|
|
|
@ -24,18 +24,49 @@ |
|
|
|
|
// publish, and distribute this file as you see fit.
|
|
|
|
|
//
|
|
|
|
|
//
|
|
|
|
|
// CHANGELOG
|
|
|
|
|
//
|
|
|
|
|
// 0.92 (2016-04-16) Compute sqrt(N) cluster size by default
|
|
|
|
|
// 0.91 (2016-04-15) Initial release
|
|
|
|
|
//
|
|
|
|
|
// TODO:
|
|
|
|
|
// - test C++ compile
|
|
|
|
|
// - better API documentation
|
|
|
|
|
// - internals documentation (including algorithm)
|
|
|
|
|
// - more comments
|
|
|
|
|
// - try re-integrating naive algorithm & compare performance
|
|
|
|
|
// - batching (keep data structure w/ dirty clusters)
|
|
|
|
|
// - more optimized batching (current approach still recomputes local clumps many times)
|
|
|
|
|
// - function for setting a grid of squares at once (just use batching)
|
|
|
|
|
// - shrink data by storing only, say, 2X max exits
|
|
|
|
|
// (instead of max exits per clump), and repack cluster
|
|
|
|
|
// if it runs out (possibly by just rebuilding from scratch,
|
|
|
|
|
// could even use dirty-cluster data structure)
|
|
|
|
|
// should reduce 1Kx1K from ~66MB to ~8MB
|
|
|
|
|
//
|
|
|
|
|
// ALGORITHM
|
|
|
|
|
//
|
|
|
|
|
// The NxN grid map is split into sqrt(N) x sqrt(N) blocks called
|
|
|
|
|
// "clusters". Each cluster independently computes a set of connected
|
|
|
|
|
// components within that cluster (ignoring all connectivity out of
|
|
|
|
|
// that cluster) using a union-find disjoint set forest. This produces a bunch
|
|
|
|
|
// of locally connected components called "clumps". Each clump is (a) connected
|
|
|
|
|
// within its cluster, (b) does not directly connect to any other clumps in the
|
|
|
|
|
// cluster (though it may connect to them by paths that lead outside the cluster,
|
|
|
|
|
// but those are ignored at this step), and (c) maintains an adjacency list of
|
|
|
|
|
// all clumps in adjacent clusters that it _is_ connected to. Then a second
|
|
|
|
|
// union-find disjoint set forest is used to compute connected clumps
|
|
|
|
|
// globally, across the whole map. Reachability is then computed by
|
|
|
|
|
// finding which clump each input point belongs to, and checking whether
|
|
|
|
|
// those clumps are in the same "global" connected component.
|
|
|
|
|
//
|
|
|
|
|
// The above data structure can be updated efficiently; on a change
|
|
|
|
|
// of a single grid square on the map, only one cluster changes its
|
|
|
|
|
// purely-local state, so only one cluster needs its clumps fully
|
|
|
|
|
// recomputed. Clumps in adjacent clusters need their adjacency lists
|
|
|
|
|
// updated: first to remove all references to the old clumps in the
|
|
|
|
|
// rebuilt cluster, then to add new references to the new clumps. Both
|
|
|
|
|
// of these operations can use the existing "find which clump each input
|
|
|
|
|
// point belongs to" query to compute that adjacency information rapidly.
|
|
|
|
|
// In one 1024x1024 test on a specific machine, a one-tile update was
|
|
|
|
|
// about 250 times faster than a full disjoint-set-forest on the full map.
|
|
|
|
|
|
|
|
|
|
#ifndef INCLUDE_STB_CONNECTED_COMPONENTS_H |
|
|
|
|
#define INCLUDE_STB_CONNECTED_COMPONENTS_H |
|
|
|
@ -78,12 +109,18 @@ extern int stbcc_query_grid_node_connection(stbcc_grid *g, int x1, int y1, int x |
|
|
|
|
// bonus functions
|
|
|
|
|
//
|
|
|
|
|
|
|
|
|
|
// wrap multiple stbcc_update_grid calls in these function to compute
|
|
|
|
|
// multiple updates more efficiently; cannot make queries inside batch
|
|
|
|
|
extern void stbcc_update_batch_begin(stbcc_grid *g); |
|
|
|
|
extern void stbcc_update_batch_end(stbcc_grid *g); |
|
|
|
|
|
|
|
|
|
// query the grid data structure for whether a given square is open or not
|
|
|
|
|
extern int stbcc_query_grid_open(stbcc_grid *g, int x, int y); |
|
|
|
|
|
|
|
|
|
// get a unique id for the connected component this is in; it's not necessarily
|
|
|
|
|
// small, you'll need a hash table or something to remap it (or just use
|
|
|
|
|
extern unsigned int stbcc_get_unique_id(stbcc_grid *g, int x, int y); |
|
|
|
|
#define STBCC_NULL_UNIQUE_ID 0xffffffff // returned for closed map squares
|
|
|
|
|
|
|
|
|
|
#ifdef __cplusplus |
|
|
|
|
} |
|
|
|
@ -106,11 +143,19 @@ extern unsigned int stbcc_get_unique_id(stbcc_grid *g, int x, int y); |
|
|
|
|
#define STBCC__MAP_STRIDE (1 << (STBCC_GRID_COUNT_X_LOG2-3)) |
|
|
|
|
|
|
|
|
|
#ifndef STBCC_CLUSTER_SIZE_X_LOG2 |
|
|
|
|
#define STBCC_CLUSTER_SIZE_X_LOG2 5 |
|
|
|
|
#define STBCC_CLUSTER_SIZE_X_LOG2 (STBCC_GRID_COUNT_X_LOG2/2) // log2(sqrt(2^N)) = 1/2 * log2(2^N)) = 1/2 * N
|
|
|
|
|
#if STBCC_CLUSTER_SIZE_X_LOG2 > 6 |
|
|
|
|
#undef STBCC_CLUSTER_SIZE_X_LOG2 |
|
|
|
|
#define STBCC_CLUSTER_SIZE_X_LOG2 6 |
|
|
|
|
#endif |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
#ifndef STBCC_CLUSTER_SIZE_Y_LOG2 |
|
|
|
|
#define STBCC_CLUSTER_SIZE_Y_LOG2 5 |
|
|
|
|
#define STBCC_CLUSTER_SIZE_Y_LOG2 (STBCC_GRID_COUNT_Y_LOG2/2) |
|
|
|
|
#if STBCC_CLUSTER_SIZE_Y_LOG2 > 6 |
|
|
|
|
#undef STBCC_CLUSTER_SIZE_Y_LOG2 |
|
|
|
|
#define STBCC_CLUSTER_SIZE_Y_LOG2 6 |
|
|
|
|
#endif |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
#define STBCC__CLUSTER_SIZE_X (1 << STBCC_CLUSTER_SIZE_X_LOG2) |
|
|
|
@ -202,6 +247,8 @@ typedef struct |
|
|
|
|
struct st_stbcc_grid |
|
|
|
|
{ |
|
|
|
|
int w,h,cw,ch; |
|
|
|
|
int in_batched_update; |
|
|
|
|
//unsigned char cluster_dirty[STBCC__CLUSTER_COUNT_Y][STBCC__CLUSTER_COUNT_X]; // could bitpack, but: 1K x 1K => 1KB
|
|
|
|
|
unsigned char map[STBCC__GRID_COUNT_Y][STBCC__MAP_STRIDE]; // 1K x 1K => 1K x 128 => 128KB
|
|
|
|
|
stbcc__clumpid clump_for_node[STBCC__GRID_COUNT_Y][STBCC__GRID_COUNT_X]; // 1K x 1K x 2 = 2MB
|
|
|
|
|
stbcc__cluster cluster[STBCC__CLUSTER_COUNT_Y][STBCC__CLUSTER_COUNT_X]; // 1K x 4.5KB = 9MB
|
|
|
|
@ -216,6 +263,7 @@ int stbcc_query_grid_node_connection(stbcc_grid *g, int x1, int y1, int x2, int |
|
|
|
|
int cy1 = STBCC__CLUSTER_Y_FOR_COORD_Y(y1); |
|
|
|
|
int cx2 = STBCC__CLUSTER_X_FOR_COORD_X(x2); |
|
|
|
|
int cy2 = STBCC__CLUSTER_Y_FOR_COORD_Y(y2); |
|
|
|
|
assert(!g->in_batched_update); |
|
|
|
|
if (c1 == STBCC__NULL_CLUMPID || c2 == STBCC__NULL_CLUMPID) |
|
|
|
|
return 0; |
|
|
|
|
label1 = g->cluster[cy1][cx1].clump[c1].global_label; |
|
|
|
@ -235,6 +283,8 @@ unsigned int stbcc_get_unique_id(stbcc_grid *g, int x, int y) |
|
|
|
|
stbcc__clumpid c = g->clump_for_node[y][x]; |
|
|
|
|
int cx = STBCC__CLUSTER_X_FOR_COORD_X(x); |
|
|
|
|
int cy = STBCC__CLUSTER_Y_FOR_COORD_Y(y); |
|
|
|
|
assert(!g->in_batched_update); |
|
|
|
|
if (c == STBCC__NULL_CLUMPID) return STBCC_NULL_UNIQUE_ID; |
|
|
|
|
return g->cluster[cy][cx].clump[c].global_label.c; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -473,7 +523,25 @@ void stbcc_update_grid(stbcc_grid *g, int x, int y, int solid) |
|
|
|
|
stbcc__add_connections_to_adjacent_cluster_with_rebuild(g, cx, cy-1, 0, 1); |
|
|
|
|
stbcc__add_connections_to_adjacent_cluster_with_rebuild(g, cx, cy+1, 0,-1); |
|
|
|
|
|
|
|
|
|
stbcc__build_connected_components_for_clumps(g); |
|
|
|
|
if (!g->in_batched_update) |
|
|
|
|
stbcc__build_connected_components_for_clumps(g); |
|
|
|
|
#if 0 |
|
|
|
|
else |
|
|
|
|
g->cluster_dirty[cy][cx] = 1; |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void stbcc_update_batch_begin(stbcc_grid *g) |
|
|
|
|
{ |
|
|
|
|
assert(!g->in_batched_update); |
|
|
|
|
g->in_batched_update = 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void stbcc_update_batch_end(stbcc_grid *g) |
|
|
|
|
{ |
|
|
|
|
assert(g->in_batched_update); |
|
|
|
|
g->in_batched_update = 0; |
|
|
|
|
stbcc__build_connected_components_for_clumps(g); // @OPTIMIZE: only do this if update was non-empty
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
size_t stbcc_grid_sizeof(void) |
|
|
|
@ -492,6 +560,13 @@ void stbcc_init_grid(stbcc_grid *g, unsigned char *map, int w, int h) |
|
|
|
|
g->h = h; |
|
|
|
|
g->cw = w >> STBCC_CLUSTER_SIZE_X_LOG2; |
|
|
|
|
g->ch = h >> STBCC_CLUSTER_SIZE_Y_LOG2; |
|
|
|
|
g->in_batched_update = 0; |
|
|
|
|
|
|
|
|
|
#if 0 |
|
|
|
|
for (j=0; j < STBCC__CLUSTER_COUNT_Y; ++j) |
|
|
|
|
for (i=0; i < STBCC__CLUSTER_COUNT_X; ++i)
|
|
|
|
|
g->cluster_dirty[j][i] = 0; |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
for (j=0; j < h; ++j) { |
|
|
|
|
for (i=0; i < w; i += 8) { |
|
|
|
|