You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
632 lines
17 KiB
632 lines
17 KiB
#include <assert.h> |
|
#include <stdio.h> |
|
#include <limits.h> |
|
#include <stdlib.h> |
|
|
|
#define FAST_CHUNK // disabling this enables the old, slower path that deblocks into a regular form |
|
|
|
#include "cave_parse.h" |
|
|
|
#include "stb_image.h" |
|
#include "stb.h" |
|
|
|
#define NUM_CHUNKS_PER_REGION 32 // only on one axis |
|
#define NUM_CHUNKS_PER_REGION_LOG2 5 |
|
|
|
#define NUM_COLUMNS_PER_CHUNK 16 |
|
#define NUM_COLUMNS_PER_CHUNK_LOG2 4 |
|
|
|
uint32 read_uint32_be(FILE *f) |
|
{ |
|
unsigned char data[4]; |
|
fread(data, 1, 4, f); |
|
return (data[0]<<24) + (data[1]<<16) + (data[2]<<8) + data[3]; |
|
} |
|
|
|
typedef struct |
|
{ |
|
uint8 *data; |
|
size_t len; |
|
int x,z; // chunk index |
|
int refcount; // for multi-threading |
|
} compressed_chunk; |
|
|
|
typedef struct |
|
{ |
|
int x,z; |
|
uint32 sector_data[NUM_CHUNKS_PER_REGION][NUM_CHUNKS_PER_REGION]; |
|
} region; |
|
|
|
size_t cached_compressed=0; |
|
|
|
FILE *last_region; |
|
int last_region_x; |
|
int last_region_z; |
|
int opened=0; |
|
|
|
static void open_file(int reg_x, int reg_z) |
|
{ |
|
if (!opened || last_region_x != reg_x || last_region_z != reg_z) { |
|
char filename[256]; |
|
if (last_region != NULL) |
|
fclose(last_region); |
|
sprintf(filename, "r.%d.%d.mca", reg_x, reg_z); |
|
last_region = fopen(filename, "rb"); |
|
last_region_x = reg_x; |
|
last_region_z = reg_z; |
|
opened = 1; |
|
} |
|
} |
|
|
|
static region *load_region(int reg_x, int reg_z) |
|
{ |
|
region *r; |
|
int x,z; |
|
|
|
open_file(reg_x, reg_z); |
|
|
|
r = malloc(sizeof(*r)); |
|
|
|
if (last_region == NULL) { |
|
memset(r, 0, sizeof(*r)); |
|
} else { |
|
fseek(last_region, 0, SEEK_SET); |
|
for (z=0; z < NUM_CHUNKS_PER_REGION; ++z) |
|
for (x=0; x < NUM_CHUNKS_PER_REGION; ++x) |
|
r->sector_data[z][x] = read_uint32_be(last_region); |
|
} |
|
r->x = reg_x; |
|
r->z = reg_z; |
|
|
|
return r; |
|
} |
|
|
|
void free_region(region *r) |
|
{ |
|
free(r); |
|
} |
|
|
|
#define MAX_MAP_REGIONS 64 // in one axis: 64 regions * 32 chunk/region * 16 columns/chunk = 16384 columns |
|
region *regions[MAX_MAP_REGIONS][MAX_MAP_REGIONS]; |
|
|
|
static region *get_region(int reg_x, int reg_z) |
|
{ |
|
int slot_x = reg_x & (MAX_MAP_REGIONS-1); |
|
int slot_z = reg_z & (MAX_MAP_REGIONS-1); |
|
region *r; |
|
|
|
r = regions[slot_z][slot_x]; |
|
|
|
if (r) { |
|
if (r->x == reg_x && r->z == reg_z) |
|
return r; |
|
free_region(r); |
|
} |
|
|
|
r = load_region(reg_x, reg_z); |
|
regions[slot_z][slot_x] = r; |
|
|
|
return r; |
|
} |
|
|
|
// about one region, so size should be ok |
|
#define NUM_CACHED_X 64 |
|
#define NUM_CACHED_Z 64 |
|
|
|
// @TODO: is it really worth caching these? we probably can just |
|
// pull them from the disk cache nearly as efficiently. |
|
// Can test that by setting to 1x1? |
|
compressed_chunk *cached_chunk[NUM_CACHED_Z][NUM_CACHED_X]; |
|
|
|
static void deref_compressed_chunk(compressed_chunk *cc) |
|
{ |
|
assert(cc->refcount > 0); |
|
--cc->refcount; |
|
if (cc->refcount == 0) { |
|
if (cc->data) |
|
free(cc->data); |
|
free(cc); |
|
} |
|
} |
|
|
|
static compressed_chunk *get_compressed_chunk(int chunk_x, int chunk_z) |
|
{ |
|
int slot_x = chunk_x & (NUM_CACHED_X-1); |
|
int slot_z = chunk_z & (NUM_CACHED_Z-1); |
|
compressed_chunk *cc = cached_chunk[slot_z][slot_x]; |
|
|
|
if (cc && cc->x == chunk_x && cc->z == chunk_z) |
|
return cc; |
|
else { |
|
int reg_x = chunk_x >> NUM_CHUNKS_PER_REGION_LOG2; |
|
int reg_z = chunk_z >> NUM_CHUNKS_PER_REGION_LOG2; |
|
region *r = get_region(reg_x, reg_z); |
|
if (cc) { |
|
deref_compressed_chunk(cc); |
|
cached_chunk[slot_z][slot_x] = NULL; |
|
} |
|
cc = malloc(sizeof(*cc)); |
|
cc->x = chunk_x; |
|
cc->z = chunk_z; |
|
{ |
|
int subchunk_x = chunk_x & (NUM_CHUNKS_PER_REGION-1); |
|
int subchunk_z = chunk_z & (NUM_CHUNKS_PER_REGION-1); |
|
uint32 code = r->sector_data[subchunk_z][subchunk_x]; |
|
|
|
if (code & 255) { |
|
open_file(reg_x, reg_z); |
|
fseek(last_region, (code>>8)*4096, SEEK_SET); |
|
cc->len = (code&255)*4096; |
|
cc->data = malloc(cc->len); |
|
fread(cc->data, 1, cc->len, last_region); |
|
} else { |
|
cc->len = 0; |
|
cc->data = 0; |
|
} |
|
} |
|
cc->refcount = 1; |
|
cached_chunk[slot_z][slot_x] = cc; |
|
return cc; |
|
} |
|
} |
|
|
|
|
|
// NBT parser -- can automatically parse stuff we don't |
|
// have definitions for, but want to explicitly parse |
|
// stuff we do have definitions for. |
|
// |
|
// option 1: auto-parse everything into data structures, |
|
// then read those |
|
// |
|
// option 2: have a "parse next object" which |
|
// doesn't resolve whether it expands its children |
|
// yet, and then the user either says "expand" or |
|
// "skip" after looking at the name. Anything with |
|
// "children" without names can't go through this |
|
// interface. |
|
// |
|
// Let's try option 2. |
|
|
|
|
|
typedef struct |
|
{ |
|
unsigned char *buffer_start; |
|
unsigned char *buffer_end; |
|
unsigned char *cur; |
|
int nesting; |
|
char temp_buffer[256]; |
|
} nbt; |
|
|
|
enum { TAG_End=0, TAG_Byte=1, TAG_Short=2, TAG_Int=3, TAG_Long=4, |
|
TAG_Float=5, TAG_Double=6, TAG_Byte_Array=7, TAG_String=8, |
|
TAG_List=9, TAG_Compound=10, TAG_Int_Array=11 }; |
|
|
|
static void nbt_get_string_data(unsigned char *data, char *buffer, size_t bufsize) |
|
{ |
|
int len = data[0]*256 + data[1]; |
|
int i; |
|
for (i=0; i < len && i+1 < (int) bufsize; ++i) |
|
buffer[i] = (char) data[i+2]; |
|
buffer[i] = 0; |
|
} |
|
|
|
static char *nbt_peek(nbt *n) |
|
{ |
|
unsigned char type = *n->cur; |
|
if (type == TAG_End) |
|
return NULL; |
|
nbt_get_string_data(n->cur+1, n->temp_buffer, sizeof(n->temp_buffer)); |
|
return n->temp_buffer; |
|
} |
|
|
|
static uint32 nbt_parse_uint32(unsigned char *buffer) |
|
{ |
|
return (buffer[0] << 24) + (buffer[1]<<16) + (buffer[2]<<8) + buffer[3]; |
|
} |
|
|
|
static void nbt_skip(nbt *n); |
|
|
|
// skip an item that doesn't have an id or name prefix (usable in lists) |
|
static void nbt_skip_raw(nbt *n, unsigned char type) |
|
{ |
|
switch (type) { |
|
case TAG_Byte : n->cur += 1; break; |
|
case TAG_Short : n->cur += 2; break; |
|
case TAG_Int : n->cur += 4; break; |
|
case TAG_Long : n->cur += 8; break; |
|
case TAG_Float : n->cur += 4; break; |
|
case TAG_Double: n->cur += 8; break; |
|
case TAG_Byte_Array: n->cur += 4 + 1*nbt_parse_uint32(n->cur); break; |
|
case TAG_Int_Array : n->cur += 4 + 4*nbt_parse_uint32(n->cur); break; |
|
case TAG_String : n->cur += 2 + (n->cur[0]*256 + n->cur[1]); break; |
|
case TAG_List : { |
|
unsigned char list_type = *n->cur++; |
|
unsigned int list_len = nbt_parse_uint32(n->cur); |
|
unsigned int i; |
|
n->cur += 4; // list_len |
|
for (i=0; i < list_len; ++i) |
|
nbt_skip_raw(n, list_type); |
|
break; |
|
} |
|
case TAG_Compound : { |
|
while (*n->cur != TAG_End) |
|
nbt_skip(n); |
|
nbt_skip(n); // skip the TAG_end |
|
break; |
|
} |
|
} |
|
assert(n->cur <= n->buffer_end); |
|
} |
|
|
|
static void nbt_skip(nbt *n) |
|
{ |
|
unsigned char type = *n->cur++; |
|
if (type == TAG_End) |
|
return; |
|
// skip name |
|
n->cur += (n->cur[0]*256 + n->cur[1]) + 2; |
|
nbt_skip_raw(n, type); |
|
} |
|
|
|
// byteswap |
|
static void nbt_swap(unsigned char *ptr, int len) |
|
{ |
|
int i; |
|
for (i=0; i < (len>>1); ++i) { |
|
unsigned char t = ptr[i]; |
|
ptr[i] = ptr[len-1-i]; |
|
ptr[len-1-i] = t; |
|
} |
|
} |
|
|
|
// pass in the expected type, fail if doesn't match |
|
// returns a pointer to the data, byteswapped if appropriate |
|
static void *nbt_get_fromlist(nbt *n, unsigned char type, int *len) |
|
{ |
|
unsigned char *ptr; |
|
assert(type != TAG_Compound); |
|
assert(type != TAG_List); // we could support getting lists of primitives as if they were arrays, but eh |
|
if (len) *len = 1; |
|
ptr = n->cur; |
|
switch (type) { |
|
case TAG_Byte : break; |
|
|
|
case TAG_Short : nbt_swap(ptr, 2); break; |
|
case TAG_Int : nbt_swap(ptr, 4); break; |
|
case TAG_Long : nbt_swap(ptr, 8); break; |
|
case TAG_Float : nbt_swap(ptr, 4); break; |
|
case TAG_Double: nbt_swap(ptr, 8); break; |
|
|
|
case TAG_Byte_Array: |
|
*len = nbt_parse_uint32(ptr); |
|
ptr += 4; |
|
break; |
|
case TAG_Int_Array: { |
|
int i; |
|
*len = nbt_parse_uint32(ptr); |
|
ptr += 4; |
|
for (i=0; i < *len; ++i) |
|
nbt_swap(ptr + 4*i, 4); |
|
break; |
|
} |
|
|
|
default: assert(0); // unhandled case |
|
} |
|
nbt_skip_raw(n, type); |
|
return ptr; |
|
} |
|
|
|
static void *nbt_get(nbt *n, unsigned char type, int *len) |
|
{ |
|
assert(n->cur[0] == type); |
|
n->cur += 3 + (n->cur[1]*256+n->cur[2]); |
|
return nbt_get_fromlist(n, type, len); |
|
} |
|
|
|
static void nbt_begin_compound(nbt *n) // start a compound |
|
{ |
|
assert(*n->cur == TAG_Compound); |
|
// skip header |
|
n->cur += 3 + (n->cur[1]*256 + n->cur[2]); |
|
++n->nesting; |
|
} |
|
|
|
static void nbt_begin_compound_in_list(nbt *n) // start a compound |
|
{ |
|
++n->nesting; |
|
} |
|
|
|
static void nbt_end_compound(nbt *n) // end a compound |
|
{ |
|
assert(*n->cur == TAG_End); |
|
assert(n->nesting != 0); |
|
++n->cur; |
|
--n->nesting; |
|
} |
|
|
|
// @TODO no interface to get lists from lists |
|
static int nbt_begin_list(nbt *n, unsigned char type) |
|
{ |
|
uint32 len; |
|
unsigned char *ptr; |
|
|
|
ptr = n->cur + 3 + (n->cur[1]*256 + n->cur[2]); |
|
if (ptr[0] != type) |
|
return -1; |
|
n->cur = ptr; |
|
len = nbt_parse_uint32(n->cur+1); |
|
assert(n->cur[0] == type); |
|
// @TODO keep a stack with the count to make sure they do it right |
|
++n->nesting; |
|
n->cur += 5; |
|
return (int) len; |
|
} |
|
|
|
static void nbt_end_list(nbt *n) |
|
{ |
|
--n->nesting; |
|
} |
|
|
|
// raw_block chunk is 16x256x16x4 = 2^(4+8+4+2) = 256KB |
|
// |
|
// if we want to process 64x64x256 at a time, that will be: |
|
// 4*4*256KB => 4MB per area in raw_block |
|
// |
|
// (plus we maybe need to decode adjacent regions) |
|
|
|
|
|
#ifdef FAST_CHUNK |
|
typedef fast_chunk parse_chunk; |
|
#else |
|
typedef chunk parse_chunk; |
|
#endif |
|
|
|
static parse_chunk *minecraft_chunk_parse(unsigned char *data, size_t len) |
|
{ |
|
char *s; |
|
parse_chunk *c = NULL; |
|
|
|
nbt n_store, *n = &n_store; |
|
n->buffer_start = data; |
|
n->buffer_end = data + len; |
|
n->cur = n->buffer_start; |
|
n->nesting = 0; |
|
|
|
nbt_begin_compound(n); |
|
while ((s = nbt_peek(n)) != NULL) { |
|
if (!strcmp(s, "Level")) { |
|
int *height; |
|
c = malloc(sizeof(*c)); |
|
#ifdef FAST_CHUNK |
|
memset(c, 0, sizeof(*c)); |
|
c->pointer_to_free = data; |
|
#else |
|
c->rb[15][15][255].block = 0; |
|
#endif |
|
c->max_y = 0; |
|
|
|
nbt_begin_compound(n); |
|
while ((s = nbt_peek(n)) != NULL) { |
|
if (!strcmp(s, "xPos")) |
|
c->xpos = *(int *) nbt_get(n, TAG_Int, 0); |
|
else if (!strcmp(s, "zPos")) |
|
c->zpos = *(int *) nbt_get(n, TAG_Int, 0); |
|
else if (!strcmp(s, "Sections")) { |
|
int count = nbt_begin_list(n, TAG_Compound), i; |
|
if (count == -1) { |
|
// this not-a-list case happens in The End and I'm not sure |
|
// what it means... possibly one of those silly encodings |
|
// where it's not encoded as a list if there's only one? |
|
// not worth figuring out |
|
nbt_skip(n); |
|
count = -1; |
|
} |
|
for (i=0; i < count; ++i) { |
|
int yi, len; |
|
uint8 *light = NULL, *blocks = NULL, *data = NULL, *skylight = NULL; |
|
nbt_begin_compound_in_list(n); |
|
while ((s = nbt_peek(n)) != NULL) { |
|
if (!strcmp(s, "Y")) |
|
yi = * (uint8 *) nbt_get(n, TAG_Byte, 0); |
|
else if (!strcmp(s, "BlockLight")) { |
|
light = nbt_get(n, TAG_Byte_Array, &len); |
|
assert(len == 2048); |
|
} else if (!strcmp(s, "Blocks")) { |
|
blocks = nbt_get(n, TAG_Byte_Array, &len); |
|
assert(len == 4096); |
|
} else if (!strcmp(s, "Data")) { |
|
data = nbt_get(n, TAG_Byte_Array, &len); |
|
assert(len == 2048); |
|
} else if (!strcmp(s, "SkyLight")) { |
|
skylight = nbt_get(n, TAG_Byte_Array, &len); |
|
assert(len == 2048); |
|
} |
|
} |
|
nbt_end_compound(n); |
|
|
|
assert(yi < 16); |
|
|
|
#ifndef FAST_CHUNK |
|
|
|
// clear data below current max_y |
|
{ |
|
int x,z; |
|
while (c->max_y < yi*16) { |
|
for (x=0; x < 16; ++x) |
|
for (z=0; z < 16; ++z) |
|
c->rb[z][x][c->max_y].block = 0; |
|
++c->max_y; |
|
} |
|
} |
|
|
|
// now assemble the data |
|
{ |
|
int x,y,z, o2=0,o4=0; |
|
for (y=0; y < 16; ++y) { |
|
for (z=0; z < 16; ++z) { |
|
for (x=0; x < 16; x += 2) { |
|
raw_block *rb = &c->rb[15-z][x][y + yi*16]; // 15-z because switching to z-up will require flipping an axis |
|
rb[0].block = blocks[o4]; |
|
rb[0].light = light[o2] & 15; |
|
rb[0].data = data[o2] & 15; |
|
rb[0].skylight = skylight[o2] & 15; |
|
|
|
rb[256].block = blocks[o4+1]; |
|
rb[256].light = light[o2] >> 4; |
|
rb[256].data = data[o2] >> 4; |
|
rb[256].skylight = skylight[o2] >> 4; |
|
|
|
o2 += 1; |
|
o4 += 2; |
|
} |
|
} |
|
} |
|
c->max_y += 16; |
|
} |
|
#else |
|
c->blockdata[yi] = blocks; |
|
c->data [yi] = data; |
|
c->light [yi] = light; |
|
c->skylight [yi] = skylight; |
|
#endif |
|
} |
|
//nbt_end_list(n); |
|
} else if (!strcmp(s, "HeightMap")) { |
|
height = nbt_get(n, TAG_Int_Array, &len); |
|
assert(len == 256); |
|
} else |
|
nbt_skip(n); |
|
} |
|
nbt_end_compound(n); |
|
|
|
} else |
|
nbt_skip(n); |
|
} |
|
nbt_end_compound(n); |
|
assert(n->cur == n->buffer_end); |
|
return c; |
|
} |
|
|
|
#define MAX_DECODED_CHUNK_X 64 |
|
#define MAX_DECODED_CHUNK_Z 64 |
|
|
|
typedef struct |
|
{ |
|
int cx,cz; |
|
fast_chunk *fc; |
|
int valid; |
|
} decoded_buffer; |
|
|
|
static decoded_buffer decoded_buffers[MAX_DECODED_CHUNK_Z][MAX_DECODED_CHUNK_X]; |
|
void lock_chunk_get_mutex(void); |
|
void unlock_chunk_get_mutex(void); |
|
|
|
#ifdef FAST_CHUNK |
|
fast_chunk *get_decoded_fastchunk_uncached(int chunk_x, int chunk_z) |
|
{ |
|
unsigned char *decoded; |
|
compressed_chunk *cc; |
|
int inlen; |
|
int len; |
|
fast_chunk *fc; |
|
|
|
lock_chunk_get_mutex(); |
|
cc = get_compressed_chunk(chunk_x, chunk_z); |
|
if (cc->len != 0) |
|
++cc->refcount; |
|
unlock_chunk_get_mutex(); |
|
|
|
if (cc->len == 0) |
|
return NULL; |
|
|
|
assert(cc != NULL); |
|
|
|
assert(cc->data[4] == 2); |
|
|
|
inlen = nbt_parse_uint32(cc->data); |
|
decoded = stbi_zlib_decode_malloc_guesssize(cc->data+5, inlen, inlen*3, &len); |
|
assert(decoded != NULL); |
|
assert(len != 0); |
|
|
|
lock_chunk_get_mutex(); |
|
deref_compressed_chunk(cc); |
|
unlock_chunk_get_mutex(); |
|
|
|
#ifdef FAST_CHUNK |
|
fc = minecraft_chunk_parse(decoded, len); |
|
#else |
|
fc = NULL; |
|
#endif |
|
if (fc == NULL) |
|
free(decoded); |
|
return fc; |
|
} |
|
|
|
|
|
decoded_buffer *get_decoded_buffer(int chunk_x, int chunk_z) |
|
{ |
|
decoded_buffer *db = &decoded_buffers[chunk_z&(MAX_DECODED_CHUNK_Z-1)][chunk_x&(MAX_DECODED_CHUNK_X-1)]; |
|
if (db->valid) { |
|
if (db->cx == chunk_x && db->cz == chunk_z) |
|
return db; |
|
if (db->fc) { |
|
free(db->fc->pointer_to_free); |
|
free(db->fc); |
|
} |
|
} |
|
|
|
db->cx = chunk_x; |
|
db->cz = chunk_z; |
|
db->valid = 1; |
|
db->fc = 0; |
|
|
|
{ |
|
db->fc = get_decoded_fastchunk_uncached(chunk_x, chunk_z); |
|
return db; |
|
} |
|
} |
|
|
|
fast_chunk *get_decoded_fastchunk(int chunk_x, int chunk_z) |
|
{ |
|
decoded_buffer *db = get_decoded_buffer(chunk_x, chunk_z); |
|
return db->fc; |
|
} |
|
#endif |
|
|
|
#ifndef FAST_CHUNK |
|
chunk *get_decoded_chunk_raw(int chunk_x, int chunk_z) |
|
{ |
|
unsigned char *decoded; |
|
compressed_chunk *cc = get_compressed_chunk(chunk_x, chunk_z); |
|
assert(cc != NULL); |
|
if (cc->len == 0) |
|
return NULL; |
|
else { |
|
chunk *ch; |
|
int inlen = nbt_parse_uint32(cc->data); |
|
int len; |
|
assert(cc->data[4] == 2); |
|
decoded = stbi_zlib_decode_malloc_guesssize(cc->data+5, inlen, inlen*3, &len); |
|
assert(decoded != NULL); |
|
#ifdef FAST_CHUNK |
|
ch = NULL; |
|
#else |
|
ch = minecraft_chunk_parse(decoded, len); |
|
#endif |
|
free(decoded); |
|
return ch; |
|
} |
|
} |
|
|
|
static chunk *decoded_chunks[MAX_DECODED_CHUNK_Z][MAX_DECODED_CHUNK_X]; |
|
chunk *get_decoded_chunk(int chunk_x, int chunk_z) |
|
{ |
|
chunk *c = decoded_chunks[chunk_z&(MAX_DECODED_CHUNK_Z-1)][chunk_x&(MAX_DECODED_CHUNK_X-1)]; |
|
if (c && c->xpos == chunk_x && c->zpos == chunk_z) |
|
return c; |
|
if (c) free(c); |
|
c = get_decoded_chunk_raw(chunk_x, chunk_z); |
|
decoded_chunks[chunk_z&(MAX_DECODED_CHUNK_Z-1)][chunk_x&(MAX_DECODED_CHUNK_X-1)] = c; |
|
return c; |
|
} |
|
#endif
|
|
|