You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
		
		
		
		
		
			
		
			
				
					
					
						
							392 lines
						
					
					
						
							10 KiB
						
					
					
				
			
		
		
	
	
							392 lines
						
					
					
						
							10 KiB
						
					
					
				#include <glm/ext/matrix_relational.hpp> | 
						|
#include <glm/ext/matrix_transform.hpp> | 
						|
#include <glm/ext/scalar_constants.hpp> | 
						|
#include <glm/mat2x2.hpp> | 
						|
#include <glm/mat2x3.hpp> | 
						|
#include <glm/mat2x4.hpp> | 
						|
#include <glm/mat3x2.hpp> | 
						|
#include <glm/mat3x3.hpp> | 
						|
#include <glm/mat3x4.hpp> | 
						|
#include <glm/mat4x2.hpp> | 
						|
#include <glm/mat4x3.hpp> | 
						|
#include <glm/mat4x4.hpp> | 
						|
#include <vector> | 
						|
#include <ctime> | 
						|
#include <cstdio> | 
						|
 | 
						|
using namespace glm; | 
						|
 | 
						|
int test_matrixCompMult() | 
						|
{ | 
						|
	int Error(0); | 
						|
 | 
						|
	{ | 
						|
		mat2 m(0, 1, 2, 3); | 
						|
		mat2 n = matrixCompMult(m, m); | 
						|
		mat2 expected = mat2(0, 1, 4, 9); | 
						|
		Error += all(equal(n, expected, epsilon<float>())) ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	{ | 
						|
		mat2x3 m(0, 1, 2, 3, 4, 5); | 
						|
		mat2x3 n = matrixCompMult(m, m); | 
						|
		mat2x3 expected = mat2x3(0, 1, 4, 9, 16, 25); | 
						|
		Error += all(equal(n, expected, epsilon<float>())) ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	{ | 
						|
		mat2x4 m(0, 1, 2, 3, 4, 5, 6, 7); | 
						|
		mat2x4 n = matrixCompMult(m, m); | 
						|
		mat2x4 expected = mat2x4(0, 1, 4, 9, 16, 25, 36, 49); | 
						|
		Error += all(equal(n, expected, epsilon<float>())) ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	{ | 
						|
		mat3 m(0, 1, 2, 3, 4, 5, 6, 7, 8); | 
						|
		mat3 n = matrixCompMult(m, m); | 
						|
		mat3 expected = mat3(0, 1, 4, 9, 16, 25, 36, 49, 64); | 
						|
		Error += all(equal(n, expected, epsilon<float>())) ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	{ | 
						|
		mat3x2 m(0, 1, 2, 3, 4, 5); | 
						|
		mat3x2 n = matrixCompMult(m, m); | 
						|
		mat3x2 expected = mat3x2(0, 1, 4, 9, 16, 25); | 
						|
		Error += all(equal(n, expected, epsilon<float>())) ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	{ | 
						|
		mat3x4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); | 
						|
		mat3x4 n = matrixCompMult(m, m); | 
						|
		mat3x4 expected = mat3x4(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121); | 
						|
		Error += all(equal(n, expected, epsilon<float>())) ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	{ | 
						|
		mat4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); | 
						|
		mat4 n = matrixCompMult(m, m); | 
						|
		mat4 expected = mat4(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225); | 
						|
		Error += all(equal(n, expected, epsilon<float>())) ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	{ | 
						|
		mat4x2 m(0, 1, 2, 3, 4, 5, 6, 7); | 
						|
		mat4x2 n = matrixCompMult(m, m); | 
						|
		mat4x2 expected = mat4x2(0, 1, 4, 9, 16, 25, 36, 49); | 
						|
		Error += all(equal(n, expected, epsilon<float>())) ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	{ | 
						|
		mat4x3 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); | 
						|
		mat4x3 n = matrixCompMult(m, m); | 
						|
		mat4x3 expected = mat4x3(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121); | 
						|
		Error += all(equal(n, expected, epsilon<float>())) ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	return Error; | 
						|
} | 
						|
 | 
						|
int test_outerProduct() | 
						|
{ | 
						|
	{ glm::mat2 m = glm::outerProduct(glm::vec2(1.0f), glm::vec2(1.0f)); } | 
						|
	{ glm::mat3 m = glm::outerProduct(glm::vec3(1.0f), glm::vec3(1.0f)); } | 
						|
	{ glm::mat4 m = glm::outerProduct(glm::vec4(1.0f), glm::vec4(1.0f)); } | 
						|
 | 
						|
	{ glm::mat2x3 m = glm::outerProduct(glm::vec3(1.0f), glm::vec2(1.0f)); } | 
						|
	{ glm::mat2x4 m = glm::outerProduct(glm::vec4(1.0f), glm::vec2(1.0f)); } | 
						|
 | 
						|
	{ glm::mat3x2 m = glm::outerProduct(glm::vec2(1.0f), glm::vec3(1.0f)); } | 
						|
	{ glm::mat3x4 m = glm::outerProduct(glm::vec4(1.0f), glm::vec3(1.0f)); } | 
						|
   | 
						|
	{ glm::mat4x2 m = glm::outerProduct(glm::vec2(1.0f), glm::vec4(1.0f)); } | 
						|
	{ glm::mat4x3 m = glm::outerProduct(glm::vec3(1.0f), glm::vec4(1.0f)); } | 
						|
 | 
						|
	return 0; | 
						|
} | 
						|
 | 
						|
int test_transpose() | 
						|
{ | 
						|
	int Error(0); | 
						|
 | 
						|
	{ | 
						|
		mat2 const m(0, 1, 2, 3); | 
						|
		mat2 const t = transpose(m); | 
						|
		mat2 const expected = mat2(0, 2, 1, 3); | 
						|
		Error += all(equal(t, expected, epsilon<float>())) ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	{ | 
						|
		mat2x3 m(0, 1, 2, 3, 4, 5); | 
						|
		mat3x2 t = transpose(m); | 
						|
		mat3x2 const expected = mat3x2(0, 3, 1, 4, 2, 5); | 
						|
		Error += all(equal(t, expected, epsilon<float>())) ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	{ | 
						|
		mat2x4 m(0, 1, 2, 3, 4, 5, 6, 7); | 
						|
		mat4x2 t = transpose(m); | 
						|
		mat4x2 const expected = mat4x2(0, 4, 1, 5, 2, 6, 3, 7); | 
						|
		Error += all(equal(t, expected, epsilon<float>())) ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	{ | 
						|
		mat3 m(0, 1, 2, 3, 4, 5, 6, 7, 8); | 
						|
		mat3 t = transpose(m); | 
						|
		mat3 const expected = mat3(0, 3, 6, 1, 4, 7, 2, 5, 8); | 
						|
		Error += all(equal(t, expected, epsilon<float>())) ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	{ | 
						|
		mat3x2 m(0, 1, 2, 3, 4, 5); | 
						|
		mat2x3 t = transpose(m); | 
						|
		mat2x3 const expected = mat2x3(0, 2, 4, 1, 3, 5); | 
						|
		Error += all(equal(t, expected, epsilon<float>())) ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	{ | 
						|
		mat3x4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); | 
						|
		mat4x3 t = transpose(m); | 
						|
		mat4x3 const expected = mat4x3(0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11); | 
						|
		Error += all(equal(t, expected, epsilon<float>())) ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	{ | 
						|
		mat4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); | 
						|
		mat4 t = transpose(m); | 
						|
		mat4 const expected = mat4(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15); | 
						|
		Error += all(equal(t, expected, epsilon<float>())) ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	{ | 
						|
		mat4x2 m(0, 1, 2, 3, 4, 5, 6, 7); | 
						|
		mat2x4 t = transpose(m); | 
						|
		mat2x4 const expected = mat2x4(0, 2, 4, 6, 1, 3, 5, 7); | 
						|
		Error += all(equal(t, expected, epsilon<float>())) ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	{ | 
						|
		mat4x3 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); | 
						|
		mat3x4 t = transpose(m); | 
						|
		mat3x4 const expected = mat3x4(0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11); | 
						|
		Error += all(equal(t, expected, epsilon<float>())) ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	return Error; | 
						|
} | 
						|
 | 
						|
int test_determinant() | 
						|
{ | 
						|
 | 
						|
 | 
						|
	return 0; | 
						|
} | 
						|
 | 
						|
int test_inverse() | 
						|
{ | 
						|
	int Error = 0; | 
						|
 | 
						|
	{ | 
						|
		glm::mat4x4 A4x4( | 
						|
			glm::vec4(1, 0, 1, 0),  | 
						|
			glm::vec4(0, 1, 0, 0),  | 
						|
			glm::vec4(0, 0, 1, 0),  | 
						|
			glm::vec4(0, 0, 0, 1)); | 
						|
		glm::mat4x4 B4x4 = inverse(A4x4); | 
						|
		glm::mat4x4 I4x4 = A4x4 * B4x4; | 
						|
		glm::mat4x4 Identity(1); | 
						|
		Error += all(equal(I4x4, Identity, epsilon<float>())) ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	{ | 
						|
		glm::mat3x3 A3x3( | 
						|
			glm::vec3(1, 0, 1),  | 
						|
			glm::vec3(0, 1, 0),  | 
						|
			glm::vec3(0, 0, 1)); | 
						|
		glm::mat3x3 B3x3 = glm::inverse(A3x3); | 
						|
		glm::mat3x3 I3x3 = A3x3 * B3x3; | 
						|
		glm::mat3x3 Identity(1); | 
						|
		Error += all(equal(I3x3, Identity, epsilon<float>())) ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	{ | 
						|
		glm::mat2x2 A2x2( | 
						|
			glm::vec2(1, 1),  | 
						|
			glm::vec2(0, 1)); | 
						|
		glm::mat2x2 B2x2 = glm::inverse(A2x2); | 
						|
		glm::mat2x2 I2x2 = A2x2 * B2x2; | 
						|
		glm::mat2x2 Identity(1); | 
						|
		Error += all(equal(I2x2, Identity, epsilon<float>())) ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	return Error; | 
						|
} | 
						|
 | 
						|
int test_inverse_simd() | 
						|
{ | 
						|
	int Error = 0; | 
						|
 | 
						|
	glm::mat4x4 const Identity(1); | 
						|
 | 
						|
	glm::mat4x4 const A4x4( | 
						|
		glm::vec4(1, 0, 1, 0), | 
						|
		glm::vec4(0, 1, 0, 0), | 
						|
		glm::vec4(0, 0, 1, 0), | 
						|
		glm::vec4(0, 0, 0, 1)); | 
						|
	glm::mat4x4 const B4x4 = glm::inverse(A4x4); | 
						|
	glm::mat4x4 const I4x4 = A4x4 * B4x4; | 
						|
 | 
						|
	Error += glm::all(glm::equal(I4x4, Identity, 0.001f)) ? 0 : 1; | 
						|
 | 
						|
	return Error; | 
						|
} | 
						|
 | 
						|
int test_shearing() | 
						|
{ | 
						|
    int Error = 0; | 
						|
 | 
						|
    { | 
						|
        glm::vec3 const center(0, 0, 0); | 
						|
        glm::vec2 const l_x(2, 0); | 
						|
        glm::vec2 const l_y(0, 0); | 
						|
        glm::vec2 const l_z(0, 0); | 
						|
        glm::mat4x4 const A4x4( | 
						|
                glm::vec4(0, 0, 1, 1), | 
						|
                glm::vec4(0, 1, 1, 0), | 
						|
                glm::vec4(1, 1, 1, 0), | 
						|
                glm::vec4(1, 1, 0, 1)); | 
						|
        glm::mat4x4 const B4x4 = glm::shear(A4x4, center, l_x, l_y, l_z); | 
						|
        glm::mat4x4 const expected( | 
						|
                glm::vec4(0, 0, 1, 1), | 
						|
                glm::vec4(2, 1, 1, 0), | 
						|
                glm::vec4(3, 1, 1, 0), | 
						|
                glm::vec4(3, 1, 0, 1)); | 
						|
        Error += all(equal(B4x4, expected, epsilon<float>())) ? 0 : 1; | 
						|
    } | 
						|
 | 
						|
    { | 
						|
        glm::vec3 const center(0, 0, 0); | 
						|
        glm::vec2 const l_x(1, 0); | 
						|
        glm::vec2 const l_y(0, 1); | 
						|
        glm::vec2 const l_z(1, 0); | 
						|
        glm::mat4x4 const A4x4( | 
						|
                glm::vec4(0, 0, 1, 0), | 
						|
                glm::vec4(0, 1, 1, 0), | 
						|
                glm::vec4(1, 1, 1, 0), | 
						|
                glm::vec4(1, 0, 0, 0)); | 
						|
        glm::mat4x4 const B4x4 = glm::shear(A4x4, center, l_x, l_y, l_z); | 
						|
        glm::mat4x4 const expected( | 
						|
                glm::vec4(0, 1, 1, 0), | 
						|
                glm::vec4(1, 2, 1, 0), | 
						|
                glm::vec4(2, 2, 2, 0), | 
						|
                glm::vec4(1, 0, 1, 0)); | 
						|
        Error += all(equal(B4x4, expected, epsilon<float>())) ? 0 : 1; | 
						|
    } | 
						|
 | 
						|
    { | 
						|
        glm::vec3 const center(3, 2, 1); | 
						|
        glm::vec2 const l_x(1, 2); | 
						|
        glm::vec2 const l_y(3, 1); | 
						|
        glm::vec2 const l_z(4, 5); | 
						|
        glm::mat4x4 const A4x4(1); | 
						|
        glm::mat4x4 const B4x4 = glm::shear(A4x4, center, l_x, l_y, l_z); | 
						|
        glm::mat4x4 const expected( | 
						|
                glm::vec4(1, 3, 4, 0), | 
						|
                glm::vec4(1, 1, 5, 0), | 
						|
                glm::vec4(2, 1, 1, 0), | 
						|
                glm::vec4(-9, -8, -9, 1)); | 
						|
        Error += all(equal(B4x4, expected, epsilon<float>())) ? 0 : 1; | 
						|
    } | 
						|
 | 
						|
    { | 
						|
        glm::vec3 const center(3, 2, 1); | 
						|
        glm::vec2 const l_x(1, 2); | 
						|
        glm::vec2 const l_y(3, 1); | 
						|
        glm::vec2 const l_z(4, 5); | 
						|
        glm::mat4x4 const A4x4( | 
						|
                glm::vec4(-3, 2, 1, 0), | 
						|
                glm::vec4(3, 2, 1, 0), | 
						|
                glm::vec4(4, -8, 0, 0), | 
						|
                glm::vec4(7, 1, -2, 0)); | 
						|
        glm::mat4x4 const B4x4 = glm::shear(A4x4, center, l_x, l_y, l_z); | 
						|
        glm::mat4x4 const expected( | 
						|
                glm::vec4(1, -6, -1, 0), | 
						|
                glm::vec4(7, 12, 23, 0), | 
						|
                glm::vec4(-4, 4, -24, 0), | 
						|
                glm::vec4(4, 20, 31, 0)); | 
						|
        Error += all(equal(B4x4, expected, epsilon<float>())) ? 0 : 1; | 
						|
    } | 
						|
 | 
						|
    return Error; | 
						|
} | 
						|
 | 
						|
template<typename VEC3, typename MAT4> | 
						|
int test_inverse_perf(std::size_t Count, std::size_t Instance, char const * Message) | 
						|
{ | 
						|
	std::vector<MAT4> TestInputs; | 
						|
	TestInputs.resize(Count); | 
						|
	std::vector<MAT4> TestOutputs; | 
						|
	TestOutputs.resize(TestInputs.size()); | 
						|
 | 
						|
	VEC3 Axis(glm::normalize(VEC3(1.0f, 2.0f, 3.0f))); | 
						|
 | 
						|
	for(std::size_t i = 0; i < TestInputs.size(); ++i) | 
						|
	{ | 
						|
		typename MAT4::value_type f = static_cast<typename MAT4::value_type>(i + Instance) * typename MAT4::value_type(0.1) + typename MAT4::value_type(0.1); | 
						|
		TestInputs[i] = glm::rotate(glm::translate(MAT4(1), Axis * f), f, Axis); | 
						|
		//TestInputs[i] = glm::translate(MAT4(1), Axis * f); | 
						|
	} | 
						|
 | 
						|
	std::clock_t StartTime = std::clock(); | 
						|
 | 
						|
	for(std::size_t i = 0; i < TestInputs.size(); ++i) | 
						|
		TestOutputs[i] = glm::inverse(TestInputs[i]); | 
						|
 | 
						|
	std::clock_t EndTime = std::clock(); | 
						|
 | 
						|
	for(std::size_t i = 0; i < TestInputs.size(); ++i) | 
						|
		TestOutputs[i] = TestOutputs[i] * TestInputs[i]; | 
						|
 | 
						|
	typename MAT4::value_type Diff(0); | 
						|
	for(std::size_t Entry = 0; Entry < TestOutputs.size(); ++Entry) | 
						|
	{ | 
						|
		MAT4 i(1.0); | 
						|
		MAT4 m(TestOutputs[Entry]); | 
						|
		for(glm::length_t y = 0; y < m.length(); ++y) | 
						|
		for(glm::length_t x = 0; x < m[y].length(); ++x) | 
						|
			Diff = glm::max(m[y][x], i[y][x]); | 
						|
	} | 
						|
 | 
						|
	//glm::uint Ulp = 0; | 
						|
	//Ulp = glm::max(glm::float_distance(*Dst, *Src), Ulp); | 
						|
 | 
						|
	std::printf("inverse<%s>(%f): %lu\n", Message, static_cast<double>(Diff), EndTime - StartTime); | 
						|
 | 
						|
	return 0; | 
						|
} | 
						|
 | 
						|
int main() | 
						|
{ | 
						|
	int Error = 0; | 
						|
	Error += test_matrixCompMult(); | 
						|
	Error += test_outerProduct(); | 
						|
	Error += test_transpose(); | 
						|
	Error += test_determinant(); | 
						|
	Error += test_inverse(); | 
						|
    Error += test_inverse_simd(); | 
						|
    Error += test_shearing(); | 
						|
 | 
						|
#	ifdef NDEBUG | 
						|
	std::size_t const Samples = 1000; | 
						|
#	else | 
						|
	std::size_t const Samples = 1; | 
						|
#	endif//NDEBUG | 
						|
 | 
						|
	for(std::size_t i = 0; i < 1; ++i) | 
						|
	{ | 
						|
		Error += test_inverse_perf<glm::vec3, glm::mat4>(Samples, i, "mat4"); | 
						|
		Error += test_inverse_perf<glm::dvec3, glm::dmat4>(Samples, i, "dmat4"); | 
						|
	} | 
						|
 | 
						|
	return Error; | 
						|
} | 
						|
 | 
						|
 |