|  |  | #include <glm/gtc/quaternion.hpp> | 
						
						
						
							|  |  | #include <glm/gtc/epsilon.hpp> | 
						
						
						
							|  |  | #include <glm/vector_relational.hpp> | 
						
						
						
							|  |  | #include <vector> | 
						
						
						
							|  |  |  | 
						
						
						
							|  |  | int test_quat_angle() | 
						
						
						
							|  |  | { | 
						
						
						
							|  |  | 	int Error = 0; | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	{ | 
						
						
						
							|  |  | 		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1)); | 
						
						
						
							|  |  | 		glm::quat N = glm::normalize(Q); | 
						
						
						
							|  |  | 		float L = glm::length(N); | 
						
						
						
							|  |  | 		Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1; | 
						
						
						
							|  |  | 		float A = glm::angle(N); | 
						
						
						
							|  |  | 		Error += glm::epsilonEqual(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1; | 
						
						
						
							|  |  | 	} | 
						
						
						
							|  |  | 	{ | 
						
						
						
							|  |  | 		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::normalize(glm::vec3(0, 1, 1))); | 
						
						
						
							|  |  | 		glm::quat N = glm::normalize(Q); | 
						
						
						
							|  |  | 		float L = glm::length(N); | 
						
						
						
							|  |  | 		Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1; | 
						
						
						
							|  |  | 		float A = glm::angle(N); | 
						
						
						
							|  |  | 		Error += glm::epsilonEqual(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1; | 
						
						
						
							|  |  | 	} | 
						
						
						
							|  |  | 	{ | 
						
						
						
							|  |  | 		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::normalize(glm::vec3(1, 2, 3))); | 
						
						
						
							|  |  | 		glm::quat N = glm::normalize(Q); | 
						
						
						
							|  |  | 		float L = glm::length(N); | 
						
						
						
							|  |  | 		Error += glm::epsilonEqual(L, 1.0f, 0.01f) ? 0 : 1; | 
						
						
						
							|  |  | 		float A = glm::angle(N); | 
						
						
						
							|  |  | 		Error += glm::epsilonEqual(A, glm::pi<float>() * 0.25f, 0.01f) ? 0 : 1; | 
						
						
						
							|  |  | 	} | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	return Error; | 
						
						
						
							|  |  | } | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | int test_quat_angleAxis() | 
						
						
						
							|  |  | { | 
						
						
						
							|  |  | 	int Error = 0; | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	glm::quat A = glm::angleAxis(0.0f, glm::vec3(0, 0, 1)); | 
						
						
						
							|  |  | 	glm::quat B = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1)); | 
						
						
						
							|  |  | 	glm::quat C = glm::mix(A, B, 0.5f); | 
						
						
						
							|  |  | 	glm::quat D = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1)); | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	Error += glm::epsilonEqual(C.x, D.x, 0.01f) ? 0 : 1; | 
						
						
						
							|  |  | 	Error += glm::epsilonEqual(C.y, D.y, 0.01f) ? 0 : 1; | 
						
						
						
							|  |  | 	Error += glm::epsilonEqual(C.z, D.z, 0.01f) ? 0 : 1; | 
						
						
						
							|  |  | 	Error += glm::epsilonEqual(C.w, D.w, 0.01f) ? 0 : 1; | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	return Error; | 
						
						
						
							|  |  | } | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | int test_quat_mix() | 
						
						
						
							|  |  | { | 
						
						
						
							|  |  | 	int Error = 0; | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	glm::quat A = glm::angleAxis(0.0f, glm::vec3(0, 0, 1)); | 
						
						
						
							|  |  | 	glm::quat B = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1)); | 
						
						
						
							|  |  | 	glm::quat C = glm::mix(A, B, 0.5f); | 
						
						
						
							|  |  | 	glm::quat D = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1)); | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	Error += glm::epsilonEqual(C.x, D.x, 0.01f) ? 0 : 1; | 
						
						
						
							|  |  | 	Error += glm::epsilonEqual(C.y, D.y, 0.01f) ? 0 : 1; | 
						
						
						
							|  |  | 	Error += glm::epsilonEqual(C.z, D.z, 0.01f) ? 0 : 1; | 
						
						
						
							|  |  | 	Error += glm::epsilonEqual(C.w, D.w, 0.01f) ? 0 : 1; | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	return Error; | 
						
						
						
							|  |  | } | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | int test_quat_precision() | 
						
						
						
							|  |  | { | 
						
						
						
							|  |  | 	int Error = 0; | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	Error += sizeof(glm::lowp_quat) <= sizeof(glm::mediump_quat) ? 0 : 1; | 
						
						
						
							|  |  | 	Error += sizeof(glm::mediump_quat) <= sizeof(glm::highp_quat) ? 0 : 1; | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	return Error; | 
						
						
						
							|  |  | } | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | int test_quat_normalize() | 
						
						
						
							|  |  | { | 
						
						
						
							|  |  | 	int Error(0); | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	{ | 
						
						
						
							|  |  | 		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 1)); | 
						
						
						
							|  |  | 		glm::quat N = glm::normalize(Q); | 
						
						
						
							|  |  | 		float L = glm::length(N); | 
						
						
						
							|  |  | 		Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1; | 
						
						
						
							|  |  | 	} | 
						
						
						
							|  |  | 	{ | 
						
						
						
							|  |  | 		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(0, 0, 2)); | 
						
						
						
							|  |  | 		glm::quat N = glm::normalize(Q); | 
						
						
						
							|  |  | 		float L = glm::length(N); | 
						
						
						
							|  |  | 		Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1; | 
						
						
						
							|  |  | 	} | 
						
						
						
							|  |  | 	{ | 
						
						
						
							|  |  | 		glm::quat Q = glm::angleAxis(glm::pi<float>() * 0.25f, glm::vec3(1, 2, 3)); | 
						
						
						
							|  |  | 		glm::quat N = glm::normalize(Q); | 
						
						
						
							|  |  | 		float L = glm::length(N); | 
						
						
						
							|  |  | 		Error += glm::epsilonEqual(L, 1.0f, 0.000001f) ? 0 : 1; | 
						
						
						
							|  |  | 	} | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	return Error; | 
						
						
						
							|  |  | } | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | int test_quat_euler() | 
						
						
						
							|  |  | { | 
						
						
						
							|  |  | 	int Error(0); | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	{ | 
						
						
						
							|  |  | 		glm::quat q(1.0f, 0.0f, 0.0f, 1.0f); | 
						
						
						
							|  |  | 		float Roll = glm::roll(q); | 
						
						
						
							|  |  | 		float Pitch = glm::pitch(q); | 
						
						
						
							|  |  | 		float Yaw = glm::yaw(q); | 
						
						
						
							|  |  | 		glm::vec3 Angles = glm::eulerAngles(q); | 
						
						
						
							|  |  | 	} | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	{ | 
						
						
						
							|  |  | 		glm::dquat q(1.0f, 0.0f, 0.0f, 1.0f); | 
						
						
						
							|  |  | 		double Roll = glm::roll(q); | 
						
						
						
							|  |  | 		double Pitch = glm::pitch(q); | 
						
						
						
							|  |  | 		double Yaw = glm::yaw(q); | 
						
						
						
							|  |  | 		glm::dvec3 Angles = glm::eulerAngles(q); | 
						
						
						
							|  |  | 	} | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	return Error; | 
						
						
						
							|  |  | } | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | int test_quat_slerp() | 
						
						
						
							|  |  | { | 
						
						
						
							|  |  | 	int Error(0); | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	float const Epsilon = 0.0001f;//glm::epsilon<float>(); | 
						
						
						
							|  |  |  | 
						
						
						
							|  |  | 	float sqrt2 = sqrt(2.0f)/2.0f; | 
						
						
						
							|  |  | 	glm::quat id; | 
						
						
						
							|  |  | 	glm::quat Y90rot(sqrt2, 0.0f, sqrt2, 0.0f); | 
						
						
						
							|  |  | 	glm::quat Y180rot(0.0f, 0.0f, 1.0f, 0.0f); | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	// Testing a == 0 | 
						
						
						
							|  |  | 	// Must be id | 
						
						
						
							|  |  | 	glm::quat id2 = glm::slerp(id, Y90rot, 0.0f); | 
						
						
						
							|  |  | 	Error += glm::all(glm::epsilonEqual(id, id2, Epsilon)) ? 0 : 1; | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	// Testing a == 1 | 
						
						
						
							|  |  | 	// Must be 90<EFBFBD> rotation on Y : 0 0.7 0 0.7 | 
						
						
						
							|  |  | 	glm::quat Y90rot2 = glm::slerp(id, Y90rot, 1.0f); | 
						
						
						
							|  |  | 	Error += glm::all(glm::epsilonEqual(Y90rot, Y90rot2, Epsilon)) ? 0 : 1; | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	// Testing standard, easy case | 
						
						
						
							|  |  | 	// Must be 45<EFBFBD> rotation on Y : 0 0.38 0 0.92 | 
						
						
						
							|  |  | 	glm::quat Y45rot1 = glm::slerp(id, Y90rot, 0.5f); | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	// Testing reverse case | 
						
						
						
							|  |  | 	// Must be 45<EFBFBD> rotation on Y : 0 0.38 0 0.92 | 
						
						
						
							|  |  | 	glm::quat Ym45rot2 = glm::slerp(Y90rot, id, 0.5f); | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	// Testing against full circle around the sphere instead of shortest path | 
						
						
						
							|  |  | 	// Must be 45<EFBFBD> rotation on Y | 
						
						
						
							|  |  | 	// certainly not a 135<EFBFBD> rotation | 
						
						
						
							|  |  | 	glm::quat Y45rot3 = glm::slerp(id , -Y90rot, 0.5f); | 
						
						
						
							|  |  | 	float Y45angle3 = glm::angle(Y45rot3); | 
						
						
						
							|  |  | 	Error += glm::epsilonEqual(Y45angle3, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1; | 
						
						
						
							|  |  | 	Error += glm::all(glm::epsilonEqual(Ym45rot2, Y45rot3, Epsilon)) ? 0 : 1; | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	// Same, but inverted | 
						
						
						
							|  |  | 	// Must also be 45<EFBFBD> rotation on Y :  0 0.38 0 0.92 | 
						
						
						
							|  |  | 	// -0 -0.38 -0 -0.92 is ok too | 
						
						
						
							|  |  | 	glm::quat Y45rot4 = glm::slerp(-Y90rot, id, 0.5f); | 
						
						
						
							|  |  | 	Error += glm::all(glm::epsilonEqual(Ym45rot2, -Y45rot4, Epsilon)) ? 0 : 1; | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	// Testing q1 = q2 | 
						
						
						
							|  |  | 	// Must be 90<EFBFBD> rotation on Y : 0 0.7 0 0.7 | 
						
						
						
							|  |  | 	glm::quat Y90rot3 = glm::slerp(Y90rot, Y90rot, 0.5f); | 
						
						
						
							|  |  | 	Error += glm::all(glm::epsilonEqual(Y90rot, Y90rot3, Epsilon)) ? 0 : 1; | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	// Testing 180<EFBFBD> rotation | 
						
						
						
							|  |  | 	// Must be 90<EFBFBD> rotation on almost any axis that is on the XZ plane | 
						
						
						
							|  |  | 	glm::quat XZ90rot = glm::slerp(id, -Y90rot, 0.5f); | 
						
						
						
							|  |  | 	float XZ90angle = glm::angle(XZ90rot); // Must be PI/4 = 0.78; | 
						
						
						
							|  |  | 	Error += glm::epsilonEqual(XZ90angle, glm::pi<float>() * 0.25f, Epsilon) ? 0 : 1; | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	// Testing almost equal quaternions (this test should pass through the linear interpolation) | 
						
						
						
							|  |  | 	// Must be 0 0.00X 0 0.99999 | 
						
						
						
							|  |  | 	glm::quat almostid = glm::slerp(id, glm::angleAxis(0.1f, glm::vec3(0.0f, 1.0f, 0.0f)), 0.5f); | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	// Testing quaternions with opposite sign | 
						
						
						
							|  |  | 	{ | 
						
						
						
							|  |  | 		glm::quat a(-1, 0, 0, 0); | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 		glm::quat result = glm::slerp(a, id, 0.5f); | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 		Error += glm::epsilonEqual(glm::pow(glm::dot(id, result), 2.f), 1.f, 0.01f) ? 0 : 1; | 
						
						
						
							|  |  | 	} | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	return Error; | 
						
						
						
							|  |  | } | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | int test_quat_mul() | 
						
						
						
							|  |  | { | 
						
						
						
							|  |  | 	int Error(0); | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	glm::quat temp1 = glm::normalize(glm::quat(1.0f, glm::vec3(0.0, 1.0, 0.0))); | 
						
						
						
							|  |  | 	glm::quat temp2 = glm::normalize(glm::quat(0.5f, glm::vec3(1.0, 0.0, 0.0))); | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	glm::vec3 transformed0 = (temp1 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp1)); | 
						
						
						
							|  |  | 	glm::vec3 temp4 = temp2 * transformed0 * glm::inverse(temp2); | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	glm::quat temp5 = glm::normalize(temp1 * temp2); | 
						
						
						
							|  |  | 	glm::vec3 temp6 = temp5 * glm::vec3(0.0, 1.0, 0.0) * glm::inverse(temp5); | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | #	ifndef GLM_FORCE_NO_CTOR_INIT | 
						
						
						
							|  |  | 	{ | 
						
						
						
							|  |  | 		glm::quat temp7; | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 		temp7 *= temp5; | 
						
						
						
							|  |  | 		temp7 *= glm::inverse(temp5); | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 		Error += temp7 != glm::quat(); | 
						
						
						
							|  |  | 	} | 
						
						
						
							|  |  | #	endif | 
						
						
						
							|  |  |  | 
						
						
						
							|  |  | 	return Error; | 
						
						
						
							|  |  | } | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | int test_quat_two_axis_ctr() | 
						
						
						
							|  |  | { | 
						
						
						
							|  |  | 	int Error(0); | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	glm::quat q1(glm::vec3(1, 0, 0), glm::vec3(0, 1, 0)); | 
						
						
						
							|  |  | 	glm::vec3 v1 = q1 * glm::vec3(1, 0, 0); | 
						
						
						
							|  |  | 	Error += glm::all(glm::epsilonEqual(v1, glm::vec3(0, 1, 0), 0.0001f)) ? 0 : 1; | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	glm::quat q2 = q1 * q1; | 
						
						
						
							|  |  | 	glm::vec3 v2 = q2 * glm::vec3(1, 0, 0); | 
						
						
						
							|  |  | 	Error += glm::all(glm::epsilonEqual(v2, glm::vec3(-1, 0, 0), 0.0001f)) ? 0 : 1; | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	return Error; | 
						
						
						
							|  |  | } | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | int test_quat_type() | 
						
						
						
							|  |  | { | 
						
						
						
							|  |  | 	glm::quat A; | 
						
						
						
							|  |  | 	glm::dquat B; | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	return 0; | 
						
						
						
							|  |  | } | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | int test_quat_mul_vec() | 
						
						
						
							|  |  | { | 
						
						
						
							|  |  | 	int Error(0); | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	glm::quat q = glm::angleAxis(glm::pi<float>() * 0.5f, glm::vec3(0, 0, 1)); | 
						
						
						
							|  |  | 	glm::vec3 v(1, 0, 0); | 
						
						
						
							|  |  | 	glm::vec3 u(q * v); | 
						
						
						
							|  |  | 	glm::vec3 w(u * q); | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	Error += glm::all(glm::epsilonEqual(v, w, 0.01f)) ? 0 : 1; | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	return Error; | 
						
						
						
							|  |  | } | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | int test_quat_ctr() | 
						
						
						
							|  |  | { | 
						
						
						
							|  |  | 	int Error(0); | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | #	if GLM_HAS_TRIVIAL_QUERIES | 
						
						
						
							|  |  | 	//	Error += std::is_trivially_default_constructible<glm::quat>::value ? 0 : 1; | 
						
						
						
							|  |  | 	//	Error += std::is_trivially_default_constructible<glm::dquat>::value ? 0 : 1; | 
						
						
						
							|  |  | 	//	Error += std::is_trivially_copy_assignable<glm::quat>::value ? 0 : 1; | 
						
						
						
							|  |  | 	//	Error += std::is_trivially_copy_assignable<glm::dquat>::value ? 0 : 1; | 
						
						
						
							|  |  | 		Error += std::is_trivially_copyable<glm::quat>::value ? 0 : 1; | 
						
						
						
							|  |  | 		Error += std::is_trivially_copyable<glm::dquat>::value ? 0 : 1; | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 		Error += std::is_copy_constructible<glm::quat>::value ? 0 : 1; | 
						
						
						
							|  |  | 		Error += std::is_copy_constructible<glm::dquat>::value ? 0 : 1; | 
						
						
						
							|  |  | #	endif | 
						
						
						
							|  |  |  | 
						
						
						
							|  |  | #	if GLM_HAS_INITIALIZER_LISTS | 
						
						
						
							|  |  | 	{ | 
						
						
						
							|  |  | 		glm::quat A{0, 1, 2, 3}; | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 		std::vector<glm::quat> B{ | 
						
						
						
							|  |  | 			{0, 1, 2, 3}, | 
						
						
						
							|  |  | 			{0, 1, 2, 3}}; | 
						
						
						
							|  |  | 	} | 
						
						
						
							|  |  | #	endif//GLM_HAS_INITIALIZER_LISTS | 
						
						
						
							|  |  |  | 
						
						
						
							|  |  | 	return Error; | 
						
						
						
							|  |  | } | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | int main() | 
						
						
						
							|  |  | { | 
						
						
						
							|  |  | 	int Error(0); | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	Error += test_quat_ctr(); | 
						
						
						
							|  |  | 	Error += test_quat_mul_vec(); | 
						
						
						
							|  |  | 	Error += test_quat_two_axis_ctr(); | 
						
						
						
							|  |  | 	Error += test_quat_mul(); | 
						
						
						
							|  |  | 	Error += test_quat_precision(); | 
						
						
						
							|  |  | 	Error += test_quat_type(); | 
						
						
						
							|  |  | 	Error += test_quat_angle(); | 
						
						
						
							|  |  | 	Error += test_quat_angleAxis(); | 
						
						
						
							|  |  | 	Error += test_quat_mix(); | 
						
						
						
							|  |  | 	Error += test_quat_normalize(); | 
						
						
						
							|  |  | 	Error += test_quat_euler(); | 
						
						
						
							|  |  | 	Error += test_quat_slerp(); | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | 	return Error; | 
						
						
						
							|  |  | }
 | 
						
						
						
							|  |  | 
 |