 
 | |
|          dot = (dp[3] << 4) + (7*ep1[2] + 5*ep2[3] + ep2[2]); | |
|          if(dot < halfPoint) | |
|            step = (dot < c0Point) ? 1 : 3; | |
|          else | |
|            step = (dot < c3Point) ? 2 : 0; | |
|          ep1[3] = dp[3] - stops[step]; | |
|          lmask |= step<<6; | |
| 
 | |
|          dp += 4; | |
|          mask |= lmask << (y*8); | |
|          { int *et = ep1; ep1 = ep2; ep2 = et; } // swap | |
|       } | |
|    } | |
| 
 | |
|    return mask; | |
| } | |
| 
 | |
| // The color optimization function. (Clever code, part 1) | |
| static void stb__OptimizeColorsBlock(unsigned char *block, unsigned short *pmax16, unsigned short *pmin16) | |
| { | |
|   int mind = 0x7fffffff,maxd = -0x7fffffff; | |
|   unsigned char *minp, *maxp; | |
|   double magn; | |
|   int v_r,v_g,v_b; | |
|   static const int nIterPower = 4; | |
|   float covf[6],vfr,vfg,vfb; | |
| 
 | |
|   // determine color distribution | |
|   int cov[6]; | |
|   int mu[3],min[3],max[3]; | |
|   int ch,i,iter; | |
| 
 | |
|   for(ch=0;ch<3;ch++) | |
|   { | |
|     const unsigned char *bp = ((const unsigned char *) block) + ch; | |
|     int muv,minv,maxv; | |
| 
 | |
|     muv = minv = maxv = bp[0]; | |
|     for(i=4;i<64;i+=4) | |
|     { | |
|       muv += bp[i]; | |
|       if (bp[i] < minv) minv = bp[i]; | |
|       else if (bp[i] > maxv) maxv = bp[i]; | |
|     } | |
| 
 | |
|     mu[ch] = (muv + 8) >> 4; | |
|     min[ch] = minv; | |
|     max[ch] = maxv; | |
|   } | |
| 
 | |
|   // determine covariance matrix | |
|   for (i=0;i<6;i++) | |
|      cov[i] = 0; | |
| 
 | |
|   for (i=0;i<16;i++) | |
|   { | |
|     int r = block[i*4+0] - mu[0]; | |
|     int g = block[i*4+1] - mu[1]; | |
|     int b = block[i*4+2] - mu[2]; | |
| 
 | |
|     cov[0] += r*r; | |
|     cov[1] += r*g; | |
|     cov[2] += r*b; | |
|     cov[3] += g*g; | |
|     cov[4] += g*b; | |
|     cov[5] += b*b; | |
|   } | |
| 
 | |
|   // convert covariance matrix to float, find principal axis via power iter | |
|   for(i=0;i<6;i++) | |
|     covf[i] = cov[i] / 255.0f; | |
| 
 | |
|   vfr = (float) (max[0] - min[0]); | |
|   vfg = (float) (max[1] - min[1]); | |
|   vfb = (float) (max[2] - min[2]); | |
| 
 | |
|   for(iter=0;iter<nIterPower;iter++) | |
|   { | |
|     float r = vfr*covf[0] + vfg*covf[1] + vfb*covf[2]; | |
|     float g = vfr*covf[1] + vfg*covf[3] + vfb*covf[4]; | |
|     float b = vfr*covf[2] + vfg*covf[4] + vfb*covf[5]; | |
| 
 | |
|     vfr = r; | |
|     vfg = g; | |
|     vfb = b; | |
|   } | |
| 
 | |
|   magn = STBD_FABS(vfr); | |
|   if (STBD_FABS(vfg) > magn) magn = STBD_FABS(vfg); | |
|   if (STBD_FABS(vfb) > magn) magn = STBD_FABS(vfb); | |
| 
 | |
|    if(magn < 4.0f) { // too small, default to luminance | |
|       v_r = 299; // JPEG YCbCr luma coefs, scaled by 1000. | |
|       v_g = 587; | |
|       v_b = 114; | |
|    } else { | |
|       magn = 512.0 / magn; | |
|       v_r = (int) (vfr * magn); | |
|       v_g = (int) (vfg * magn); | |
|       v_b = (int) (vfb * magn); | |
|    } | |
| 
 | |
|    // Pick colors at extreme points | |
|    for(i=0;i<16;i++) | |
|    { | |
|       int dot = block[i*4+0]*v_r + block[i*4+1]*v_g + block[i*4+2]*v_b; | |
| 
 | |
|       if (dot < mind) { | |
|          mind = dot; | |
|          minp = block+i*4; | |
|       } | |
| 
 | |
|       if (dot > maxd) { | |
|          maxd = dot; | |
|          maxp = block+i*4; | |
|       } | |
|    } | |
| 
 | |
|    *pmax16 = stb__As16Bit(maxp[0],maxp[1],maxp[2]); | |
|    *pmin16 = stb__As16Bit(minp[0],minp[1],minp[2]); | |
| } | |
| 
 | |
| static int stb__sclamp(float y, int p0, int p1) | |
| { | |
|    int x = (int) y; | |
|    if (x < p0) return p0; | |
|    if (x > p1) return p1; | |
|    return x; | |
| } | |
| 
 | |
| // The refinement function. (Clever code, part 2) | |
| // Tries to optimize colors to suit block contents better. | |
| // (By solving a least squares system via normal equations+Cramer's rule) | |
| static int stb__RefineBlock(unsigned char *block, unsigned short *pmax16, unsigned short *pmin16, unsigned int mask) | |
| { | |
|    static const int w1Tab[4] = { 3,0,2,1 }; | |
|    static const int prods[4] = { 0x090000,0x000900,0x040102,0x010402 }; | |
|    // ^some magic to save a lot of multiplies in the accumulating loop... | |
|    // (precomputed products of weights for least squares system, accumulated inside one 32-bit register) | |
|  | |
|    float frb,fg; | |
|    unsigned short oldMin, oldMax, min16, max16; | |
|    int i, akku = 0, xx,xy,yy; | |
|    int At1_r,At1_g,At1_b; | |
|    int At2_r,At2_g,At2_b; | |
|    unsigned int cm = mask; | |
| 
 | |
|    oldMin = *pmin16; | |
|    oldMax = *pmax16; | |
| 
 | |
|    if((mask ^ (mask<<2)) < 4) // all pixels have the same index? | |
|    { | |
|       // yes, linear system would be singular; solve using optimal | |
|       // single-color match on average color | |
|       int r = 8, g = 8, b = 8; | |
|       for (i=0;i<16;++i) { | |
|          r += block[i*4+0]; | |
|          g += block[i*4+1]; | |
|          b += block[i*4+2]; | |
|       } | |
| 
 | |
|       r >>= 4; g >>= 4; b >>= 4; | |
| 
 | |
|       max16 = (stb__OMatch5[r][0]<<11) | (stb__OMatch6[g][0]<<5) | stb__OMatch5[b][0]; | |
|       min16 = (stb__OMatch5[r][1]<<11) | (stb__OMatch6[g][1]<<5) | stb__OMatch5[b][1]; | |
|    } else { | |
|       At1_r = At1_g = At1_b = 0; | |
|       At2_r = At2_g = At2_b = 0; | |
|       for (i=0;i<16;++i,cm>>=2) { | |
|          int step = cm&3; | |
|          int w1 = w1Tab[step]; | |
|          int r = block[i*4+0]; | |
|          int g = block[i*4+1]; | |
|          int b = block[i*4+2]; | |
| 
 | |
|          akku    += prods[step]; | |
|          At1_r   += w1*r; | |
|          At1_g   += w1*g; | |
|          At1_b   += w1*b; | |
|          At2_r   += r; | |
|          At2_g   += g; | |
|          At2_b   += b; | |
|       } | |
| 
 | |
|       At2_r = 3*At2_r - At1_r; | |
|       At2_g = 3*At2_g - At1_g; | |
|       At2_b = 3*At2_b - At1_b; | |
| 
 | |
|       // extract solutions and decide solvability | |
|       xx = akku >> 16; | |
|       yy = (akku >> 8) & 0xff; | |
|       xy = (akku >> 0) & 0xff; | |
| 
 | |
|       frb = 3.0f * 31.0f / 255.0f / (xx*yy - xy*xy); | |
|       fg = frb * 63.0f / 31.0f; | |
| 
 | |
|       // solve. | |
|       max16 =   stb__sclamp((At1_r*yy - At2_r*xy)*frb+0.5f,0,31) << 11; | |
|       max16 |=  stb__sclamp((At1_g*yy - At2_g*xy)*fg +0.5f,0,63) << 5; | |
|       max16 |=  stb__sclamp((At1_b*yy - At2_b*xy)*frb+0.5f,0,31) << 0; | |
| 
 | |
|       min16 =   stb__sclamp((At2_r*xx - At1_r*xy)*frb+0.5f,0,31) << 11; | |
|       min16 |=  stb__sclamp((At2_g*xx - At1_g*xy)*fg +0.5f,0,63) << 5; | |
|       min16 |=  stb__sclamp((At2_b*xx - At1_b*xy)*frb+0.5f,0,31) << 0; | |
|    } | |
| 
 | |
|    *pmin16 = min16; | |
|    *pmax16 = max16; | |
|    return oldMin != min16 || oldMax != max16; | |
| } | |
| 
 | |
| // Color block compression | |
| static void stb__CompressColorBlock(unsigned char *dest, unsigned char *block, int mode) | |
| { | |
|    unsigned int mask; | |
|    int i; | |
|    int dither; | |
|    int refinecount; | |
|    unsigned short max16, min16; | |
|    unsigned char dblock[16*4],color[4*4]; | |
|     | |
|    dither = mode & STB_DXT_DITHER; | |
|    refinecount = (mode & STB_DXT_HIGHQUAL) ? 2 : 1; | |
| 
 | |
|    // check if block is constant | |
|    for (i=1;i<16;i++) | |
|       if (((unsigned int *) block)[i] != ((unsigned int *) block)[0]) | |
|          break; | |
| 
 | |
|    if(i == 16) { // constant color | |
|       int r = block[0], g = block[1], b = block[2]; | |
|       mask  = 0xaaaaaaaa; | |
|       max16 = (stb__OMatch5[r][0]<<11) | (stb__OMatch6[g][0]<<5) | stb__OMatch5[b][0]; | |
|       min16 = (stb__OMatch5[r][1]<<11) | (stb__OMatch6[g][1]<<5) | stb__OMatch5[b][1]; | |
|    } else { | |
|       // first step: compute dithered version for PCA if desired | |
|       if(dither) | |
|          stb__DitherBlock(dblock,block); | |
| 
 | |
|       // second step: pca+map along principal axis | |
|       stb__OptimizeColorsBlock(dither ? dblock : block,&max16,&min16); | |
|       if (max16 != min16) { | |
|          stb__EvalColors(color,max16,min16); | |
|          mask = stb__MatchColorsBlock(block,color,dither); | |
|       } else | |
|          mask = 0; | |
| 
 | |
|       // third step: refine (multiple times if requested) | |
|       for (i=0;i<refinecount;i++) { | |
|          unsigned int lastmask = mask; | |
|           | |
|          if (stb__RefineBlock(dither ? dblock : block,&max16,&min16,mask)) { | |
|             if (max16 != min16) { | |
|                stb__EvalColors(color,max16,min16); | |
|                mask = stb__MatchColorsBlock(block,color,dither); | |
|             } else { | |
|                mask = 0; | |
|                break; | |
|             } | |
|          } | |
|           | |
|          if(mask == lastmask) | |
|             break; | |
|       } | |
|   } | |
| 
 | |
|   // write the color block | |
|   if(max16 < min16) | |
|   { | |
|      unsigned short t = min16; | |
|      min16 = max16; | |
|      max16 = t; | |
|      mask ^= 0x55555555; | |
|   } | |
| 
 | |
|   dest[0] = (unsigned char) (max16); | |
|   dest[1] = (unsigned char) (max16 >> 8); | |
|   dest[2] = (unsigned char) (min16); | |
|   dest[3] = (unsigned char) (min16 >> 8); | |
|   dest[4] = (unsigned char) (mask); | |
|   dest[5] = (unsigned char) (mask >> 8); | |
|   dest[6] = (unsigned char) (mask >> 16); | |
|   dest[7] = (unsigned char) (mask >> 24); | |
| } | |
| 
 | |
| // Alpha block compression (this is easy for a change) | |
| static void stb__CompressAlphaBlock(unsigned char *dest,unsigned char *src, int stride) | |
| { | |
|    int i,dist,bias,dist4,dist2,bits,mask; | |
| 
 | |
|    // find min/max color | |
|    int mn,mx; | |
|    mn = mx = src[0]; | |
| 
 | |
|    for (i=1;i<16;i++) | |
|    { | |
|       if (src[i*stride] < mn) mn = src[i*stride]; | |
|       else if (src[i*stride] > mx) mx = src[i*stride]; | |
|    } | |
| 
 | |
|    // encode them | |
|    ((unsigned char *)dest)[0] = mx; | |
|    ((unsigned char *)dest)[1] = mn; | |
|    dest += 2; | |
| 
 | |
|    // determine bias and emit color indices | |
|    // given the choice of mx/mn, these indices are optimal: | |
|    // http://fgiesen.wordpress.com/2009/12/15/dxt5-alpha-block-index-determination/ | |
|    dist = mx-mn; | |
|    dist4 = dist*4; | |
|    dist2 = dist*2; | |
|    bias = (dist < 8) ? (dist - 1) : (dist/2 + 2); | |
|    bias -= mn * 7; | |
|    bits = 0,mask=0; | |
|     | |
|    for (i=0;i<16;i++) { | |
|       int a = src[i*stride]*7 + bias; | |
|       int ind,t; | |
| 
 | |
|       // select index. this is a "linear scale" lerp factor between 0 (val=min) and 7 (val=max). | |
|       t = (a >= dist4) ? -1 : 0; ind =  t & 4; a -= dist4 & t; | |
|       t = (a >= dist2) ? -1 : 0; ind += t & 2; a -= dist2 & t; | |
|       ind += (a >= dist); | |
|        | |
|       // turn linear scale into DXT index (0/1 are extremal pts) | |
|       ind = -ind & 7; | |
|       ind ^= (2 > ind); | |
| 
 | |
|       // write index | |
|       mask |= ind << bits; | |
|       if((bits += 3) >= 8) { | |
|          *dest++ = mask; | |
|          mask >>= 8; | |
|          bits -= 8; | |
|       } | |
|    } | |
| } | |
| 
 | |
| static void stb__InitDXT() | |
| { | |
|    int i; | |
|    for(i=0;i<32;i++) | |
|       stb__Expand5[i] = (i<<3)|(i>>2); | |
| 
 | |
|    for(i=0;i<64;i++) | |
|       stb__Expand6[i] = (i<<2)|(i>>4); | |
| 
 | |
|    for(i=0;i<256+16;i++) | |
|    { | |
|       int v = i-8 < 0 ? 0 : i-8 > 255 ? 255 : i-8; | |
|       stb__QuantRBTab[i] = stb__Expand5[stb__Mul8Bit(v,31)]; | |
|       stb__QuantGTab[i] = stb__Expand6[stb__Mul8Bit(v,63)]; | |
|    } | |
| 
 | |
|    stb__PrepareOptTable(&stb__OMatch5[0][0],stb__Expand5,32); | |
|    stb__PrepareOptTable(&stb__OMatch6[0][0],stb__Expand6,64); | |
| } | |
| 
 | |
| void stb_compress_dxt_block(unsigned char *dest, const unsigned char *src, int alpha, int mode) | |
| { | |
|    unsigned char data[16][4]; | |
|    static int init=1; | |
|    if (init) { | |
|       stb__InitDXT(); | |
|       init=0; | |
|    } | |
| 
 | |
|    if (alpha) { | |
|       int i; | |
|       stb__CompressAlphaBlock(dest,(unsigned char*) src+3, 4); | |
|       dest += 8; | |
|       // make a new copy of the data in which alpha is opaque, | |
|       // because code uses a fast test for color constancy | |
|       memcpy(data, src, 4*16); | |
|       for (i=0; i < 16; ++i) | |
|          data[i][3] = 255; | |
|       src = &data[0][0]; | |
|    } | |
| 
 | |
|    stb__CompressColorBlock(dest,(unsigned char*) src,mode); | |
| } | |
| 
 | |
| void stb_compress_bc4_block(unsigned char *dest, const unsigned char *src) | |
| { | |
|    stb__CompressAlphaBlock(dest,(unsigned char*) src, 1); | |
| } | |
| 
 | |
| void stb_compress_bc5_block(unsigned char *dest, const unsigned char *src) | |
| { | |
|    stb__CompressAlphaBlock(dest,(unsigned char*) src,2); | |
|    stb__CompressAlphaBlock(dest + 8,(unsigned char*) src+1,2); | |
| } | |
| #endif // STB_DXT_IMPLEMENTATION | |
|  | |
| /* | |
| ------------------------------------------------------------------------------ | |
| This software is available under 2 licenses -- choose whichever you prefer. | |
| ------------------------------------------------------------------------------ | |
| ALTERNATIVE A - MIT License | |
| Copyright (c) 2017 Sean Barrett | |
| Permission is hereby granted, free of charge, to any person obtaining a copy of  | |
| this software and associated documentation files (the "Software"), to deal in  | |
| the Software without restriction, including without limitation the rights to  | |
| use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies  | |
| of the Software, and to permit persons to whom the Software is furnished to do  | |
| so, subject to the following conditions: | |
| The above copyright notice and this permission notice shall be included in all  | |
| copies or substantial portions of the Software. | |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR  | |
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  | |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE  | |
| AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER  | |
| LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,  | |
| OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE  | |
| SOFTWARE. | |
| ------------------------------------------------------------------------------ | |
| ALTERNATIVE B - Public Domain (www.unlicense.org) | |
| This is free and unencumbered software released into the public domain. | |
| Anyone is free to copy, modify, publish, use, compile, sell, or distribute this  | |
| software, either in source code form or as a compiled binary, for any purpose,  | |
| commercial or non-commercial, and by any means. | |
| In jurisdictions that recognize copyright laws, the author or authors of this  | |
| software dedicate any and all copyright interest in the software to the public  | |
| domain. We make this dedication for the benefit of the public at large and to  | |
| the detriment of our heirs and successors. We intend this dedication to be an  | |
| overt act of relinquishment in perpetuity of all present and future rights to  | |
| this software under copyright law. | |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR  | |
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  | |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE  | |
| AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN  | |
| ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION  | |
| WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
| ------------------------------------------------------------------------------ | |
| */
 | |
| 
 |