You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
		
		
		
		
		
			
		
			
				
					
					
						
							642 lines
						
					
					
						
							17 KiB
						
					
					
				
			
		
		
	
	
							642 lines
						
					
					
						
							17 KiB
						
					
					
				| #include <glm/gtc/bitfield.hpp> | |
| #include <glm/gtc/type_precision.hpp> | |
| #include <glm/vector_relational.hpp> | |
| #include <glm/integer.hpp> | |
| #include <ctime> | |
| #include <cstdio> | |
| #include <vector> | |
|  | |
| namespace mask | |
| { | |
| 	template <typename genType> | |
| 	struct type | |
| 	{ | |
| 		genType		Value; | |
| 		genType		Return; | |
| 	}; | |
| 
 | |
| 	inline int mask_zero(int Bits) | |
| 	{ | |
| 		return ~((~0) << Bits); | |
| 	} | |
| 
 | |
| 	inline int mask_mix(int Bits) | |
| 	{ | |
| 		return Bits >= sizeof(int) * 8 ? 0xffffffff : (static_cast<int>(1) << Bits) - static_cast<int>(1); | |
| 	} | |
| 
 | |
| 	inline int mask_half(int Bits) | |
| 	{ | |
| 		// We do the shift in two steps because 1 << 32 on an int is undefined. | |
|  | |
| 		int const Half = Bits >> 1; | |
| 		int const Fill = ~0; | |
| 		int const ShiftHaft = (Fill << Half); | |
| 		int const Rest = Bits - Half; | |
| 		int const Reversed = ShiftHaft << Rest; | |
| 
 | |
| 		return ~Reversed; | |
| 	} | |
| 
 | |
| 	inline int mask_loop(int Bits) | |
| 	{ | |
| 		int Mask = 0; | |
| 		for(int Bit = 0; Bit < Bits; ++Bit) | |
| 			Mask |= (static_cast<int>(1) << Bit); | |
| 		return Mask; | |
| 	} | |
| 
 | |
| 	int perf() | |
| 	{ | |
| 		int const Count = 100000000; | |
| 
 | |
| 		std::clock_t Timestamp1 = std::clock(); | |
| 
 | |
| 		{ | |
| 			std::vector<int> Mask; | |
| 			Mask.resize(Count); | |
| 			for(int i = 0; i < Count; ++i) | |
| 				Mask[i] = mask_mix(i % 32); | |
| 		} | |
| 
 | |
| 		std::clock_t Timestamp2 = std::clock(); | |
| 
 | |
| 		{ | |
| 			std::vector<int> Mask; | |
| 			Mask.resize(Count); | |
| 			for(int i = 0; i < Count; ++i) | |
| 				Mask[i] = mask_loop(i % 32); | |
| 		} | |
| 
 | |
| 		std::clock_t Timestamp3 = std::clock(); | |
| 
 | |
| 		{ | |
| 			std::vector<int> Mask; | |
| 			Mask.resize(Count); | |
| 			for(int i = 0; i < Count; ++i) | |
| 				Mask[i] = glm::mask(i % 32); | |
| 		} | |
| 
 | |
| 		std::clock_t Timestamp4 = std::clock(); | |
| 
 | |
| 		{ | |
| 			std::vector<int> Mask; | |
| 			Mask.resize(Count); | |
| 			for(int i = 0; i < Count; ++i) | |
| 				Mask[i] = mask_zero(i % 32); | |
| 		} | |
| 
 | |
| 		std::clock_t Timestamp5 = std::clock(); | |
| 
 | |
| 		{ | |
| 			std::vector<int> Mask; | |
| 			Mask.resize(Count); | |
| 			for(int i = 0; i < Count; ++i) | |
| 				Mask[i] = mask_half(i % 32); | |
| 		} | |
| 
 | |
| 		std::clock_t Timestamp6 = std::clock(); | |
| 
 | |
| 		std::clock_t TimeMix = Timestamp2 - Timestamp1; | |
| 		std::clock_t TimeLoop = Timestamp3 - Timestamp2; | |
| 		std::clock_t TimeDefault = Timestamp4 - Timestamp3; | |
| 		std::clock_t TimeZero = Timestamp5 - Timestamp4; | |
| 		std::clock_t TimeHalf = Timestamp6 - Timestamp5; | |
| 
 | |
| 		printf("mask[mix]: %d\n", static_cast<unsigned int>(TimeMix)); | |
| 		printf("mask[loop]: %d\n", static_cast<unsigned int>(TimeLoop)); | |
| 		printf("mask[default]: %d\n", static_cast<unsigned int>(TimeDefault)); | |
| 		printf("mask[zero]: %d\n", static_cast<unsigned int>(TimeZero)); | |
| 		printf("mask[half]: %d\n", static_cast<unsigned int>(TimeHalf)); | |
| 
 | |
| 		return TimeDefault < TimeLoop ? 0 : 1; | |
| 	} | |
| 
 | |
| 	int test_uint() | |
| 	{ | |
| 		type<glm::uint> const Data[] = | |
| 		{ | |
| 			{ 0, 0x00000000}, | |
| 			{ 1, 0x00000001}, | |
| 			{ 2, 0x00000003}, | |
| 			{ 3, 0x00000007}, | |
| 			{31, 0x7fffffff}, | |
| 			{32, 0xffffffff} | |
| 		}; | |
| 
 | |
| 		int Error(0); | |
| /* mask_zero is sadly not a correct code | |
| 		for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) | |
| 		{ | |
| 			int Result = mask_zero(Data[i].Value); | |
| 			Error += Data[i].Return == Result ? 0 : 1; | |
| 		} | |
| */ | |
| 		for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) | |
| 		{ | |
| 			int Result = mask_mix(Data[i].Value); | |
| 			Error += Data[i].Return == Result ? 0 : 1; | |
| 		} | |
| 
 | |
| 		for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) | |
| 		{ | |
| 			int Result = mask_half(Data[i].Value); | |
| 			Error += Data[i].Return == Result ? 0 : 1; | |
| 		} | |
| 
 | |
| 		for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) | |
| 		{ | |
| 			int Result = mask_loop(Data[i].Value); | |
| 			Error += Data[i].Return == Result ? 0 : 1; | |
| 		} | |
| 
 | |
| 		for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) | |
| 		{ | |
| 			int Result = glm::mask(Data[i].Value); | |
| 			Error += Data[i].Return == Result ? 0 : 1; | |
| 		} | |
| 
 | |
| 		return Error; | |
| 	} | |
| 
 | |
| 	int test_uvec4() | |
| 	{ | |
| 		type<glm::ivec4> const Data[] = | |
| 		{ | |
| 			{glm::ivec4( 0), glm::ivec4(0x00000000)}, | |
| 			{glm::ivec4( 1), glm::ivec4(0x00000001)}, | |
| 			{glm::ivec4( 2), glm::ivec4(0x00000003)}, | |
| 			{glm::ivec4( 3), glm::ivec4(0x00000007)}, | |
| 			{glm::ivec4(31), glm::ivec4(0x7fffffff)}, | |
| 			{glm::ivec4(32), glm::ivec4(0xffffffff)} | |
| 		}; | |
| 
 | |
| 		int Error(0); | |
| 
 | |
| 		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::ivec4>); i < n; ++i) | |
| 		{ | |
| 			glm::ivec4 Result = glm::mask(Data[i].Value); | |
| 			Error += glm::all(glm::equal(Data[i].Return, Result)) ? 0 : 1; | |
| 		} | |
| 
 | |
| 		return Error; | |
| 	} | |
| 
 | |
| 	int test() | |
| 	{ | |
| 		int Error(0); | |
| 
 | |
| 		Error += test_uint(); | |
| 		Error += test_uvec4(); | |
| 
 | |
| 		return Error; | |
| 	} | |
| }//namespace mask | |
|  | |
| namespace bitfieldInterleave3 | |
| { | |
| 	template <typename PARAM, typename RET> | |
| 	inline RET refBitfieldInterleave(PARAM x, PARAM y, PARAM z) | |
| 	{ | |
| 		RET Result = 0;  | |
| 		for(RET i = 0; i < sizeof(PARAM) * 8; ++i) | |
| 		{ | |
| 			Result |= ((RET(x) & (RET(1U) << i)) << ((i << 1) + 0)); | |
| 			Result |= ((RET(y) & (RET(1U) << i)) << ((i << 1) + 1)); | |
| 			Result |= ((RET(z) & (RET(1U) << i)) << ((i << 1) + 2)); | |
| 		} | |
| 		return Result; | |
| 	} | |
| 
 | |
| 	int test() | |
| 	{ | |
| 		int Error(0); | |
| 
 | |
| 		glm::uint16 x_max = 1 << 11; | |
| 		glm::uint16 y_max = 1 << 11; | |
| 		glm::uint16 z_max = 1 << 11; | |
| 
 | |
| 		for(glm::uint16 z = 0; z < z_max; z += 27) | |
| 		for(glm::uint16 y = 0; y < y_max; y += 27) | |
| 		for(glm::uint16 x = 0; x < x_max; x += 27) | |
| 		{ | |
| 			glm::uint64 ResultA = refBitfieldInterleave<glm::uint16, glm::uint64>(x, y, z); | |
| 			glm::uint64 ResultB = glm::bitfieldInterleave(x, y, z); | |
| 			Error += ResultA == ResultB ? 0 : 1; | |
| 		} | |
| 
 | |
| 		return Error; | |
| 	} | |
| } | |
| 
 | |
| namespace bitfieldInterleave4 | |
| { | |
| 	template <typename PARAM, typename RET> | |
| 	inline RET loopBitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w) | |
| 	{ | |
| 		RET const v[4] = {x, y, z, w}; | |
| 		RET Result = 0;  | |
| 		for(RET i = 0; i < sizeof(PARAM) * 8; i++) | |
| 		{ | |
| 			Result |= ((((v[0] >> i) & 1U)) << ((i << 2) + 0)); | |
| 			Result |= ((((v[1] >> i) & 1U)) << ((i << 2) + 1)); | |
| 			Result |= ((((v[2] >> i) & 1U)) << ((i << 2) + 2)); | |
| 			Result |= ((((v[3] >> i) & 1U)) << ((i << 2) + 3)); | |
| 		} | |
| 		return Result; | |
| 	} | |
| 
 | |
| 	int test() | |
| 	{ | |
| 		int Error(0); | |
| 
 | |
| 		glm::uint16 x_max = 1 << 11; | |
| 		glm::uint16 y_max = 1 << 11; | |
| 		glm::uint16 z_max = 1 << 11; | |
| 		glm::uint16 w_max = 1 << 11; | |
| 
 | |
| 		for(glm::uint16 w = 0; w < w_max; w += 27) | |
| 		for(glm::uint16 z = 0; z < z_max; z += 27) | |
| 		for(glm::uint16 y = 0; y < y_max; y += 27) | |
| 		for(glm::uint16 x = 0; x < x_max; x += 27) | |
| 		{ | |
| 			glm::uint64 ResultA = loopBitfieldInterleave<glm::uint16, glm::uint64>(x, y, z, w); | |
| 			glm::uint64 ResultB = glm::bitfieldInterleave(x, y, z, w); | |
| 			Error += ResultA == ResultB ? 0 : 1; | |
| 		} | |
| 
 | |
| 		return Error; | |
| 	} | |
| } | |
| 
 | |
| namespace bitfieldInterleave | |
| { | |
| 	inline glm::uint64 fastBitfieldInterleave(glm::uint32 x, glm::uint32 y) | |
| 	{ | |
| 		glm::uint64 REG1; | |
| 		glm::uint64 REG2; | |
| 
 | |
| 		REG1 = x; | |
| 		REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); | |
| 		REG1 = ((REG1 <<  8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); | |
| 		REG1 = ((REG1 <<  4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); | |
| 		REG1 = ((REG1 <<  2) | REG1) & glm::uint64(0x3333333333333333); | |
| 		REG1 = ((REG1 <<  1) | REG1) & glm::uint64(0x5555555555555555); | |
| 
 | |
| 		REG2 = y; | |
| 		REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); | |
| 		REG2 = ((REG2 <<  8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); | |
| 		REG2 = ((REG2 <<  4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); | |
| 		REG2 = ((REG2 <<  2) | REG2) & glm::uint64(0x3333333333333333); | |
| 		REG2 = ((REG2 <<  1) | REG2) & glm::uint64(0x5555555555555555); | |
| 
 | |
| 		return REG1 | (REG2 << 1); | |
| 	} | |
| 
 | |
| 	inline glm::uint64 interleaveBitfieldInterleave(glm::uint32 x, glm::uint32 y) | |
| 	{ | |
| 		glm::uint64 REG1; | |
| 		glm::uint64 REG2; | |
| 
 | |
| 		REG1 = x; | |
| 		REG2 = y; | |
| 
 | |
| 		REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); | |
| 		REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); | |
| 
 | |
| 		REG1 = ((REG1 <<  8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); | |
| 		REG2 = ((REG2 <<  8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); | |
| 
 | |
| 		REG1 = ((REG1 <<  4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); | |
| 		REG2 = ((REG2 <<  4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); | |
| 
 | |
| 		REG1 = ((REG1 <<  2) | REG1) & glm::uint64(0x3333333333333333); | |
| 		REG2 = ((REG2 <<  2) | REG2) & glm::uint64(0x3333333333333333); | |
| 
 | |
| 		REG1 = ((REG1 <<  1) | REG1) & glm::uint64(0x5555555555555555); | |
| 		REG2 = ((REG2 <<  1) | REG2) & glm::uint64(0x5555555555555555); | |
| 
 | |
| 		return REG1 | (REG2 << 1); | |
| 	} | |
| /* | |
| 	inline glm::uint64 loopBitfieldInterleave(glm::uint32 x, glm::uint32 y) | |
| 	{ | |
| 		static glm::uint64 const Mask[5] =  | |
| 		{ | |
| 			0x5555555555555555, | |
| 			0x3333333333333333, | |
| 			0x0F0F0F0F0F0F0F0F, | |
| 			0x00FF00FF00FF00FF, | |
| 			0x0000FFFF0000FFFF | |
| 		}; | |
|  | |
| 		glm::uint64 REG1 = x; | |
| 		glm::uint64 REG2 = y; | |
| 		for(int i = 4; i >= 0; --i) | |
| 		{ | |
| 			REG1 = ((REG1 << (1 << i)) | REG1) & Mask[i]; | |
| 			REG2 = ((REG2 << (1 << i)) | REG2) & Mask[i]; | |
| 		} | |
|  | |
| 		return REG1 | (REG2 << 1); | |
| 	} | |
| */ | |
| #if(GLM_ARCH != GLM_ARCH_PURE) | |
| 	inline glm::uint64 sseBitfieldInterleave(glm::uint32 x, glm::uint32 y) | |
| 	{ | |
| 		GLM_ALIGN(16) glm::uint32 const Array[4] = {x, 0, y, 0}; | |
| 
 | |
| 		__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); | |
| 		__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); | |
| 		__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); | |
| 		__m128i const Mask1 = _mm_set1_epi32(0x33333333); | |
| 		__m128i const Mask0 = _mm_set1_epi32(0x55555555); | |
| 
 | |
| 		__m128i Reg1; | |
| 		__m128i Reg2; | |
| 
 | |
| 		// REG1 = x; | |
| 		// REG2 = y; | |
| 		Reg1 = _mm_load_si128((__m128i*)Array); | |
| 
 | |
| 		//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); | |
| 		//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); | |
| 		Reg2 = _mm_slli_si128(Reg1, 2); | |
| 		Reg1 = _mm_or_si128(Reg2, Reg1); | |
| 		Reg1 = _mm_and_si128(Reg1, Mask4); | |
| 
 | |
| 		//REG1 = ((REG1 <<  8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); | |
| 		//REG2 = ((REG2 <<  8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); | |
| 		Reg2 = _mm_slli_si128(Reg1, 1); | |
| 		Reg1 = _mm_or_si128(Reg2, Reg1); | |
| 		Reg1 = _mm_and_si128(Reg1, Mask3); | |
| 
 | |
| 		//REG1 = ((REG1 <<  4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); | |
| 		//REG2 = ((REG2 <<  4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); | |
| 		Reg2 = _mm_slli_epi32(Reg1, 4); | |
| 		Reg1 = _mm_or_si128(Reg2, Reg1); | |
| 		Reg1 = _mm_and_si128(Reg1, Mask2); | |
| 
 | |
| 		//REG1 = ((REG1 <<  2) | REG1) & glm::uint64(0x3333333333333333); | |
| 		//REG2 = ((REG2 <<  2) | REG2) & glm::uint64(0x3333333333333333); | |
| 		Reg2 = _mm_slli_epi32(Reg1, 2); | |
| 		Reg1 = _mm_or_si128(Reg2, Reg1); | |
| 		Reg1 = _mm_and_si128(Reg1, Mask1); | |
| 
 | |
| 		//REG1 = ((REG1 <<  1) | REG1) & glm::uint64(0x5555555555555555); | |
| 		//REG2 = ((REG2 <<  1) | REG2) & glm::uint64(0x5555555555555555); | |
| 		Reg2 = _mm_slli_epi32(Reg1, 1); | |
| 		Reg1 = _mm_or_si128(Reg2, Reg1); | |
| 		Reg1 = _mm_and_si128(Reg1, Mask0); | |
| 
 | |
| 		//return REG1 | (REG2 << 1); | |
| 		Reg2 = _mm_slli_epi32(Reg1, 1); | |
| 		Reg2 = _mm_srli_si128(Reg2, 8); | |
| 		Reg1 = _mm_or_si128(Reg1, Reg2); | |
| 	 | |
| 		GLM_ALIGN(16) glm::uint64 Result[2]; | |
| 		_mm_store_si128((__m128i*)Result, Reg1); | |
| 
 | |
| 		return Result[0]; | |
| 	} | |
| 
 | |
| 	inline glm::uint64 sseUnalignedBitfieldInterleave(glm::uint32 x, glm::uint32 y) | |
| 	{ | |
| 		glm::uint32 const Array[4] = {x, 0, y, 0}; | |
| 
 | |
| 		__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); | |
| 		__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); | |
| 		__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); | |
| 		__m128i const Mask1 = _mm_set1_epi32(0x33333333); | |
| 		__m128i const Mask0 = _mm_set1_epi32(0x55555555); | |
| 
 | |
| 		__m128i Reg1; | |
| 		__m128i Reg2; | |
| 
 | |
| 		// REG1 = x; | |
| 		// REG2 = y; | |
| 		Reg1 = _mm_loadu_si128((__m128i*)Array); | |
| 
 | |
| 		//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); | |
| 		//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); | |
| 		Reg2 = _mm_slli_si128(Reg1, 2); | |
| 		Reg1 = _mm_or_si128(Reg2, Reg1); | |
| 		Reg1 = _mm_and_si128(Reg1, Mask4); | |
| 
 | |
| 		//REG1 = ((REG1 <<  8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); | |
| 		//REG2 = ((REG2 <<  8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); | |
| 		Reg2 = _mm_slli_si128(Reg1, 1); | |
| 		Reg1 = _mm_or_si128(Reg2, Reg1); | |
| 		Reg1 = _mm_and_si128(Reg1, Mask3); | |
| 
 | |
| 		//REG1 = ((REG1 <<  4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); | |
| 		//REG2 = ((REG2 <<  4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); | |
| 		Reg2 = _mm_slli_epi32(Reg1, 4); | |
| 		Reg1 = _mm_or_si128(Reg2, Reg1); | |
| 		Reg1 = _mm_and_si128(Reg1, Mask2); | |
| 
 | |
| 		//REG1 = ((REG1 <<  2) | REG1) & glm::uint64(0x3333333333333333); | |
| 		//REG2 = ((REG2 <<  2) | REG2) & glm::uint64(0x3333333333333333); | |
| 		Reg2 = _mm_slli_epi32(Reg1, 2); | |
| 		Reg1 = _mm_or_si128(Reg2, Reg1); | |
| 		Reg1 = _mm_and_si128(Reg1, Mask1); | |
| 
 | |
| 		//REG1 = ((REG1 <<  1) | REG1) & glm::uint64(0x5555555555555555); | |
| 		//REG2 = ((REG2 <<  1) | REG2) & glm::uint64(0x5555555555555555); | |
| 		Reg2 = _mm_slli_epi32(Reg1, 1); | |
| 		Reg1 = _mm_or_si128(Reg2, Reg1); | |
| 		Reg1 = _mm_and_si128(Reg1, Mask0); | |
| 
 | |
| 		//return REG1 | (REG2 << 1); | |
| 		Reg2 = _mm_slli_epi32(Reg1, 1); | |
| 		Reg2 = _mm_srli_si128(Reg2, 8); | |
| 		Reg1 = _mm_or_si128(Reg1, Reg2); | |
| 	 | |
| 		glm::uint64 Result[2]; | |
| 		_mm_storeu_si128((__m128i*)Result, Reg1); | |
| 
 | |
| 		return Result[0]; | |
| 	} | |
| #endif//(GLM_ARCH != GLM_ARCH_PURE) | |
|  | |
| 	int test() | |
| 	{ | |
| 		{ | |
| 			for(glm::uint32 y = 0; y < (1 << 10); ++y) | |
| 			for(glm::uint32 x = 0; x < (1 << 10); ++x) | |
| 			{ | |
| 				glm::uint64 A = glm::bitfieldInterleave(x, y); | |
| 				glm::uint64 B = fastBitfieldInterleave(x, y); | |
| 				//glm::uint64 C = loopBitfieldInterleave(x, y); | |
| 				glm::uint64 D = interleaveBitfieldInterleave(x, y); | |
| 
 | |
| 				assert(A == B); | |
| 				//assert(A == C); | |
| 				assert(A == D); | |
| 
 | |
| #				if GLM_ARCH & GLM_ARCH_SSE2_BIT | |
| 					glm::uint64 E = sseBitfieldInterleave(x, y); | |
| 					glm::uint64 F = sseUnalignedBitfieldInterleave(x, y); | |
| 					assert(A == E); | |
| 					assert(A == F); | |
| 
 | |
| 					__m128i G = glm_i128_interleave(_mm_set_epi32(0, y, 0, x)); | |
| 					glm::uint64 Result[2]; | |
| 					_mm_storeu_si128((__m128i*)Result, G); | |
| 					assert(A == Result[0]); | |
| #				endif//GLM_ARCH & GLM_ARCH_SSE2_BIT | |
| 			} | |
| 		} | |
| 
 | |
| 		{ | |
| 			for(glm::uint8 y = 0; y < 127; ++y) | |
| 			for(glm::uint8 x = 0; x < 127; ++x) | |
| 			{ | |
| 				glm::uint64 A(glm::bitfieldInterleave(glm::uint8(x), glm::uint8(y))); | |
| 				glm::uint64 B(glm::bitfieldInterleave(glm::uint16(x), glm::uint16(y))); | |
| 				glm::uint64 C(glm::bitfieldInterleave(glm::uint32(x), glm::uint32(y))); | |
| 
 | |
| 				glm::int64 D(glm::bitfieldInterleave(glm::int8(x), glm::int8(y))); | |
| 				glm::int64 E(glm::bitfieldInterleave(glm::int16(x), glm::int16(y))); | |
| 				glm::int64 F(glm::bitfieldInterleave(glm::int32(x), glm::int32(y))); | |
| 
 | |
| 				assert(D == E); | |
| 				assert(D == F); | |
| 			} | |
| 		} | |
| 
 | |
| 		return 0; | |
| 	} | |
| 
 | |
| 	int perf() | |
| 	{ | |
| 		glm::uint32 x_max = 1 << 11; | |
| 		glm::uint32 y_max = 1 << 10; | |
| 
 | |
| 		// ALU | |
| 		std::vector<glm::uint64> Data(x_max * y_max); | |
| 		std::vector<glm::u32vec2> Param(x_max * y_max); | |
| 		for(glm::uint32 i = 0; i < Param.size(); ++i) | |
| 			Param[i] = glm::u32vec2(i % x_max, i / y_max); | |
| 
 | |
| 		{ | |
| 			std::clock_t LastTime = std::clock(); | |
| 
 | |
| 			for(std::size_t i = 0; i < Data.size(); ++i) | |
| 				Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y); | |
| 
 | |
| 			std::clock_t Time = std::clock() - LastTime; | |
| 
 | |
| 			std::printf("glm::bitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); | |
| 		} | |
| 
 | |
| 		{ | |
| 			std::clock_t LastTime = std::clock(); | |
| 
 | |
| 			for(std::size_t i = 0; i < Data.size(); ++i) | |
| 				Data[i] = fastBitfieldInterleave(Param[i].x, Param[i].y); | |
| 
 | |
| 			std::clock_t Time = std::clock() - LastTime; | |
| 
 | |
| 			std::printf("fastBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); | |
| 		} | |
| /* | |
| 		{ | |
| 			std::clock_t LastTime = std::clock(); | |
|  | |
| 			for(std::size_t i = 0; i < Data.size(); ++i) | |
| 				Data[i] = loopBitfieldInterleave(Param[i].x, Param[i].y); | |
|  | |
| 			std::clock_t Time = std::clock() - LastTime; | |
|  | |
| 			std::printf("loopBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); | |
| 		} | |
| */ | |
| 		{ | |
| 			std::clock_t LastTime = std::clock(); | |
| 
 | |
| 			for(std::size_t i = 0; i < Data.size(); ++i) | |
| 				Data[i] = interleaveBitfieldInterleave(Param[i].x, Param[i].y); | |
| 
 | |
| 			std::clock_t Time = std::clock() - LastTime; | |
| 
 | |
| 			std::printf("interleaveBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); | |
| 		} | |
| 
 | |
| #		if(GLM_ARCH != GLM_ARCH_PURE) | |
| 		{ | |
| 			std::clock_t LastTime = std::clock(); | |
| 
 | |
| 			for(std::size_t i = 0; i < Data.size(); ++i) | |
| 				Data[i] = sseBitfieldInterleave(Param[i].x, Param[i].y); | |
| 
 | |
| 			std::clock_t Time = std::clock() - LastTime; | |
| 
 | |
| 			std::printf("sseBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); | |
| 		} | |
| 
 | |
| 		{ | |
| 			std::clock_t LastTime = std::clock(); | |
| 
 | |
| 			for(std::size_t i = 0; i < Data.size(); ++i) | |
| 				Data[i] = sseUnalignedBitfieldInterleave(Param[i].x, Param[i].y); | |
| 
 | |
| 			std::clock_t Time = std::clock() - LastTime; | |
| 
 | |
| 			std::printf("sseUnalignedBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); | |
| 		} | |
| #		endif//(GLM_ARCH != GLM_ARCH_PURE) | |
|  | |
| 		{ | |
| 			std::clock_t LastTime = std::clock(); | |
| 
 | |
| 			for(std::size_t i = 0; i < Data.size(); ++i) | |
| 				Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y, Param[i].x); | |
| 
 | |
| 			std::clock_t Time = std::clock() - LastTime; | |
| 
 | |
| 			std::printf("glm::detail::bitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); | |
| 		} | |
| 
 | |
| #		if(GLM_ARCH & GLM_ARCH_SSE2_BIT && !(GLM_COMPILER & GLM_COMPILER_GCC)) | |
| 		{ | |
| 			// SIMD | |
| 			std::vector<__m128i> SimdData; | |
| 			SimdData.resize(x_max * y_max); | |
| 			std::vector<__m128i> SimdParam; | |
| 			SimdParam.resize(x_max * y_max); | |
| 			for(int i = 0; i < SimdParam.size(); ++i) | |
| 				SimdParam[i] = _mm_set_epi32(i % x_max, 0, i / y_max, 0); | |
| 
 | |
| 			std::clock_t LastTime = std::clock(); | |
| 
 | |
| 			for(std::size_t i = 0; i < SimdData.size(); ++i) | |
| 				SimdData[i] = glm_i128_interleave(SimdParam[i]); | |
| 
 | |
| 			std::clock_t Time = std::clock() - LastTime; | |
| 
 | |
| 			std::printf("_mm_bit_interleave_si128 Time %d clocks\n", static_cast<unsigned int>(Time)); | |
| 		} | |
| #		endif//GLM_ARCH & GLM_ARCH_SSE2_BIT | |
|  | |
| 		return 0; | |
| 	} | |
| }//namespace bitfieldInterleave | |
|  | |
| int main() | |
| { | |
| 	int Error(0); | |
| 
 | |
| 	Error += ::mask::test(); | |
| 	Error += ::bitfieldInterleave3::test(); | |
| 	Error += ::bitfieldInterleave4::test(); | |
| 	Error += ::bitfieldInterleave::test(); | |
| 	//Error += ::bitRevert::test(); | |
|  | |
| #	ifdef NDEBUG | |
| 		Error += ::mask::perf(); | |
| 		Error += ::bitfieldInterleave::perf(); | |
| #	endif//NDEBUG | |
|  | |
| 	return Error; | |
| }
 | |
| 
 |