You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
		
		
		
		
		
			
		
			
				
					
					
						
							1055 lines
						
					
					
						
							35 KiB
						
					
					
				
			
		
		
	
	
							1055 lines
						
					
					
						
							35 KiB
						
					
					
				| #ifndef RR_SPRINTF_H_INCLUDE | |
| #define RR_SPRINTF_H_INCLUDE | |
|  | |
| /* | |
| Single file sprintf replacement. | |
|  | |
| Originally written by Jeff Roberts at RAD Game Tools - 2015/10/20.  | |
| Hereby placed in public domain. | |
|  | |
| This is a full sprintf replacement that supports everything that | |
| the C runtime sprintfs support, including float/double, 64-bit integers, | |
| hex floats, field parameters (%*.*d stuff), length reads backs, etc. | |
|  | |
| Why would you need this if sprintf already exists?  Well, first off, | |
| it's *much* faster (see below). It's also much smaller than the CRT | |
| versions code-space-wise. We've also added some simple improvements  | |
| that are super handy (commas in thousands, callbacks at buffer full, | |
| for example). Finally, the format strings for MSVC and GCC differ  | |
| for 64-bit integers (among other small things), so this lets you use  | |
| the same format strings in cross platform code. | |
|  | |
| It uses the standard single file trick of being both the header file | |
| and the source itself. If you just include it normally, you just get  | |
| the header file function definitions. To get the code, you include | |
| it from a C or C++ file and define RR_SPRINTF_IMPLEMENTATION first. | |
|  | |
| It only uses va_args macros from the C runtime to do it's work. It | |
| does cast doubles to S64s and shifts and divides U64s, which does  | |
| drag in CRT code on most platforms. | |
|  | |
| It compiles to roughly 8K with float support, and 4K without. | |
| As a comparison, when using MSVC static libs, calling sprintf drags | |
| in 16K. | |
|  | |
| API: | |
| ==== | |
| int rrsprintf( char * buf, char const * fmt, ... ) | |
| int rrsnprintf( char * buf, int count, char const * fmt, ... ) | |
|   Convert an arg list into a buffer.  rrsnprintf always returns | |
|   a zero-terminated string (unlike regular snprintf). | |
|  | |
| int rrvsprintf( char * buf, char const * fmt, va_list va ) | |
| int rrvsnprintf( char * buf, int count, char const * fmt, va_list va ) | |
|   Convert a va_list arg list into a buffer.  rrvsnprintf always returns | |
|   a zero-terminated string (unlike regular snprintf). | |
|  | |
| int rrvsprintfcb( RRSPRINTFCB * callback, void * user, char * buf, char const * fmt, va_list va ) | |
|     typedef char * RRSPRINTFCB( char const * buf, void * user, int len ); | |
|   Convert into a buffer, calling back every RR_SPRINTF_MIN chars. | |
|   Your callback can then copy the chars out, print them or whatever. | |
|   This function is actually the workhorse for everything else. | |
|   The buffer you pass in must hold at least RR_SPRINTF_MIN characters. | |
|     // you return the next buffer to use or 0 to stop converting | |
|  | |
| void rrsetseparators( char comma, char period ) | |
|   Set the comma and period characters to use. | |
|  | |
| FLOATS/DOUBLES: | |
| =============== | |
| This code uses a internal float->ascii conversion method that uses | |
| doubles with error correction (double-doubles, for ~105 bits of | |
| precision).  This conversion is round-trip perfect - that is, an atof | |
| of the values output here will give you the bit-exact double back. | |
|  | |
| One difference is that our insignificant digits will be different than  | |
| with MSVC or GCC (but they don't match each other either).  We also  | |
| don't attempt to find the minimum length matching float (pre-MSVC15  | |
| doesn't either). | |
|  | |
| If you don't need float or doubles at all, define RR_SPRINTF_NOFLOAT | |
| and you'll save 4K of code space. | |
|  | |
| 64-BIT INTS: | |
| ============ | |
| This library also supports 64-bit integers and you can use MSVC style or | |
| GCC style indicators (%I64d or %lld).  It supports the C99 specifiers | |
| for size_t and ptr_diff_t (%jd %zd) as well. | |
|  | |
| EXTRAS: | |
| ======= | |
| Like some GCCs, for integers and floats, you can use a ' (single quote) | |
| specifier and commas will be inserted on the thousands: "%'d" on 12345  | |
| would print 12,345. | |
|  | |
| For integers and floats, you can use a "$" specifier and the number  | |
| will be converted to float and then divided to get kilo, mega, giga or | |
| tera and then printed, so "%$d" 1024 is "1.0 k", "%$.2d" 2536000 is  | |
| "2.42 m", etc. | |
|  | |
| In addition to octal and hexadecimal conversions, you can print  | |
| integers in binary: "%b" for 256 would print 100. | |
|  | |
| PERFORMANCE vs MSVC 2008 32-/64-bit (GCC is even slower than MSVC): | |
| =================================================================== | |
| "%d" across all 32-bit ints (4.8x/4.0x faster than 32-/64-bit MSVC) | |
| "%24d" across all 32-bit ints (4.5x/4.2x faster) | |
| "%x" across all 32-bit ints (4.5x/3.8x faster) | |
| "%08x" across all 32-bit ints (4.3x/3.8x faster) | |
| "%f" across e-10 to e+10 floats (7.3x/6.0x faster) | |
| "%e" across e-10 to e+10 floats (8.1x/6.0x faster) | |
| "%g" across e-10 to e+10 floats (10.0x/7.1x faster) | |
| "%f" for values near e-300 (7.9x/6.5x faster) | |
| "%f" for values near e+300 (10.0x/9.1x faster) | |
| "%e" for values near e-300 (10.1x/7.0x faster) | |
| "%e" for values near e+300 (9.2x/6.0x faster) | |
| "%.320f" for values near e-300 (12.6x/11.2x faster) | |
| "%a" for random values (8.6x/4.3x faster) | |
| "%I64d" for 64-bits with 32-bit values (4.8x/3.4x faster) | |
| "%I64d" for 64-bits > 32-bit values (4.9x/5.5x faster) | |
| "%s%s%s" for 64 char strings (7.1x/7.3x faster) | |
| "...512 char string..." ( 35.0x/32.5x faster!) | |
| */ | |
| 
 | |
| #ifdef RR_SPRINTF_STATIC | |
| #define RRPUBLIC_DEC static | |
| #define RRPUBLIC_DEF static | |
| #else | |
| #ifdef __cplusplus | |
| #define RRPUBLIC_DEC extern "C" | |
| #define RRPUBLIC_DEF extern "C" | |
| #else | |
| #define RRPUBLIC_DEC extern  | |
| #define RRPUBLIC_DEF | |
| #endif | |
| #endif | |
|  | |
| #include <stdarg.h>  // for va_list() | |
|  | |
| #ifndef RR_SPRINTF_MIN | |
| #define RR_SPRINTF_MIN 512 // how many characters per callback | |
| #endif | |
| typedef char * RRSPRINTFCB( char * buf, void * user, int len ); | |
| 
 | |
| #ifndef RR_SPRINTF_DECORATE | |
| #define RR_SPRINTF_DECORATE(name) rr##name  // define this before including if you want to change the names | |
| #endif | |
|  | |
| #ifndef RR_SPRINTF_IMPLEMENTATION | |
|  | |
| RRPUBLIC_DEF int RR_SPRINTF_DECORATE( vsprintf )( char * buf, char const * fmt, va_list va ); | |
| RRPUBLIC_DEF int RR_SPRINTF_DECORATE( vsnprintf )( char * buf, int count, char const * fmt, va_list va ); | |
| RRPUBLIC_DEF int RR_SPRINTF_DECORATE( sprintf ) ( char * buf, char const * fmt, ... ); | |
| RRPUBLIC_DEF int RR_SPRINTF_DECORATE( snprintf )( char * buf, int count, char const * fmt, ... ); | |
| 
 | |
| RRPUBLIC_DEF int RR_SPRINTF_DECORATE( vsprintfcb )( RRSPRINTFCB * callback, void * user, char * buf, char const * fmt, va_list va ); | |
| RRPUBLIC_DEF void RR_SPRINTF_DECORATE( setseparators )( char comma, char period ); | |
| 
 | |
| #else | |
|  | |
| #include <stdlib.h>  // for va_arg() | |
|  | |
| #define rU32 unsigned int | |
| #define rS32 signed int | |
|  | |
| #ifdef _MSC_VER | |
| #define rU64 unsigned __int64 | |
| #define rS64 signed __int64 | |
| #else | |
| #define rU64 unsigned long long | |
| #define rS64 signed long long | |
| #endif | |
| #define rU16 unsigned short | |
|  | |
| #ifndef rUINTa  | |
| #if defined(__ppc64__) || defined(__aarch64__) || defined(_M_X64) || defined(__x86_64__) || defined(__x86_64) | |
| #define rUINTa rU64 | |
| #else | |
| #define rUINTa rU32 | |
| #endif | |
| #endif | |
|  | |
| #ifndef RR_SPRINTF_MSVC_MODE  // used for MSVC2013 and earlier (MSVC2015 matches GCC) | |
| #if defined(_MSC_VER) && (_MSC_VER<1900) | |
| #define RR_SPRINTF_MSVC_MODE | |
| #endif | |
| #endif | |
|  | |
| #ifdef RR_SPRINTF_NOUNALIGNED  // define this before inclusion to force rrsprint to always use aligned accesses | |
| #define RR_UNALIGNED(code) | |
| #else | |
| #define RR_UNALIGNED(code) code | |
| #endif | |
|  | |
| #ifndef RR_SPRINTF_NOFLOAT | |
| // internal float utility functions | |
| static rS32 rrreal_to_str( char const * * start, rU32 * len, char *out, rS32 * decimal_pos, double value, rU32 frac_digits ); | |
| static rS32 rrreal_to_parts( rS64 * bits, rS32 * expo, double value ); | |
| #define RRSPECIAL 0x7000 | |
| #endif | |
|  | |
| static char RRperiod='.'; | |
| static char RRcomma=','; | |
| static char rrdiglookup[201]="00010203040506070809101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899"; | |
| 
 | |
| RRPUBLIC_DEF void RR_SPRINTF_DECORATE( setseparators )( char pcomma, char pperiod ) | |
| { | |
|   RRperiod=pperiod; | |
|   RRcomma=pcomma; | |
| } | |
| 
 | |
| RRPUBLIC_DEF int RR_SPRINTF_DECORATE( vsprintfcb )( RRSPRINTFCB * callback, void * user, char * buf, char const * fmt, va_list va ) | |
| { | |
|   static char hex[]="0123456789abcdefxp"; | |
|   static char hexu[]="0123456789ABCDEFXP"; | |
|   char * bf; | |
|   char const * f; | |
|   int tlen = 0; | |
| 
 | |
|   bf = buf; | |
|   f = fmt; | |
|   for(;;) | |
|   { | |
|     rS32 fw,pr,tz; rU32 fl; | |
| 
 | |
|     #define LJ 1 | |
|     #define LP 2 | |
|     #define LS 4 | |
|     #define LX 8 | |
|     #define LZ 16 | |
|     #define BI 32 | |
|     #define CS 64 | |
|     #define NG 128 | |
|     #define KI 256 | |
|     #define HW 512 | |
|   | |
|     // macros for the callback buffer stuff | |
|     #define chk_cb_bufL(bytes) { int len = (int)(bf-buf); if ((len+(bytes))>=RR_SPRINTF_MIN) { tlen+=len; if (0==(bf=buf=callback(buf,user,len))) goto done; } } | |
|     #define chk_cb_buf(bytes) { if ( callback ) { chk_cb_bufL(bytes); } } | |
|     #define flush_cb() { chk_cb_bufL(RR_SPRINTF_MIN-1); } //flush if there is even one byte in the buffer | |
|     #define cb_buf_clamp(cl,v) cl = v; if ( callback ) { int lg = RR_SPRINTF_MIN-(int)(bf-buf); if (cl>lg) cl=lg; } | |
|  | |
|     // fast copy everything up to the next % (or end of string) | |
|     for(;;) | |
|     {  | |
|       while (((rUINTa)f)&3) | |
|       { | |
|        schk1: if (f[0]=='%') goto scandd; | |
|        schk2: if (f[0]==0) goto endfmt; | |
|         chk_cb_buf(1); *bf++=f[0]; ++f; | |
|       }  | |
|       for(;;) | |
|       {  | |
|         rU32 v,c; | |
|         v=*(rU32*)f; c=(~v)&0x80808080; | |
|         if ((v-0x26262626)&c) goto schk1;  | |
|         if ((v-0x01010101)&c) goto schk2;  | |
|         if (callback) if ((RR_SPRINTF_MIN-(int)(bf-buf))<4) goto schk1; | |
|         *(rU32*)bf=v; bf+=4; f+=4; | |
|       } | |
|     } scandd: | |
| 
 | |
|     ++f; | |
| 
 | |
|     // ok, we have a percent, read the modifiers first | |
|     fw = 0; pr = -1; fl = 0; tz = 0; | |
|      | |
|     // flags | |
|     for(;;) | |
|     { | |
|       switch(f[0]) | |
|       { | |
|         // if we have left just | |
|         case '-': fl|=LJ; ++f; continue; | |
|         // if we have leading plus | |
|         case '+': fl|=LP; ++f; continue;  | |
|         // if we have leading space | |
|         case ' ': fl|=LS; ++f; continue;  | |
|         // if we have leading 0x | |
|         case '#': fl|=LX; ++f; continue;  | |
|         // if we have thousand commas | |
|         case '\'': fl|=CS; ++f; continue;  | |
|         // if we have kilo marker | |
|         case '$': fl|=KI; ++f; continue;  | |
|         // if we have leading zero | |
|         case '0': fl|=LZ; ++f; goto flags_done;  | |
|         default: goto flags_done; | |
|       } | |
|     } | |
|     flags_done: | |
|     | |
|     // get the field width | |
|     if ( f[0] == '*' ) {fw = va_arg(va,rU32); ++f;} else { while (( f[0] >= '0' ) && ( f[0] <= '9' )) { fw = fw * 10 + f[0] - '0'; f++; } } | |
|     // get the precision | |
|     if ( f[0]=='.' ) { ++f; if ( f[0] == '*' ) {pr = va_arg(va,rU32); ++f;} else { pr = 0; while (( f[0] >= '0' ) && ( f[0] <= '9' )) { pr = pr * 10 + f[0] - '0'; f++; } } }  | |
|      | |
|     // handle integer size overrides | |
|     switch(f[0]) | |
|     { | |
|       // are we halfwidth? | |
|       case 'h': fl|=HW; ++f; break; | |
|       // are we 64-bit (unix style) | |
|       case 'l': ++f; if ( f[0]=='l') { fl|=BI; ++f; } break; | |
|       // are we 64-bit on intmax? (c99) | |
|       case 'j': fl|=BI; ++f; break;  | |
|       // are we 64-bit on size_t or ptrdiff_t? (c99) | |
|       case 'z': case 't': fl|=((sizeof(char*)==8)?BI:0); ++f; break;  | |
|       // are we 64-bit (msft style) | |
|       case 'I': if ( ( f[1]=='6') && ( f[2]=='4') ) { fl|=BI; f+=3; } else if ( ( f[1]=='3') && ( f[2]=='2') ) { f+=3; } else { fl|=((sizeof(void*)==8)?BI:0); ++f; } break; | |
|       default: break; | |
|     } | |
| 
 | |
|     // handle each replacement | |
|     switch( f[0] ) | |
|     { | |
|       #define NUMSZ 512 // big enough for e308 (with commas) or e-307  | |
|       char num[NUMSZ];  | |
|       char lead[8];  | |
|       char tail[8];  | |
|       char *s; | |
|       char const *h; | |
|       rU32 l,n,cs; | |
|       rU64 n64; | |
|       #ifndef RR_SPRINTF_NOFLOAT       | |
|       double fv;  | |
|       #endif | |
|       rS32 dp; char const * sn; | |
| 
 | |
|       case 's': | |
|         // get the string | |
|         s = va_arg(va,char*); if (s==0) s = (char*)"null"; | |
|         // get the length | |
|         sn = s; | |
|         for(;;) | |
|         {  | |
|           if ((((rUINTa)sn)&3)==0) break; | |
|          lchk: | |
|           if (sn[0]==0) goto ld; | |
|           ++sn; | |
|         } | |
|         n = 0xffffffff; | |
|         if (pr>=0) { n=(rU32)(sn-s); if (n>=(rU32)pr) goto ld; n=((rU32)(pr-n))>>2; } | |
|         while(n)  | |
|         {  | |
|           rU32 v=*(rU32*)sn; | |
|           if ((v-0x01010101)&(~v)&0x80808080UL) goto lchk;  | |
|           sn+=4;  | |
|           --n; | |
|         } | |
|         goto lchk; | |
|        ld: | |
| 
 | |
|         l = (rU32) ( sn - s ); | |
|         // clamp to precision | |
|         if ( l > (rU32)pr ) l = pr; | |
|         lead[0]=0; tail[0]=0; pr = 0; dp = 0; cs = 0; | |
|         // copy the string in | |
|         goto scopy; | |
| 
 | |
|       case 'c': // char | |
|         // get the character | |
|         s = num + NUMSZ -1; *s = (char)va_arg(va,int); | |
|         l = 1; | |
|         lead[0]=0; tail[0]=0; pr = 0; dp = 0; cs = 0; | |
|         goto scopy; | |
| 
 | |
|       case 'n': // weird write-bytes specifier | |
|         { int * d = va_arg(va,int*); | |
|         *d = tlen + (int)( bf - buf ); } | |
|         break; | |
| 
 | |
| #ifdef RR_SPRINTF_NOFLOAT | |
|       case 'A': // float | |
|       case 'a': // hex float | |
|       case 'G': // float | |
|       case 'g': // float | |
|       case 'E': // float | |
|       case 'e': // float | |
|       case 'f': // float | |
|         va_arg(va,double); // eat it | |
|         s = (char*)"No float"; | |
|         l = 8; | |
|         lead[0]=0; tail[0]=0; pr = 0; dp = 0; cs = 0; | |
|         goto scopy; | |
| #else | |
|       case 'A': // float | |
|         h=hexu;   | |
|         goto hexfloat; | |
| 
 | |
|       case 'a': // hex float | |
|         h=hex; | |
|        hexfloat:  | |
|         fv = va_arg(va,double); | |
|         if (pr==-1) pr=6; // default is 6 | |
|         // read the double into a string | |
|         if ( rrreal_to_parts( (rS64*)&n64, &dp, fv ) ) | |
|           fl |= NG; | |
|    | |
|         s = num+64; | |
| 
 | |
|         // sign | |
|         lead[0]=0; if (fl&NG) { lead[0]=1; lead[1]='-'; } else if (fl&LS) { lead[0]=1; lead[1]=' '; } else if (fl&LP) { lead[0]=1; lead[1]='+'; }; | |
| 
 | |
|         if (dp==-1023) dp=(n64)?-1022:0; else n64|=(((rU64)1)<<52); | |
|         n64<<=(64-56); | |
|         if (pr<15) n64+=((((rU64)8)<<56)>>(pr*4)); | |
|         // add leading chars | |
|          | |
|         #ifdef RR_SPRINTF_MSVC_MODE | |
|         *s++='0';*s++='x'; | |
|         #else | |
|         lead[1+lead[0]]='0'; lead[2+lead[0]]='x'; lead[0]+=2; | |
|         #endif | |
|         *s++=h[(n64>>60)&15]; n64<<=4; | |
|         if ( pr ) *s++=RRperiod; | |
|         sn = s; | |
| 
 | |
|         // print the bits | |
|         n = pr; if (n>13) n = 13; if (pr>(rS32)n) tz=pr-n; pr = 0; | |
|         while(n--) { *s++=h[(n64>>60)&15]; n64<<=4; } | |
| 
 | |
|         // print the expo | |
|         tail[1]=h[17]; | |
|         if (dp<0) { tail[2]='-'; dp=-dp;} else tail[2]='+'; | |
|         n = (dp>=1000)?6:((dp>=100)?5:((dp>=10)?4:3)); | |
|         tail[0]=(char)n; | |
|         for(;;) { tail[n]='0'+dp%10; if (n<=3) break; --n; dp/=10; } | |
| 
 | |
|         dp = (int)(s-sn); | |
|         l = (int)(s-(num+64)); | |
|         s = num+64; | |
|         cs = 1 + (3<<24); | |
|         goto scopy; | |
| 
 | |
|       case 'G': // float | |
|         h=hexu; | |
|         goto dosmallfloat; | |
| 
 | |
|       case 'g': // float | |
|         h=hex; | |
|        dosmallfloat:    | |
|         fv = va_arg(va,double); | |
|         if (pr==-1) pr=6; else if (pr==0) pr = 1; // default is 6 | |
|         // read the double into a string | |
|         if ( rrreal_to_str( &sn, &l, num, &dp, fv, (pr-1)|0x80000000 ) ) | |
|           fl |= NG; | |
| 
 | |
|         // clamp the precision and delete extra zeros after clamp | |
|         n = pr; | |
|         if ( l > (rU32)pr ) l = pr; while ((l>1)&&(pr)&&(sn[l-1]=='0')) { --pr; --l; } | |
| 
 | |
|         // should we use %e | |
|         if ((dp<=-4)||(dp>(rS32)n)) | |
|         { | |
|           if ( pr > (rS32)l ) pr = l-1; else if ( pr ) --pr; // when using %e, there is one digit before the decimal | |
|           goto doexpfromg; | |
|         } | |
|         // this is the insane action to get the pr to match %g sematics for %f | |
|         if(dp>0) { pr=(dp<(rS32)l)?l-dp:0; } else { pr = -dp+((pr>(rS32)l)?l:pr); } | |
|         goto dofloatfromg; | |
| 
 | |
|       case 'E': // float | |
|         h=hexu;   | |
|         goto doexp; | |
| 
 | |
|       case 'e': // float | |
|         h=hex; | |
|        doexp:    | |
|         fv = va_arg(va,double); | |
|         if (pr==-1) pr=6; // default is 6 | |
|         // read the double into a string | |
|         if ( rrreal_to_str( &sn, &l, num, &dp, fv, pr|0x80000000 ) ) | |
|           fl |= NG; | |
|        doexpfromg:  | |
|         tail[0]=0;  | |
|         lead[0]=0; if (fl&NG) { lead[0]=1; lead[1]='-'; } else if (fl&LS) { lead[0]=1; lead[1]=' '; } else if (fl&LP) { lead[0]=1; lead[1]='+'; }; | |
|         if ( dp == RRSPECIAL ) { s=(char*)sn; cs=0; pr=0; goto scopy; } | |
|         s=num+64;  | |
|         // handle leading chars | |
|         *s++=sn[0]; | |
| 
 | |
|         if (pr) *s++=RRperiod; | |
| 
 | |
|         // handle after decimal | |
|         if ((l-1)>(rU32)pr) l=pr+1; | |
|         for(n=1;n<l;n++) *s++=sn[n]; | |
|         // trailing zeros | |
|         tz = pr-(l-1); pr=0; | |
|         // dump expo | |
|         tail[1]=h[0xe]; | |
|         dp -= 1; | |
|         if (dp<0) { tail[2]='-'; dp=-dp;} else tail[2]='+'; | |
|         #ifdef RR_SPRINTF_MSVC_MODE | |
|         n = 5; | |
|         #else | |
|         n = (dp>=100)?5:4; | |
|         #endif | |
|         tail[0]=(char)n; | |
|         for(;;) { tail[n]='0'+dp%10; if (n<=3) break; --n; dp/=10; } | |
|         cs = 1 + (3<<24); // how many tens | |
|         goto flt_lead;    | |
| 
 | |
|       case 'f': // float | |
|         fv = va_arg(va,double); | |
|        doafloat:  | |
|         // do kilos | |
|         if (fl&KI) {while(fl<0x4000000) { if ((fv<1024.0) && (fv>-1024.0)) break; fv/=1024.0; fl+=0x1000000; }}  | |
|         if (pr==-1) pr=6; // default is 6 | |
|         // read the double into a string | |
|         if ( rrreal_to_str( &sn, &l, num, &dp, fv, pr ) ) | |
|           fl |= NG; | |
|         dofloatfromg: | |
|         tail[0]=0; | |
|         // sign | |
|         lead[0]=0; if (fl&NG) { lead[0]=1; lead[1]='-'; } else if (fl&LS) { lead[0]=1; lead[1]=' '; } else if (fl&LP) { lead[0]=1; lead[1]='+'; }; | |
|         if ( dp == RRSPECIAL ) { s=(char*)sn; cs=0; pr=0; goto scopy; } | |
|         s=num+64;  | |
| 
 | |
|         // handle the three decimal varieties | |
|         if (dp<=0)  | |
|         {  | |
|           rS32 i; | |
|           // handle 0.000*000xxxx | |
|           *s++='0'; if (pr) *s++=RRperiod;  | |
|           n=-dp; if((rS32)n>pr) n=pr; i=n; while(i) { if ((((rUINTa)s)&3)==0) break; *s++='0'; --i; } while(i>=4) { *(rU32*)s=0x30303030; s+=4; i-=4; } while(i) { *s++='0'; --i; } | |
|           if ((rS32)(l+n)>pr) l=pr-n; i=l; while(i) { *s++=*sn++; --i; } | |
|           tz = pr-(n+l); | |
|           cs = 1 + (3<<24); // how many tens did we write (for commas below) | |
|         } | |
|         else | |
|         { | |
|           cs = (fl&CS)?((600-(rU32)dp)%3):0; | |
|           if ((rU32)dp>=l) | |
|           { | |
|             // handle xxxx000*000.0 | |
|             n=0; for(;;) { if ((fl&CS) && (++cs==4)) { cs = 0; *s++=RRcomma; } else { *s++=sn[n]; ++n; if (n>=l) break; } } | |
|             if (n<(rU32)dp) | |
|             { | |
|               n = dp - n; | |
|               if ((fl&CS)==0) { while(n) { if ((((rUINTa)s)&3)==0) break; *s++='0'; --n; }  while(n>=4) { *(rU32*)s=0x30303030; s+=4; n-=4; } } | |
|               while(n) { if ((fl&CS) && (++cs==4)) { cs = 0; *s++=RRcomma; } else { *s++='0'; --n; } } | |
|             } | |
|             cs = (int)(s-(num+64)) + (3<<24); // cs is how many tens | |
|             if (pr) { *s++=RRperiod; tz=pr;} | |
|           } | |
|           else | |
|           { | |
|             // handle xxxxx.xxxx000*000 | |
|             n=0; for(;;) { if ((fl&CS) && (++cs==4)) { cs = 0; *s++=RRcomma; } else { *s++=sn[n]; ++n; if (n>=(rU32)dp) break; } } | |
|             cs = (int)(s-(num+64)) + (3<<24); // cs is how many tens | |
|             if (pr) *s++=RRperiod; | |
|             if ((l-dp)>(rU32)pr) l=pr+dp; | |
|             while(n<l) { *s++=sn[n]; ++n; } | |
|             tz = pr-(l-dp); | |
|           } | |
|         } | |
|         pr = 0; | |
|          | |
|         // handle k,m,g,t | |
|         if (fl&KI) { tail[0]=1; tail[1]=' '; { if (fl>>24) { tail[2]="_kmgt"[fl>>24]; tail[0]=2; } } }; | |
| 
 | |
|         flt_lead: | |
|         // get the length that we copied | |
|         l = (rU32) ( s-(num+64) ); | |
|         s=num+64;  | |
|         goto scopy; | |
| #endif | |
|  | |
|       case 'B': // upper binary | |
|         h = hexu; | |
|         goto binary; | |
| 
 | |
|       case 'b': // lower binary | |
|         h = hex; | |
|         binary: | |
|         lead[0]=0; | |
|         if (fl&LX) { lead[0]=2;lead[1]='0';lead[2]=h[0xb]; } | |
|         l=(8<<4)|(1<<8); | |
|         goto radixnum; | |
| 
 | |
|       case 'o': // octal | |
|         h = hexu; | |
|         lead[0]=0; | |
|         if (fl&LX) { lead[0]=1;lead[1]='0'; } | |
|         l=(3<<4)|(3<<8); | |
|         goto radixnum; | |
| 
 | |
|       case 'p': // pointer | |
|         fl |= (sizeof(void*)==8)?BI:0; | |
|         pr = sizeof(void*)*2; | |
|         fl &= ~LZ; // 'p' only prints the pointer with zeros | |
|         // drop through to X | |
|        | |
|       case 'X': // upper binary | |
|         h = hexu; | |
|         goto dohexb; | |
| 
 | |
|       case 'x': // lower binary | |
|         h = hex; dohexb: | |
|         l=(4<<4)|(4<<8); | |
|         lead[0]=0; | |
|         if (fl&LX) { lead[0]=2;lead[1]='0';lead[2]=h[16]; } | |
|        radixnum:  | |
|         // get the number | |
|         if ( fl&BI ) | |
|           n64 = va_arg(va,rU64); | |
|         else | |
|           n64 = va_arg(va,rU32); | |
| 
 | |
|         s = num + NUMSZ; dp = 0; | |
|         // clear tail, and clear leading if value is zero | |
|         tail[0]=0; if (n64==0) { lead[0]=0; if (pr==0) { l=0; cs = ( ((l>>4)&15)) << 24; goto scopy; } } | |
|         // convert to string | |
|         for(;;) { *--s = h[n64&((1<<(l>>8))-1)]; n64>>=(l>>8); if ( ! ( (n64) || ((rS32) ( (num+NUMSZ) - s ) < pr ) ) ) break; if ( fl&CS) { ++l; if ((l&15)==((l>>4)&15)) { l&=~15; *--s=RRcomma; } } }; | |
|         // get the tens and the comma pos | |
|         cs = (rU32) ( (num+NUMSZ) - s ) + ( ( ((l>>4)&15)) << 24 ); | |
|         // get the length that we copied | |
|         l = (rU32) ( (num+NUMSZ) - s ); | |
|         // copy it | |
|         goto scopy; | |
| 
 | |
|       case 'u': // unsigned | |
|       case 'i': | |
|       case 'd': // integer | |
|         // get the integer and abs it | |
|         if ( fl&BI ) | |
|         { | |
|           rS64 i64 = va_arg(va,rS64); n64 = (rU64)i64; if ((f[0]!='u') && (i64<0)) { n64=(rU64)-i64; fl|=NG; } | |
|         } | |
|         else | |
|         { | |
|           rS32 i = va_arg(va,rS32); n64 = (rU32)i; if ((f[0]!='u') && (i<0)) { n64=(rU32)-i; fl|=NG; } | |
|         } | |
| 
 | |
|         #ifndef RR_SPRINTF_NOFLOAT | |
|         if (fl&KI) { if (n64<1024) pr=0; else if (pr==-1) pr=1; fv=(double)(rS64)n64; goto doafloat; }  | |
|         #endif | |
| 
 | |
|         // convert to string | |
|         s = num+NUMSZ; l=0;  | |
|          | |
|         for(;;) | |
|         { | |
|           // do in 32-bit chunks (avoid lots of 64-bit divides even with constant denominators) | |
|           char * o=s-8; | |
|           if (n64>=100000000) { n = (rU32)( n64 % 100000000);  n64 /= 100000000; } else {n = (rU32)n64; n64 = 0; } | |
|           if((fl&CS)==0) { while(n) { s-=2; *(rU16*)s=*(rU16*)&rrdiglookup[(n%100)*2]; n/=100; } } | |
|           while (n) { if ( ( fl&CS) && (l++==3) ) { l=0; *--s=RRcomma; --o; } else { *--s=(char)(n%10)+'0'; n/=10; } } | |
|           if (n64==0) { if ((s[0]=='0') && (s!=(num+NUMSZ))) ++s; break; } | |
|           while (s!=o) if ( ( fl&CS) && (l++==3) ) { l=0; *--s=RRcomma; --o; } else { *--s='0'; } | |
|         } | |
| 
 | |
|         tail[0]=0; | |
|         // sign | |
|         lead[0]=0; if (fl&NG) { lead[0]=1; lead[1]='-'; } else if (fl&LS) { lead[0]=1; lead[1]=' '; } else if (fl&LP) { lead[0]=1; lead[1]='+'; }; | |
| 
 | |
|         // get the length that we copied | |
|         l = (rU32) ( (num+NUMSZ) - s ); if ( l == 0 ) { *--s='0'; l = 1; } | |
|         cs = l + (3<<24); | |
|         if (pr<0) pr = 0; | |
| 
 | |
|        scopy:  | |
|         // get fw=leading/trailing space, pr=leading zeros | |
|         if (pr<(rS32)l) pr = l; | |
|         n = pr + lead[0] + tail[0] + tz; | |
|         if (fw<(rS32)n) fw = n; | |
|         fw -= n; | |
|         pr -= l; | |
| 
 | |
|         // handle right justify and leading zeros | |
|         if ( (fl&LJ)==0 ) | |
|         { | |
|           if (fl&LZ) // if leading zeros, everything is in pr | |
|           {  | |
|             pr = (fw>pr)?fw:pr; | |
|             fw = 0; | |
|           } | |
|           else | |
|           { | |
|             fl &= ~CS; // if no leading zeros, then no commas | |
|           } | |
|         } | |
| 
 | |
|         // copy the spaces and/or zeros | |
|         if (fw+pr) | |
|         { | |
|           rS32 i; rU32 c;  | |
| 
 | |
|           // copy leading spaces (or when doing %8.4d stuff) | |
|           if ( (fl&LJ)==0 ) while(fw>0) { cb_buf_clamp(i,fw); fw -= i; while(i) { if ((((rUINTa)bf)&3)==0) break; *bf++=' '; --i; } while(i>=4) { *(rU32*)bf=0x20202020; bf+=4; i-=4; } while (i) {*bf++=' '; --i;} chk_cb_buf(1); } | |
|          | |
|           // copy leader | |
|           sn=lead+1; while(lead[0]) { cb_buf_clamp(i,lead[0]); lead[0] -= (char)i; while (i) {*bf++=*sn++; --i;} chk_cb_buf(1); } | |
|            | |
|           // copy leading zeros | |
|           c = cs >> 24; cs &= 0xffffff; | |
|           cs = (fl&CS)?((rU32)(c-((pr+cs)%(c+1)))):0; | |
|           while(pr>0) { cb_buf_clamp(i,pr); pr -= i; if((fl&CS)==0) { while(i) { if ((((rUINTa)bf)&3)==0) break; *bf++='0'; --i; } while(i>=4) { *(rU32*)bf=0x30303030; bf+=4; i-=4; } } while (i) { if((fl&CS) && (cs++==c)) { cs = 0; *bf++=RRcomma; } else *bf++='0'; --i; } chk_cb_buf(1); } | |
|         } | |
| 
 | |
|         // copy leader if there is still one | |
|         sn=lead+1; while(lead[0]) { rS32 i; cb_buf_clamp(i,lead[0]); lead[0] -= (char)i; while (i) {*bf++=*sn++; --i;} chk_cb_buf(1); } | |
| 
 | |
|         // copy the string | |
|         n = l; while (n) { rS32 i; cb_buf_clamp(i,n); n-=i; RR_UNALIGNED( while(i>=4) { *(rU32*)bf=*(rU32*)s; bf+=4; s+=4; i-=4; } ) while (i) {*bf++=*s++; --i;} chk_cb_buf(1); } | |
| 
 | |
|         // copy trailing zeros | |
|         while(tz) { rS32 i; cb_buf_clamp(i,tz); tz -= i; while(i) { if ((((rUINTa)bf)&3)==0) break; *bf++='0'; --i; } while(i>=4) { *(rU32*)bf=0x30303030; bf+=4; i-=4; } while (i) {*bf++='0'; --i;} chk_cb_buf(1); } | |
| 
 | |
|         // copy tail if there is one | |
|         sn=tail+1; while(tail[0]) { rS32 i; cb_buf_clamp(i,tail[0]); tail[0] -= (char)i; while (i) {*bf++=*sn++; --i;} chk_cb_buf(1); } | |
| 
 | |
|         // handle the left justify | |
|         if (fl&LJ) if (fw>0) { while (fw) { rS32 i; cb_buf_clamp(i,fw); fw-=i; while(i) { if ((((rUINTa)bf)&3)==0) break; *bf++=' '; --i; } while(i>=4) { *(rU32*)bf=0x20202020; bf+=4; i-=4; } while (i--) *bf++=' '; chk_cb_buf(1); } } | |
|         break; | |
| 
 | |
|       default: // unknown, just copy code | |
|         s = num + NUMSZ -1; *s = f[0]; | |
|         l = 1; | |
|         fw=pr=fl=0; | |
|         lead[0]=0; tail[0]=0; pr = 0; dp = 0; cs = 0; | |
|         goto scopy; | |
|     } | |
|     ++f; | |
|   } | |
|  endfmt: | |
| 
 | |
|   if (!callback)  | |
|     *bf = 0; | |
|   else | |
|     flush_cb(); | |
|   | |
|  done: | |
|   return tlen + (int)(bf-buf); | |
| } | |
| 
 | |
| // cleanup | |
| #undef LJ | |
| #undef LP | |
| #undef LS | |
| #undef LX | |
| #undef LZ | |
| #undef BI | |
| #undef CS | |
| #undef NG | |
| #undef KI | |
| #undef NUMSZ | |
| #undef chk_cb_bufL | |
| #undef chk_cb_buf | |
| #undef flush_cb | |
| #undef cb_buf_clamp | |
|  | |
| // ============================================================================ | |
| //   wrapper functions | |
|  | |
| RRPUBLIC_DEF int RR_SPRINTF_DECORATE( sprintf )( char * buf, char const * fmt, ... ) | |
| { | |
|   va_list va; | |
|   va_start( va, fmt ); | |
|   return RR_SPRINTF_DECORATE( vsprintfcb )( 0, 0, buf, fmt, va ); | |
| } | |
| 
 | |
| typedef struct RRCCS | |
| { | |
|   char * buf; | |
|   int count; | |
|   char tmp[ RR_SPRINTF_MIN ]; | |
| } RRCCS; | |
| 
 | |
| static char * rrclampcallback( char * buf, void * user, int len ) | |
| { | |
|   RRCCS * c = (RRCCS*)user; | |
| 
 | |
|   if ( len > c->count ) len = c->count; | |
| 
 | |
|   if (len) | |
|   { | |
|     if ( buf != c->buf ) | |
|     { | |
|       char * s, * d, * se; | |
|       d = c->buf; s = buf; se = buf+len; | |
|       do{ *d++ = *s++; } while (s<se); | |
|     } | |
|     c->buf += len; | |
|     c->count -= len; | |
|   } | |
|    | |
|   if ( c->count <= 0 ) return 0; | |
|   return ( c->count >= RR_SPRINTF_MIN ) ? c->buf : c->tmp; // go direct into buffer if you can | |
| } | |
| 
 | |
| RRPUBLIC_DEF int RR_SPRINTF_DECORATE( vsnprintf )( char * buf, int count, char const * fmt, va_list va ) | |
| { | |
|   RRCCS c; | |
|   int l; | |
| 
 | |
|   if ( count == 0 ) | |
|     return 0; | |
| 
 | |
|   c.buf = buf; | |
|   c.count = count; | |
| 
 | |
|   RR_SPRINTF_DECORATE( vsprintfcb )( rrclampcallback, &c, rrclampcallback(0,&c,0), fmt, va ); | |
|    | |
|   // zero-terminate | |
|   l = (int)( c.buf - buf ); | |
|   if ( l >= count ) // should never be greater, only equal (or less) than count | |
|     l = count - 1; | |
|   buf[l] = 0; | |
| 
 | |
|   return l; | |
| } | |
| 
 | |
| RRPUBLIC_DEF int RR_SPRINTF_DECORATE( snprintf )( char * buf, int count, char const * fmt, ... ) | |
| { | |
|   va_list va; | |
|   va_start( va, fmt ); | |
| 
 | |
|   return RR_SPRINTF_DECORATE( vsnprintf )( buf, count, fmt, va ); | |
| } | |
| 
 | |
| RRPUBLIC_DEF int RR_SPRINTF_DECORATE( vsprintf )( char * buf, char const * fmt, va_list va ) | |
| { | |
|   return RR_SPRINTF_DECORATE( vsprintfcb )( 0, 0, buf, fmt, va ); | |
| } | |
| 
 | |
| // ======================================================================= | |
| //   low level float utility functions | |
|  | |
| #ifndef RR_SPRINTF_NOFLOAT | |
|  | |
|  // copies d to bits w/ strict aliasing (this compiles to nothing on /Ox) | |
|  #define RRCOPYFP(dest,src) { int cn; for(cn=0;cn<8;cn++) ((char*)&dest)[cn]=((char*)&src)[cn]; } | |
|   | |
| // get float info | |
| static rS32 rrreal_to_parts( rS64 * bits, rS32 * expo, double value ) | |
| { | |
|   double d; | |
|   rS64 b = 0; | |
| 
 | |
|   // load value and round at the frac_digits | |
|   d = value; | |
| 
 | |
|   RRCOPYFP( b, d ); | |
| 
 | |
|   *bits = b & ((((rU64)1)<<52)-1); | |
|   *expo = ((b >> 52) & 2047)-1023; | |
|      | |
|   return (rS32)(b >> 63); | |
| } | |
| 
 | |
| static double const rrbot[23]={1e+000,1e+001,1e+002,1e+003,1e+004,1e+005,1e+006,1e+007,1e+008,1e+009,1e+010,1e+011,1e+012,1e+013,1e+014,1e+015,1e+016,1e+017,1e+018,1e+019,1e+020,1e+021,1e+022}; | |
| static double const rrnegbot[22]={1e-001,1e-002,1e-003,1e-004,1e-005,1e-006,1e-007,1e-008,1e-009,1e-010,1e-011,1e-012,1e-013,1e-014,1e-015,1e-016,1e-017,1e-018,1e-019,1e-020,1e-021,1e-022}; | |
| static double const rrnegboterr[22]={-5.551115123125783e-018,-2.0816681711721684e-019,-2.0816681711721686e-020,-4.7921736023859299e-021,-8.1803053914031305e-022,4.5251888174113741e-023,4.5251888174113739e-024,-2.0922560830128471e-025,-6.2281591457779853e-026,-3.6432197315497743e-027,6.0503030718060191e-028,2.0113352370744385e-029,-3.0373745563400371e-030,1.1806906454401013e-032,-7.7705399876661076e-032,2.0902213275965398e-033,-7.1542424054621921e-034,-7.1542424054621926e-035,2.4754073164739869e-036,5.4846728545790429e-037,9.2462547772103625e-038,-4.8596774326570872e-039}; | |
| static double const rrtop[13]={1e+023,1e+046,1e+069,1e+092,1e+115,1e+138,1e+161,1e+184,1e+207,1e+230,1e+253,1e+276,1e+299}; | |
| static double const rrnegtop[13]={1e-023,1e-046,1e-069,1e-092,1e-115,1e-138,1e-161,1e-184,1e-207,1e-230,1e-253,1e-276,1e-299}; | |
| static double const rrtoperr[13]={8388608,6.8601809640529717e+028,-7.253143638152921e+052,-4.3377296974619174e+075,-1.5559416129466825e+098,-3.2841562489204913e+121,-3.7745893248228135e+144,-1.7356668416969134e+167,-3.8893577551088374e+190,-9.9566444326005119e+213,6.3641293062232429e+236,-5.2069140800249813e+259,-5.2504760255204387e+282}; | |
| static double const rrnegtoperr[13]={3.9565301985100693e-040,-2.299904345391321e-063,3.6506201437945798e-086,1.1875228833981544e-109,-5.0644902316928607e-132,-6.7156837247865426e-155,-2.812077463003139e-178,-5.7778912386589953e-201,7.4997100559334532e-224,-4.6439668915134491e-247,-6.3691100762962136e-270,-9.436808465446358e-293,8.0970921678014997e-317}; | |
| 
 | |
| #if defined(_MSC_VER) && (_MSC_VER<=1200)                                                                                                                                                                                        | |
| static rU64 const rrpot[20]={1,10,100,1000, 10000,100000,1000000,10000000, 100000000,1000000000,10000000000,100000000000,  1000000000000,10000000000000,100000000000000,1000000000000000,  10000000000000000,100000000000000000,1000000000000000000,10000000000000000000U }; | |
| #define rrtento19th ((rU64)1000000000000000000) | |
| #else | |
| static rU64 const rrpot[20]={1,10,100,1000, 10000,100000,1000000,10000000, 100000000,1000000000,10000000000ULL,100000000000ULL,  1000000000000ULL,10000000000000ULL,100000000000000ULL,1000000000000000ULL,  10000000000000000ULL,100000000000000000ULL,1000000000000000000ULL,10000000000000000000ULL }; | |
| #define rrtento19th (1000000000000000000ULL) | |
| #endif | |
|  | |
| #define rrddmulthi(oh,ol,xh,yh) \ | |
| { \ | |
|   double ahi=0,alo,bhi=0,blo; \ | |
|   rS64 bt; \ | |
|   oh = xh * yh; \ | |
|   RRCOPYFP(bt,xh); bt&=((~(rU64)0)<<27); RRCOPYFP(ahi,bt); alo = xh-ahi; \ | |
|   RRCOPYFP(bt,yh); bt&=((~(rU64)0)<<27); RRCOPYFP(bhi,bt); blo = yh-bhi; \ | |
|   ol = ((ahi*bhi-oh)+ahi*blo+alo*bhi)+alo*blo; \ | |
| } | |
|  | |
| #define rrddtoS64(ob,xh,xl) \ | |
| { \ | |
|   double ahi=0,alo,vh,t;\ | |
|   ob = (rS64)ph;\ | |
|   vh=(double)ob;\ | |
|   ahi = ( xh - vh );\ | |
|   t = ( ahi - xh );\ | |
|   alo = (xh-(ahi-t))-(vh+t);\ | |
|   ob += (rS64)(ahi+alo+xl);\ | |
| } | |
|  | |
| 
 | |
| #define rrddrenorm(oh,ol) { double s; s=oh+ol; ol=ol-(s-oh); oh=s; } | |
|  | |
| #define rrddmultlo(oh,ol,xh,xl,yh,yl) \ | |
|   ol = ol + ( xh*yl + xl*yh ); \ | |
|  | |
| #define rrddmultlos(oh,ol,xh,yl) \ | |
|   ol = ol + ( xh*yl ); \ | |
|  | |
| static void rrraise_to_power10( double *ohi, double *olo, double d, rS32 power )  // power can be -323 to +350 | |
| { | |
|   double ph, pl; | |
|   if ((power>=0) && (power<=22)) | |
|   { | |
|     rrddmulthi(ph,pl,d,rrbot[power]); | |
|   } | |
|   else | |
|   { | |
|     rS32 e,et,eb; | |
|     double p2h,p2l; | |
| 
 | |
|     e=power; if (power<0) e=-e;  | |
|     et = (e*0x2c9)>>14;/* %23 */ if (et>13) et=13; eb = e-(et*23); | |
| 
 | |
|     ph = d; pl = 0.0; | |
|     if (power<0) | |
|     { | |
|       if (eb) { --eb; rrddmulthi(ph,pl,d,rrnegbot[eb]); rrddmultlos(ph,pl,d,rrnegboterr[eb]); } | |
|       if (et) | |
|       {  | |
|         rrddrenorm(ph,pl); | |
|         --et; rrddmulthi(p2h,p2l,ph,rrnegtop[et]); rrddmultlo(p2h,p2l,ph,pl,rrnegtop[et],rrnegtoperr[et]); ph=p2h;pl=p2l; | |
|       } | |
|     } | |
|     else | |
|     { | |
|       if (eb)  | |
|       {  | |
|         e = eb; if (eb>22) eb=22; e -= eb; | |
|         rrddmulthi(ph,pl,d,rrbot[eb]);  | |
|         if ( e ) { rrddrenorm(ph,pl); rrddmulthi(p2h,p2l,ph,rrbot[e]); rrddmultlos(p2h,p2l,rrbot[e],pl); ph=p2h;pl=p2l; } | |
|       } | |
|       if (et) | |
|       { | |
|         rrddrenorm(ph,pl); | |
|         --et; rrddmulthi(p2h,p2l,ph,rrtop[et]); rrddmultlo(p2h,p2l,ph,pl,rrtop[et],rrtoperr[et]); ph=p2h;pl=p2l; | |
|       } | |
|     } | |
|   } | |
|   rrddrenorm(ph,pl); | |
|   *ohi = ph; *olo = pl; | |
| } | |
| 
 | |
| // given a float value, returns the significant bits in bits, and the position of the | |
| //   decimal point in decimal_pos.  +/-INF and NAN are specified by special values | |
| //   returned in the decimal_pos parameter. | |
| // frac_digits is absolute normally, but if you want from first significant digits (got %g and %e), or in 0x80000000 | |
| static rS32 rrreal_to_str( char const * * start, rU32 * len, char *out, rS32 * decimal_pos, double value, rU32 frac_digits ) | |
| { | |
|   double d; | |
|   rS64 bits = 0; | |
|   rS32 expo, e, ng, tens; | |
| 
 | |
|   d = value; | |
|   RRCOPYFP(bits,d); | |
|   expo = (bits >> 52) & 2047; | |
|   ng = (rS32)(bits >> 63); | |
|   if (ng) d=-d; | |
| 
 | |
|   if ( expo == 2047 ) // is nan or inf? | |
|   { | |
|     *start = (bits&((((rU64)1)<<52)-1)) ? "NaN" : "Inf"; | |
|     *decimal_pos =  RRSPECIAL; | |
|     *len = 3; | |
|     return ng; | |
|   }  | |
| 
 | |
|   if ( expo == 0 ) // is zero or denormal | |
|   { | |
|     if ((bits<<1)==0) // do zero | |
|     { | |
|       *decimal_pos = 1;  | |
|       *start = out; | |
|       out[0] = '0'; *len = 1; | |
|       return ng; | |
|     } | |
|     // find the right expo for denormals | |
|     { | |
|       rS64 v = ((rU64)1)<<51; | |
|       while ((bits&v)==0) { --expo; v >>= 1; } | |
|     } | |
|   } | |
| 
 | |
|   // find the decimal exponent as well as the decimal bits of the value | |
|   { | |
|     double ph,pl; | |
| 
 | |
|     // log10 estimate - very specifically tweaked to hit or undershoot by no more than 1 of log10 of all expos 1..2046 | |
|     tens=expo-1023; tens = (tens<0)?((tens*617)/2048):(((tens*1233)/4096)+1); | |
| 
 | |
|     // move the significant bits into position and stick them into an int  | |
|     rrraise_to_power10( &ph, &pl, d, 18-tens ); | |
| 
 | |
|     // get full as much precision from double-double as possible | |
|     rrddtoS64( bits, ph,pl ); | |
| 
 | |
|     // check if we undershot | |
|     if ( ((rU64)bits) >= rrtento19th ) ++tens;  | |
|   } | |
| 
 | |
|   // now do the rounding in integer land | |
|   frac_digits = ( frac_digits & 0x80000000 ) ? ( (frac_digits&0x7ffffff) + 1 ) : ( tens + frac_digits ); | |
|   if ( ( frac_digits < 24 ) ) | |
|   { | |
|     rU32 dg = 1; if ((rU64)bits >= rrpot[9] ) dg=10; while( (rU64)bits >= rrpot[dg] ) { ++dg; if (dg==20) goto noround; } | |
|     if ( frac_digits < dg ) | |
|     { | |
|       rU64 r; | |
|       // add 0.5 at the right position and round | |
|       e = dg - frac_digits; | |
|       if ( (rU32)e >= 24 ) goto noround; | |
|       r = rrpot[e]; | |
|       bits = bits + (r/2); | |
|       if ( (rU64)bits >= rrpot[dg] ) ++tens; | |
|       bits /= r; | |
|     }  | |
|     noround:; | |
|   } | |
| 
 | |
|   // kill long trailing runs of zeros | |
|   if ( bits ) | |
|   { | |
|     rU32 n; for(;;) { if ( bits<=0xffffffff ) break; if (bits%1000) goto donez; bits/=1000; } n = (rU32)bits; while ((n%1000)==0) n/=1000; bits=n; donez:; | |
|   } | |
| 
 | |
|   // convert to string | |
|   out += 64; | |
|   e = 0;  | |
|   for(;;) | |
|   { | |
|     rU32 n; | |
|     char * o = out-8; | |
|     // do the conversion in chunks of U32s (avoid most 64-bit divides, worth it, constant denomiators be damned) | |
|     if (bits>=100000000) { n = (rU32)( bits % 100000000);  bits /= 100000000; } else {n = (rU32)bits; bits = 0; } | |
|     while(n) { out-=2; *(rU16*)out=*(rU16*)&rrdiglookup[(n%100)*2]; n/=100; e+=2; } | |
|     if (bits==0) { if ((e) && (out[0]=='0')) { ++out; --e; } break; } | |
|     while( out!=o ) { *--out ='0'; ++e; } | |
|   } | |
|    | |
|   *decimal_pos = tens; | |
|   *start = out; | |
|   *len = e; | |
|   return ng; | |
| } | |
| 
 | |
| #undef rrddmulthi | |
| #undef rrddrenorm | |
| #undef rrddmultlo | |
| #undef rrddmultlos | |
| #undef RRSPECIAL  | |
| #undef RRCOPYFP | |
|   | |
| #endif | |
|  | |
| // clean up | |
| #undef rU16 | |
| #undef rU32  | |
| #undef rS32  | |
| #undef rU64 | |
| #undef rS64 | |
| #undef RRPUBLIC_DEC | |
| #undef RRPUBLIC_DEF | |
| #undef RR_SPRINTF_DECORATE | |
| #undef RR_UNALIGNED | |
|  | |
| #endif | |
|  | |
| #endif
 | |
| 
 |