You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
		
		
		
		
		
			
		
			
				
					
					
						
							324 lines
						
					
					
						
							8.8 KiB
						
					
					
				
			
		
		
	
	
							324 lines
						
					
					
						
							8.8 KiB
						
					
					
				| /////////////////////////////////////////////////////////////////////////////////// | |
| /// OpenGL Mathematics (glm.g-truc.net) | |
| /// | |
| /// Copyright (c) 2005 - 2012 G-Truc Creation (www.g-truc.net) | |
| /// Permission is hereby granted, free of charge, to any person obtaining a copy | |
| /// of this software and associated documentation files (the "Software"), to deal | |
| /// in the Software without restriction, including without limitation the rights | |
| /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
| /// copies of the Software, and to permit persons to whom the Software is | |
| /// furnished to do so, subject to the following conditions: | |
| ///  | |
| /// The above copyright notice and this permission notice shall be included in | |
| /// all copies or substantial portions of the Software. | |
| ///  | |
| /// Restrictions: | |
| ///		By making use of the Software for military purposes, you choose to make | |
| ///		a Bunny unhappy. | |
| ///  | |
| /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
| /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
| /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
| /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
| /// THE SOFTWARE. | |
| /// | |
| /// @file test/gtx/gtx_simd_mat4.cpp | |
| /// @date 2010-09-16 / 2014-11-25 | |
| /// @author Christophe Riccio | |
| /////////////////////////////////////////////////////////////////////////////////// | |
|  | |
| #include <glm/glm.hpp> | |
| #include <glm/gtc/matrix_transform.hpp> | |
| #include <glm/gtc/quaternion.hpp> | |
| #include <glm/gtc/random.hpp> | |
| #include <glm/gtx/simd_vec4.hpp> | |
| #include <glm/gtx/simd_mat4.hpp> | |
| #include <cstdio> | |
| #include <ctime> | |
| #include <vector> | |
|  | |
| #if(GLM_ARCH != GLM_ARCH_PURE) | |
|  | |
| std::vector<float> test_detA(std::vector<glm::mat4> const & Data) | |
| { | |
| 	std::vector<float> Test(Data.size()); | |
| 
 | |
| 	std::clock_t TimeStart = clock(); | |
| 
 | |
| 	for(std::size_t i = 0; i < Test.size() - 1; ++i) | |
| 		Test[i] = glm::determinant(Data[i]); | |
| 
 | |
| 	std::clock_t TimeEnd = clock(); | |
| 	printf("Det A: %ld\n", TimeEnd - TimeStart); | |
| 
 | |
| 	return Test; | |
| } | |
| 
 | |
| std::vector<float> test_detB(std::vector<glm::mat4> const & Data) | |
| { | |
| 	std::vector<float> Test(Data.size()); | |
| 
 | |
| 	std::clock_t TimeStart = clock(); | |
| 
 | |
| 	for(std::size_t i = 0; i < Test.size() - 1; ++i) | |
| 	{ | |
| 		_mm_prefetch((char*)&Data[i + 1], _MM_HINT_T0); | |
| 		glm::simdMat4 m(Data[i]); | |
| 		glm::simdVec4 d(glm::detail::sse_slow_det_ps((__m128 const * const)&m));  | |
| 		glm::vec4 v;//(d); | |
| 		Test[i] = v.x; | |
| 	} | |
| 
 | |
| 	std::clock_t TimeEnd = clock(); | |
| 	printf("Det B: %ld\n", TimeEnd - TimeStart); | |
| 
 | |
| 	return Test; | |
| } | |
| 
 | |
| std::vector<float> test_detC(std::vector<glm::mat4> const & Data) | |
| { | |
| 	std::vector<float> Test(Data.size()); | |
| 
 | |
| 	std::clock_t TimeStart = clock(); | |
| 
 | |
| 	for(std::size_t i = 0; i < Test.size() - 1; ++i) | |
| 	{ | |
| 		_mm_prefetch((char*)&Data[i + 1], _MM_HINT_T0); | |
| 		glm::simdMat4 m(Data[i]); | |
| 		glm::simdVec4 d(glm::detail::sse_det_ps((__m128 const * const)&m)); | |
| 		glm::vec4 v;//(d); | |
| 		Test[i] = v.x; | |
| 	} | |
| 
 | |
| 	std::clock_t TimeEnd = clock(); | |
| 	printf("Det C: %ld\n", TimeEnd - TimeStart); | |
| 
 | |
| 	return Test; | |
| } | |
| 
 | |
| std::vector<float> test_detD(std::vector<glm::mat4> const & Data) | |
| { | |
| 	std::vector<float> Test(Data.size()); | |
| 
 | |
| 	std::clock_t TimeStart = clock(); | |
| 
 | |
| 	for(std::size_t i = 0; i < Test.size() - 1; ++i) | |
| 	{ | |
| 		_mm_prefetch((char*)&Data[i + 1], _MM_HINT_T0); | |
| 		glm::simdMat4 m(Data[i]); | |
| 		glm::simdVec4 d(glm::detail::sse_detd_ps((__m128 const * const)&m)); | |
| 		glm::vec4 v;//(d);  | |
| 		Test[i] = v.x; | |
| 	} | |
| 
 | |
| 	std::clock_t TimeEnd = clock(); | |
| 	printf("Det D: %ld\n", TimeEnd - TimeStart); | |
| 
 | |
| 	return Test; | |
| } | |
| 
 | |
| void test_invA(std::vector<glm::mat4> const & Data, std::vector<glm::mat4> & Out) | |
| { | |
| 	//std::vector<float> Test(Data.size()); | |
| 	Out.resize(Data.size()); | |
| 
 | |
| 	std::clock_t TimeStart = clock(); | |
| 
 | |
| 	for(std::size_t i = 0; i < Out.size() - 1; ++i) | |
| 	{ | |
| 		Out[i] = glm::inverse(Data[i]); | |
| 	} | |
| 
 | |
| 	std::clock_t TimeEnd = clock(); | |
| 	printf("Inv A: %ld\n", TimeEnd - TimeStart); | |
| } | |
| 
 | |
| void test_invC(std::vector<glm::mat4> const & Data, std::vector<glm::mat4> & Out) | |
| { | |
| 	//std::vector<float> Test(Data.size()); | |
| 	Out.resize(Data.size()); | |
| 
 | |
| 	std::clock_t TimeStart = clock(); | |
| 
 | |
| 	for(std::size_t i = 0; i < Out.size() - 1; ++i) | |
| 	{ | |
| 		_mm_prefetch((char*)&Data[i + 1], _MM_HINT_T0); | |
| 		glm::simdMat4 m(Data[i]); | |
| 		glm::simdMat4 o; | |
| 		glm::detail::sse_inverse_fast_ps((__m128 const * const)&m, (__m128 *)&o); | |
| 		Out[i] = *(glm::mat4*)&o; | |
| 	} | |
| 
 | |
| 	std::clock_t TimeEnd = clock(); | |
| 	printf("Inv C: %ld\n", TimeEnd - TimeStart); | |
| } | |
| 
 | |
| void test_invD(std::vector<glm::mat4> const & Data, std::vector<glm::mat4> & Out) | |
| { | |
| 	//std::vector<float> Test(Data.size()); | |
| 	Out.resize(Data.size()); | |
| 
 | |
| 	std::clock_t TimeStart = clock(); | |
| 
 | |
| 	for(std::size_t i = 0; i < Out.size() - 1; ++i) | |
| 	{ | |
| 		_mm_prefetch((char*)&Data[i + 1], _MM_HINT_T0); | |
| 		glm::simdMat4 m(Data[i]); | |
| 		glm::simdMat4 o; | |
| 		glm::detail::sse_inverse_ps((__m128 const * const)&m, (__m128 *)&o); | |
| 		Out[i] = *(glm::mat4*)&o; | |
| 	} | |
| 
 | |
| 	std::clock_t TimeEnd = clock(); | |
| 	printf("Inv D: %ld\n", TimeEnd - TimeStart); | |
| } | |
| 
 | |
| void test_mulA(std::vector<glm::mat4> const & Data, std::vector<glm::mat4> & Out) | |
| { | |
| 	//std::vector<float> Test(Data.size()); | |
| 	Out.resize(Data.size()); | |
| 
 | |
| 	std::clock_t TimeStart = clock(); | |
| 
 | |
| 	for(std::size_t i = 0; i < Out.size() - 1; ++i) | |
| 	{ | |
| 		Out[i] = Data[i] * Data[i]; | |
| 	} | |
| 
 | |
| 	std::clock_t TimeEnd = clock(); | |
| 	printf("Mul A: %ld\n", TimeEnd - TimeStart); | |
| } | |
| 
 | |
| void test_mulD(std::vector<glm::mat4> const & Data, std::vector<glm::mat4> & Out) | |
| { | |
| 	//std::vector<float> Test(Data.size()); | |
| 	Out.resize(Data.size()); | |
| 
 | |
| 	std::clock_t TimeStart = clock(); | |
| 
 | |
| 	for(std::size_t i = 0; i < Out.size() - 1; ++i) | |
| 	{ | |
| 		_mm_prefetch((char*)&Data[i + 1], _MM_HINT_T0); | |
| 		glm::simdMat4 m(Data[i]); | |
| 		glm::simdMat4 o; | |
| 		glm::detail::sse_mul_ps((__m128 const * const)&m, (__m128 const * const)&m, (__m128*)&o); | |
| 		Out[i] = *(glm::mat4*)&o; | |
| 	} | |
| 
 | |
| 	std::clock_t TimeEnd = clock(); | |
| 	printf("Mul D: %ld\n", TimeEnd - TimeStart); | |
| } | |
| 
 | |
| int test_compute_glm() | |
| { | |
| 	return 0; | |
| } | |
| 
 | |
| int test_compute_gtx() | |
| { | |
| 	std::vector<glm::vec4> Output(1000000); | |
| 
 | |
| 	std::clock_t TimeStart = clock(); | |
| 
 | |
| 	for(std::size_t k = 0; k < Output.size(); ++k) | |
| 	{ | |
| 		float i = float(k) / 1000.f + 0.001f; | |
| 		glm::vec3 A = glm::normalize(glm::vec3(i)); | |
| 		glm::vec3 B = glm::cross(A, glm::normalize(glm::vec3(1, 1, 2))); | |
| 		glm::mat4 C = glm::rotate(glm::mat4(1.0f), i, B); | |
| 		glm::mat4 D = glm::scale(C, glm::vec3(0.8f, 1.0f, 1.2f)); | |
| 		glm::mat4 E = glm::translate(D, glm::vec3(1.4f, 1.2f, 1.1f)); | |
| 		glm::mat4 F = glm::perspective(i, 1.5f, 0.1f, 1000.f); | |
| 		glm::mat4 G = glm::inverse(F * E); | |
| 		glm::vec3 H = glm::unProject(glm::vec3(i), G, F, E[3]); | |
| 		glm::vec3 I = glm::any(glm::isnan(glm::project(H, G, F, E[3]))) ? glm::vec3(2) : glm::vec3(1); | |
| 		glm::mat4 J = glm::lookAt(glm::normalize(glm::max(B, glm::vec3(0.001f))), H, I); | |
| 		glm::mat4 K = glm::transpose(J); | |
| 		glm::quat L = glm::normalize(glm::quat_cast(K)); | |
| 		glm::vec4 M = L * glm::smoothstep(K[3], J[3], glm::vec4(i)); | |
| 		glm::mat4 N = glm::mat4(glm::normalize(glm::max(M, glm::vec4(0.001f))), K[3], J[3], glm::vec4(i)); | |
| 		glm::mat4 O = N * glm::inverse(N); | |
| 		glm::vec4 P = O * glm::reflect(N[3], glm::vec4(A, 1.0f)); | |
| 		glm::vec4 Q = glm::vec4(glm::dot(M, P)); | |
| 		glm::vec4 R = glm::quat(Q.w, glm::vec3(Q)) * P; | |
| 		Output[k] = R; | |
| 	} | |
| 
 | |
| 	std::clock_t TimeEnd = clock(); | |
| 	printf("test_compute_gtx: %ld\n", TimeEnd - TimeStart); | |
| 
 | |
| 	return 0; | |
| } | |
| 
 | |
| int main() | |
| { | |
| 	int Error = 0; | |
| 
 | |
| 	std::vector<glm::mat4> Data(64 * 64 * 1); | |
| 	for(std::size_t i = 0; i < Data.size(); ++i) | |
| 		Data[i] = glm::mat4( | |
| 			glm::vec4(glm::linearRand(glm::vec4(-2.0f), glm::vec4(2.0f))), | |
| 			glm::vec4(glm::linearRand(glm::vec4(-2.0f), glm::vec4(2.0f))), | |
| 			glm::vec4(glm::linearRand(glm::vec4(-2.0f), glm::vec4(2.0f))), | |
| 			glm::vec4(glm::linearRand(glm::vec4(-2.0f), glm::vec4(2.0f)))); | |
| 
 | |
| 	{ | |
| 		std::vector<glm::mat4> TestInvA; | |
| 		test_invA(Data, TestInvA); | |
| 	} | |
| 	{ | |
| 		std::vector<glm::mat4> TestInvC; | |
| 		test_invC(Data, TestInvC); | |
| 	} | |
| 	{ | |
| 		std::vector<glm::mat4> TestInvD; | |
| 		test_invD(Data, TestInvD); | |
| 	} | |
| 
 | |
| 	{ | |
| 		std::vector<glm::mat4> TestA; | |
| 		test_mulA(Data, TestA); | |
| 	} | |
| 	{ | |
| 		std::vector<glm::mat4> TestD; | |
| 		test_mulD(Data, TestD); | |
| 	} | |
| 
 | |
| 	{ | |
| 		std::vector<float> TestDetA = test_detA(Data); | |
| 		std::vector<float> TestDetB = test_detB(Data); | |
| 		std::vector<float> TestDetD = test_detD(Data); | |
| 		std::vector<float> TestDetC = test_detC(Data); | |
| 
 | |
| 		for(std::size_t i = 0; i < TestDetA.size(); ++i) | |
| 			if(TestDetA[i] != TestDetB[i] && TestDetC[i] != TestDetB[i] && TestDetC[i] != TestDetD[i]) | |
| 				return 1; | |
| 	} | |
| 
 | |
| 	// shuffle test | |
| 	glm::simdVec4 A(1.0f, 2.0f, 3.0f, 4.0f); | |
| 	glm::simdVec4 B(5.0f, 6.0f, 7.0f, 8.0f); | |
| 	//__m128 C = _mm_shuffle_ps(A.Data, B.Data, _MM_SHUFFLE(1, 0, 1, 0)); | |
|  | |
| 	Error += test_compute_glm(); | |
| 	Error += test_compute_gtx(); | |
| 	float Det = glm::determinant(glm::simdMat4(1.0)); | |
| 	Error += Det == 1.0f ? 0 : 1; | |
| 	 | |
| 	glm::simdMat4 D = glm::matrixCompMult(glm::simdMat4(1.0), glm::simdMat4(1.0)); | |
| 
 | |
| 	return Error; | |
| } | |
| 
 | |
| #else | |
|  | |
| int main() | |
| { | |
| 	int Error = 0; | |
| 
 | |
| 	return Error; | |
| } | |
| 
 | |
| #endif//(GLM_ARCH != GLM_ARCH_PURE)
 | |
| 
 |