You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
		
		
		
		
		
			
		
			
				
					
					
						
							1556 lines
						
					
					
						
							39 KiB
						
					
					
				
			
		
		
	
	
							1556 lines
						
					
					
						
							39 KiB
						
					
					
				#include <glm/integer.hpp> | 
						|
#include <glm/vector_relational.hpp> | 
						|
#include <glm/ext/vector_int1.hpp> | 
						|
#include <glm/ext/vector_int2.hpp> | 
						|
#include <glm/ext/vector_int3.hpp> | 
						|
#include <glm/ext/vector_int4.hpp> | 
						|
#include <glm/ext/vector_uint1.hpp> | 
						|
#include <glm/ext/vector_uint2.hpp> | 
						|
#include <glm/ext/vector_uint3.hpp> | 
						|
#include <glm/ext/vector_uint4.hpp> | 
						|
#include <glm/ext/scalar_int_sized.hpp> | 
						|
#include <glm/ext/scalar_uint_sized.hpp> | 
						|
#include <vector> | 
						|
#include <ctime> | 
						|
#include <cstdio> | 
						|
 | 
						|
enum result | 
						|
{ | 
						|
	SUCCESS, | 
						|
	FAIL, | 
						|
	ASSERT, | 
						|
	STATIC_ASSERT | 
						|
}; | 
						|
 | 
						|
namespace bitfieldInsert | 
						|
{ | 
						|
	template<typename genType> | 
						|
	struct type | 
						|
	{ | 
						|
		genType		Base; | 
						|
		genType		Insert; | 
						|
		int			Offset; | 
						|
		int			Bits; | 
						|
		genType		Return; | 
						|
	}; | 
						|
 | 
						|
	typedef type<glm::uint> typeU32; | 
						|
 | 
						|
	typeU32 const Data32[] = | 
						|
	{ | 
						|
		{0x00000000, 0xffffffff,  0, 32, 0xffffffff}, | 
						|
		{0x00000000, 0xffffffff,  0, 31, 0x7fffffff}, | 
						|
		{0x00000000, 0xffffffff,  0,  0, 0x00000000}, | 
						|
		{0xff000000, 0x000000ff,  8,  8, 0xff00ff00}, | 
						|
		{0xffff0000, 0xffff0000, 16, 16, 0x00000000}, | 
						|
		{0x0000ffff, 0x0000ffff, 16, 16, 0xffffffff} | 
						|
	}; | 
						|
 | 
						|
	static int test() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
		glm::uint count = sizeof(Data32) / sizeof(typeU32); | 
						|
		 | 
						|
		for(glm::uint i = 0; i < count; ++i) | 
						|
		{ | 
						|
			glm::uint Return = glm::bitfieldInsert( | 
						|
				Data32[i].Base, | 
						|
				Data32[i].Insert, | 
						|
				Data32[i].Offset, | 
						|
				Data32[i].Bits); | 
						|
 | 
						|
			Error += Data32[i].Return == Return ? 0 : 1; | 
						|
		} | 
						|
		 | 
						|
		return Error; | 
						|
	} | 
						|
}//bitfieldInsert | 
						|
 | 
						|
namespace bitfieldExtract | 
						|
{ | 
						|
	template<typename genType> | 
						|
	struct type | 
						|
	{ | 
						|
		genType		Value; | 
						|
		int			Offset; | 
						|
		int			Bits; | 
						|
		genType		Return; | 
						|
		result		Result; | 
						|
	}; | 
						|
 | 
						|
	typedef type<glm::uint> typeU32; | 
						|
 | 
						|
	typeU32 const Data32[] = | 
						|
	{ | 
						|
		{0xffffffff, 0,32, 0xffffffff, SUCCESS}, | 
						|
		{0xffffffff, 8, 0, 0x00000000, SUCCESS}, | 
						|
		{0x00000000, 0,32, 0x00000000, SUCCESS}, | 
						|
		{0x0f0f0f0f, 0,32, 0x0f0f0f0f, SUCCESS}, | 
						|
		{0x00000000, 8, 0, 0x00000000, SUCCESS}, | 
						|
		{0x80000000,31, 1, 0x00000001, SUCCESS}, | 
						|
		{0x7fffffff,31, 1, 0x00000000, SUCCESS}, | 
						|
		{0x00000300, 8, 8, 0x00000003, SUCCESS}, | 
						|
		{0x0000ff00, 8, 8, 0x000000ff, SUCCESS}, | 
						|
		{0xfffffff0, 0, 5, 0x00000010, SUCCESS}, | 
						|
		{0x000000ff, 1, 3, 0x00000007, SUCCESS}, | 
						|
		{0x000000ff, 0, 3, 0x00000007, SUCCESS}, | 
						|
		{0x00000000, 0, 2, 0x00000000, SUCCESS}, | 
						|
		{0xffffffff, 0, 8, 0x000000ff, SUCCESS}, | 
						|
		{0xffff0000,16,16, 0x0000ffff, SUCCESS}, | 
						|
		{0xfffffff0, 0, 8, 0x00000000, FAIL}, | 
						|
		{0xffffffff,16,16, 0x00000000, FAIL}, | 
						|
		//{0xffffffff,32, 1, 0x00000000, ASSERT}, // Throw an assert  | 
						|
		//{0xffffffff, 0,33, 0x00000000, ASSERT}, // Throw an assert  | 
						|
		//{0xffffffff,16,16, 0x00000000, ASSERT}, // Throw an assert  | 
						|
	}; | 
						|
 | 
						|
	static int test() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
		glm::uint count = sizeof(Data32) / sizeof(typeU32); | 
						|
 | 
						|
		for(glm::uint i = 0; i < count; ++i) | 
						|
		{ | 
						|
			glm::uint Return = glm::bitfieldExtract( | 
						|
				Data32[i].Value,  | 
						|
				Data32[i].Offset,  | 
						|
				Data32[i].Bits); | 
						|
			 | 
						|
			bool Compare = Data32[i].Return == Return; | 
						|
 | 
						|
			if(Data32[i].Result == SUCCESS && Compare) | 
						|
				continue; | 
						|
			else if(Data32[i].Result == FAIL && !Compare) | 
						|
				continue; | 
						|
 | 
						|
			Error += 1; | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
}//extractField | 
						|
 | 
						|
namespace bitfieldReverse | 
						|
{ | 
						|
/* | 
						|
	GLM_FUNC_QUALIFIER unsigned int bitfieldReverseLoop(unsigned int v) | 
						|
	{ | 
						|
		unsigned int Result(0); | 
						|
		unsigned int const BitSize = static_cast<unsigned int>(sizeof(unsigned int) * 8); | 
						|
		for(unsigned int i = 0; i < BitSize; ++i) | 
						|
		{ | 
						|
			unsigned int const BitSet(v & (static_cast<unsigned int>(1) << i)); | 
						|
			unsigned int const BitFirst(BitSet >> i); | 
						|
			Result |= BitFirst << (BitSize - 1 - i); | 
						|
		} | 
						|
		return Result; | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER glm::uint64_t bitfieldReverseLoop(glm::uint64_t v) | 
						|
	{ | 
						|
		glm::uint64_t Result(0); | 
						|
		glm::uint64_t const BitSize = static_cast<glm::uint64_t>(sizeof(unsigned int) * 8); | 
						|
		for(glm::uint64_t i = 0; i < BitSize; ++i) | 
						|
		{ | 
						|
			glm::uint64_t const BitSet(v & (static_cast<glm::uint64_t>(1) << i)); | 
						|
			glm::uint64_t const BitFirst(BitSet >> i); | 
						|
			Result |= BitFirst << (BitSize - 1 - i); | 
						|
		} | 
						|
		return Result; | 
						|
	} | 
						|
*/ | 
						|
	template<glm::length_t L, typename T, glm::qualifier Q> | 
						|
	GLM_FUNC_QUALIFIER glm::vec<L, T, Q> bitfieldReverseLoop(glm::vec<L, T, Q> const& v) | 
						|
	{ | 
						|
		GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldReverse' only accept integer values"); | 
						|
 | 
						|
		glm::vec<L, T, Q> Result(0); | 
						|
		T const BitSize = static_cast<T>(sizeof(T) * 8); | 
						|
		for(T i = 0; i < BitSize; ++i) | 
						|
		{ | 
						|
			glm::vec<L, T, Q> const BitSet(v & (static_cast<T>(1) << i)); | 
						|
			glm::vec<L, T, Q> const BitFirst(BitSet >> i); | 
						|
			Result |= BitFirst << (BitSize - 1 - i); | 
						|
		} | 
						|
		return Result; | 
						|
	} | 
						|
 | 
						|
	template<typename T> | 
						|
	GLM_FUNC_QUALIFIER T bitfieldReverseLoop(T v) | 
						|
	{ | 
						|
		return bitfieldReverseLoop(glm::vec<1, T>(v)).x; | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER glm::uint32 bitfieldReverseUint32(glm::uint32 x) | 
						|
	{ | 
						|
		x = (x & 0x55555555) <<  1 | (x & 0xAAAAAAAA) >>  1; | 
						|
		x = (x & 0x33333333) <<  2 | (x & 0xCCCCCCCC) >>  2; | 
						|
		x = (x & 0x0F0F0F0F) <<  4 | (x & 0xF0F0F0F0) >>  4; | 
						|
		x = (x & 0x00FF00FF) <<  8 | (x & 0xFF00FF00) >>  8; | 
						|
		x = (x & 0x0000FFFF) << 16 | (x & 0xFFFF0000) >> 16; | 
						|
		return x; | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER glm::uint64 bitfieldReverseUint64(glm::uint64 x) | 
						|
	{ | 
						|
		x = (x & 0x5555555555555555) <<  1 | (x & 0xAAAAAAAAAAAAAAAA) >>  1; | 
						|
		x = (x & 0x3333333333333333) <<  2 | (x & 0xCCCCCCCCCCCCCCCC) >>  2; | 
						|
		x = (x & 0x0F0F0F0F0F0F0F0F) <<  4 | (x & 0xF0F0F0F0F0F0F0F0) >>  4; | 
						|
		x = (x & 0x00FF00FF00FF00FF) <<  8 | (x & 0xFF00FF00FF00FF00) >>  8; | 
						|
		x = (x & 0x0000FFFF0000FFFF) << 16 | (x & 0xFFFF0000FFFF0000) >> 16; | 
						|
		x = (x & 0x00000000FFFFFFFF) << 32 | (x & 0xFFFFFFFF00000000) >> 32; | 
						|
		return x; | 
						|
	} | 
						|
 | 
						|
	template<bool EXEC = false> | 
						|
	struct compute_bitfieldReverseStep | 
						|
	{ | 
						|
		template<glm::length_t L, typename T, glm::qualifier Q> | 
						|
		GLM_FUNC_QUALIFIER static glm::vec<L, T, Q> call(glm::vec<L, T, Q> const& v, T, T) | 
						|
		{ | 
						|
			return v; | 
						|
		} | 
						|
	}; | 
						|
 | 
						|
	template<> | 
						|
	struct compute_bitfieldReverseStep<true> | 
						|
	{ | 
						|
		template<glm::length_t L, typename T, glm::qualifier Q> | 
						|
		GLM_FUNC_QUALIFIER static glm::vec<L, T, Q> call(glm::vec<L, T, Q> const& v, T Mask, T Shift) | 
						|
		{ | 
						|
			return (v & Mask) << Shift | (v & (~Mask)) >> Shift; | 
						|
		} | 
						|
	}; | 
						|
 | 
						|
	template<glm::length_t L, typename T, glm::qualifier Q> | 
						|
	GLM_FUNC_QUALIFIER glm::vec<L, T, Q> bitfieldReverseOps(glm::vec<L, T, Q> const& v) | 
						|
	{ | 
						|
		glm::vec<L, T, Q> x(v); | 
						|
		x = compute_bitfieldReverseStep<sizeof(T) * 8 >=  2>::call(x, static_cast<T>(0x5555555555555555ull), static_cast<T>( 1)); | 
						|
		x = compute_bitfieldReverseStep<sizeof(T) * 8 >=  4>::call(x, static_cast<T>(0x3333333333333333ull), static_cast<T>( 2)); | 
						|
		x = compute_bitfieldReverseStep<sizeof(T) * 8 >=  8>::call(x, static_cast<T>(0x0F0F0F0F0F0F0F0Full), static_cast<T>( 4)); | 
						|
		x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 16>::call(x, static_cast<T>(0x00FF00FF00FF00FFull), static_cast<T>( 8)); | 
						|
		x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 32>::call(x, static_cast<T>(0x0000FFFF0000FFFFull), static_cast<T>(16)); | 
						|
		x = compute_bitfieldReverseStep<sizeof(T) * 8 >= 64>::call(x, static_cast<T>(0x00000000FFFFFFFFull), static_cast<T>(32)); | 
						|
		return x; | 
						|
	} | 
						|
 | 
						|
	template<typename genType> | 
						|
	GLM_FUNC_QUALIFIER genType bitfieldReverseOps(genType x) | 
						|
	{ | 
						|
		return bitfieldReverseOps(glm::vec<1, genType, glm::defaultp>(x)).x; | 
						|
	} | 
						|
 | 
						|
	template<typename genType> | 
						|
	struct type | 
						|
	{ | 
						|
		genType		Value; | 
						|
		genType		Return; | 
						|
		result		Result; | 
						|
	}; | 
						|
 | 
						|
	typedef type<glm::uint> typeU32; | 
						|
 | 
						|
	typeU32 const Data32[] = | 
						|
	{ | 
						|
		{0x00000001, 0x80000000, SUCCESS}, | 
						|
		{0x0000000f, 0xf0000000, SUCCESS}, | 
						|
		{0x000000ff, 0xff000000, SUCCESS}, | 
						|
		{0xf0000000, 0x0000000f, SUCCESS}, | 
						|
		{0xff000000, 0x000000ff, SUCCESS}, | 
						|
		{0xffffffff, 0xffffffff, SUCCESS}, | 
						|
		{0x00000000, 0x00000000, SUCCESS} | 
						|
	}; | 
						|
 | 
						|
	typedef type<glm::uint64> typeU64; | 
						|
 | 
						|
	typeU64 const Data64[] = | 
						|
	{ | 
						|
		{0x00000000000000ff, 0xff00000000000000, SUCCESS}, | 
						|
		{0x000000000000000f, 0xf000000000000000, SUCCESS}, | 
						|
		{0xf000000000000000, 0x000000000000000f, SUCCESS}, | 
						|
		{0xffffffffffffffff, 0xffffffffffffffff, SUCCESS}, | 
						|
		{0x0000000000000000, 0x0000000000000000, SUCCESS} | 
						|
	}; | 
						|
 | 
						|
	static int test32_bitfieldReverse() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
		std::size_t const Count = sizeof(Data32) / sizeof(typeU32); | 
						|
		 | 
						|
		for(std::size_t i = 0; i < Count; ++i) | 
						|
		{ | 
						|
			glm::uint Return = glm::bitfieldReverse(Data32[i].Value); | 
						|
			 | 
						|
			bool Compare = Data32[i].Return == Return; | 
						|
			 | 
						|
			if(Data32[i].Result == SUCCESS) | 
						|
				Error += Compare ? 0 : 1; | 
						|
			else | 
						|
				Error += Compare ? 1 : 0; | 
						|
		} | 
						|
		 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	static int test32_bitfieldReverseLoop() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
		std::size_t const Count = sizeof(Data32) / sizeof(typeU32); | 
						|
		 | 
						|
		for(std::size_t i = 0; i < Count; ++i) | 
						|
		{ | 
						|
			glm::uint Return = bitfieldReverseLoop(Data32[i].Value); | 
						|
			 | 
						|
			bool Compare = Data32[i].Return == Return; | 
						|
			 | 
						|
			if(Data32[i].Result == SUCCESS) | 
						|
				Error += Compare ? 0 : 1; | 
						|
			else | 
						|
				Error += Compare ? 1 : 0; | 
						|
		} | 
						|
		 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	static int test32_bitfieldReverseUint32() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
		std::size_t const Count = sizeof(Data32) / sizeof(typeU32); | 
						|
		 | 
						|
		for(std::size_t i = 0; i < Count; ++i) | 
						|
		{ | 
						|
			glm::uint Return = bitfieldReverseUint32(Data32[i].Value); | 
						|
			 | 
						|
			bool Compare = Data32[i].Return == Return; | 
						|
			 | 
						|
			if(Data32[i].Result == SUCCESS) | 
						|
				Error += Compare ? 0 : 1; | 
						|
			else | 
						|
				Error += Compare ? 1 : 0; | 
						|
		} | 
						|
		 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	static int test32_bitfieldReverseOps() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
		std::size_t const Count = sizeof(Data32) / sizeof(typeU32); | 
						|
		 | 
						|
		for(std::size_t i = 0; i < Count; ++i) | 
						|
		{ | 
						|
			glm::uint Return = bitfieldReverseOps(Data32[i].Value); | 
						|
			 | 
						|
			bool Compare = Data32[i].Return == Return; | 
						|
			 | 
						|
			if(Data32[i].Result == SUCCESS) | 
						|
				Error += Compare ? 0 : 1; | 
						|
			else | 
						|
				Error += Compare ? 1 : 0; | 
						|
		} | 
						|
		 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	static int test64_bitfieldReverse() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
		std::size_t const Count = sizeof(Data64) / sizeof(typeU64); | 
						|
		 | 
						|
		for(std::size_t i = 0; i < Count; ++i) | 
						|
		{ | 
						|
			glm::uint64 Return = glm::bitfieldReverse(Data64[i].Value); | 
						|
			 | 
						|
			bool Compare = Data64[i].Return == Return; | 
						|
			 | 
						|
			if(Data64[i].Result == SUCCESS) | 
						|
				Error += Compare ? 0 : 1; | 
						|
			else | 
						|
				Error += Compare ? 1 : 0; | 
						|
		} | 
						|
		 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	static int test64_bitfieldReverseLoop() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
		std::size_t const Count = sizeof(Data64) / sizeof(typeU64); | 
						|
		 | 
						|
		for(std::size_t i = 0; i < Count; ++i) | 
						|
		{ | 
						|
			glm::uint64 Return = bitfieldReverseLoop(Data64[i].Value); | 
						|
			 | 
						|
			bool Compare = Data64[i].Return == Return; | 
						|
			 | 
						|
			if(Data32[i].Result == SUCCESS) | 
						|
				Error += Compare ? 0 : 1; | 
						|
			else | 
						|
				Error += Compare ? 1 : 0; | 
						|
		} | 
						|
		 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	static int test64_bitfieldReverseUint64() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
		std::size_t const Count = sizeof(Data64) / sizeof(typeU64); | 
						|
		 | 
						|
		for(std::size_t i = 0; i < Count; ++i) | 
						|
		{ | 
						|
			glm::uint64 Return = bitfieldReverseUint64(Data64[i].Value); | 
						|
			 | 
						|
			bool Compare = Data64[i].Return == Return; | 
						|
			 | 
						|
			if(Data64[i].Result == SUCCESS) | 
						|
				Error += Compare ? 0 : 1; | 
						|
			else | 
						|
				Error += Compare ? 1 : 0; | 
						|
		} | 
						|
		 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	static int test64_bitfieldReverseOps() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
		std::size_t const Count = sizeof(Data64) / sizeof(typeU64); | 
						|
		 | 
						|
		for(std::size_t i = 0; i < Count; ++i) | 
						|
		{ | 
						|
			glm::uint64 Return = bitfieldReverseOps(Data64[i].Value); | 
						|
			 | 
						|
			bool Compare = Data64[i].Return == Return; | 
						|
			 | 
						|
			if(Data64[i].Result == SUCCESS) | 
						|
				Error += Compare ? 0 : 1; | 
						|
			else | 
						|
				Error += Compare ? 1 : 0; | 
						|
		} | 
						|
		 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	static int test() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
		Error += test32_bitfieldReverse(); | 
						|
		Error += test32_bitfieldReverseLoop(); | 
						|
		Error += test32_bitfieldReverseUint32(); | 
						|
		Error += test32_bitfieldReverseOps(); | 
						|
 | 
						|
		Error += test64_bitfieldReverse(); | 
						|
		Error += test64_bitfieldReverseLoop(); | 
						|
		Error += test64_bitfieldReverseUint64(); | 
						|
		Error += test64_bitfieldReverseOps(); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	static int perf32(glm::uint32 Count) | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
		std::vector<glm::uint32> Data; | 
						|
		Data.resize(static_cast<std::size_t>(Count)); | 
						|
 | 
						|
		std::clock_t Timestamps0 = std::clock(); | 
						|
 | 
						|
		for(glm::uint32 k = 0; k < Count; ++k) | 
						|
			Data[k] = glm::bitfieldReverse(k); | 
						|
 | 
						|
		std::clock_t Timestamps1 = std::clock(); | 
						|
 | 
						|
		for(glm::uint32 k = 0; k < Count; ++k) | 
						|
			Data[k] = bitfieldReverseLoop(k); | 
						|
 | 
						|
		std::clock_t Timestamps2 = std::clock(); | 
						|
 | 
						|
		for(glm::uint32 k = 0; k < Count; ++k) | 
						|
			Data[k] = bitfieldReverseUint32(k); | 
						|
 | 
						|
		std::clock_t Timestamps3 = std::clock(); | 
						|
 | 
						|
		for(glm::uint32 k = 0; k < Count; ++k) | 
						|
			Data[k] = bitfieldReverseOps(k); | 
						|
 | 
						|
		std::clock_t Timestamps4 = std::clock(); | 
						|
 | 
						|
		std::printf("glm::bitfieldReverse: %d clocks\n", static_cast<int>(Timestamps1 - Timestamps0)); | 
						|
		std::printf("bitfieldReverseLoop: %d clocks\n", static_cast<int>(Timestamps2 - Timestamps1)); | 
						|
		std::printf("bitfieldReverseUint32: %d clocks\n", static_cast<int>(Timestamps3 - Timestamps2)); | 
						|
		std::printf("bitfieldReverseOps: %d clocks\n", static_cast<int>(Timestamps4 - Timestamps3)); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	static int perf64(glm::uint64 Count) | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
		std::vector<glm::uint64> Data; | 
						|
		Data.resize(static_cast<std::size_t>(Count)); | 
						|
 | 
						|
		std::clock_t Timestamps0 = std::clock(); | 
						|
 | 
						|
		for(glm::uint64 k = 0; k < Count; ++k) | 
						|
			Data[static_cast<std::size_t>(k)] = glm::bitfieldReverse(k); | 
						|
 | 
						|
		std::clock_t Timestamps1 = std::clock(); | 
						|
 | 
						|
		for(glm::uint64 k = 0; k < Count; ++k) | 
						|
			Data[static_cast<std::size_t>(k)] = bitfieldReverseLoop<glm::uint64>(k); | 
						|
 | 
						|
		std::clock_t Timestamps2 = std::clock(); | 
						|
 | 
						|
		for(glm::uint64 k = 0; k < Count; ++k) | 
						|
			Data[static_cast<std::size_t>(k)] = bitfieldReverseUint64(k); | 
						|
 | 
						|
		std::clock_t Timestamps3 = std::clock(); | 
						|
 | 
						|
		for(glm::uint64 k = 0; k < Count; ++k) | 
						|
			Data[static_cast<std::size_t>(k)] = bitfieldReverseOps(k); | 
						|
 | 
						|
		std::clock_t Timestamps4 = std::clock(); | 
						|
 | 
						|
		std::printf("glm::bitfieldReverse - 64: %d clocks\n", static_cast<int>(Timestamps1 - Timestamps0)); | 
						|
		std::printf("bitfieldReverseLoop - 64: %d clocks\n", static_cast<int>(Timestamps2 - Timestamps1)); | 
						|
		std::printf("bitfieldReverseUint - 64: %d clocks\n", static_cast<int>(Timestamps3 - Timestamps2)); | 
						|
		std::printf("bitfieldReverseOps - 64: %d clocks\n", static_cast<int>(Timestamps4 - Timestamps3)); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	static int perf(std::size_t Samples) | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
		Error += perf32(static_cast<glm::uint32>(Samples)); | 
						|
		Error += perf64(static_cast<glm::uint64>(Samples)); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
}//bitfieldReverse | 
						|
 | 
						|
namespace findMSB | 
						|
{ | 
						|
	template<typename genType, typename retType> | 
						|
	struct type | 
						|
	{ | 
						|
		genType		Value; | 
						|
		retType		Return; | 
						|
	}; | 
						|
 | 
						|
#	if GLM_HAS_BITSCAN_WINDOWS | 
						|
		template<typename genIUType> | 
						|
		static int findMSB_intrinsic(genIUType Value) | 
						|
		{ | 
						|
			GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values"); | 
						|
 | 
						|
			if(Value == 0) | 
						|
				return -1; | 
						|
 | 
						|
			unsigned long Result(0); | 
						|
			_BitScanReverse(&Result, Value); | 
						|
			return int(Result); | 
						|
		} | 
						|
#	endif//GLM_HAS_BITSCAN_WINDOWS | 
						|
 | 
						|
#	if GLM_ARCH & GLM_ARCH_AVX && GLM_COMPILER & GLM_COMPILER_VC | 
						|
		template<typename genIUType> | 
						|
		static int findMSB_avx(genIUType Value) | 
						|
		{ | 
						|
			GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values"); | 
						|
 | 
						|
			if(Value == 0) | 
						|
				return -1; | 
						|
 | 
						|
			return int(_tzcnt_u32(Value)); | 
						|
		} | 
						|
#	endif//GLM_ARCH & GLM_ARCH_AVX && GLM_PLATFORM & GLM_PLATFORM_WINDOWS | 
						|
 | 
						|
	template<typename genIUType> | 
						|
	static int findMSB_095(genIUType Value) | 
						|
	{ | 
						|
		GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values"); | 
						|
		 | 
						|
		if(Value == genIUType(0) || Value == genIUType(-1)) | 
						|
			return -1; | 
						|
		else if(Value > 0) | 
						|
		{ | 
						|
			genIUType Bit = genIUType(-1); | 
						|
			for(genIUType tmp = Value; tmp > 0; tmp >>= 1, ++Bit){} | 
						|
			return static_cast<int>(Bit); | 
						|
		} | 
						|
		else //if(Value < 0) | 
						|
		{ | 
						|
			int const BitCount(sizeof(genIUType) * 8); | 
						|
			int MostSignificantBit(-1); | 
						|
			for(int BitIndex(0); BitIndex < BitCount; ++BitIndex) | 
						|
				MostSignificantBit = (Value & (1 << BitIndex)) ? MostSignificantBit : BitIndex; | 
						|
			assert(MostSignificantBit >= 0); | 
						|
			return MostSignificantBit; | 
						|
		} | 
						|
	} | 
						|
 | 
						|
	template<typename genIUType> | 
						|
	static int findMSB_nlz1(genIUType x) | 
						|
	{ | 
						|
		GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values"); | 
						|
 | 
						|
		if (x == 0) | 
						|
			return -1; | 
						|
 | 
						|
		int n = 0; | 
						|
		if (x <= 0x0000FFFF) {n = n +16; x = x <<16;} | 
						|
		if (x <= 0x00FFFFFF) {n = n + 8; x = x << 8;} | 
						|
		if (x <= 0x0FFFFFFF) {n = n + 4; x = x << 4;} | 
						|
		if (x <= 0x3FFFFFFF) {n = n + 2; x = x << 2;} | 
						|
		if (x <= 0x7FFFFFFF) {n = n + 1;} | 
						|
		return 31 - n; | 
						|
	} | 
						|
 | 
						|
	static int findMSB_nlz2(unsigned int x) | 
						|
	{ | 
						|
		unsigned int y; | 
						|
		int n = 32; | 
						|
 | 
						|
		y = x >>16;  if (y != 0) {n = n -16;  x = y;} | 
						|
		y = x >> 8;  if (y != 0) {n = n - 8;  x = y;} | 
						|
		y = x >> 4;  if (y != 0) {n = n - 4;  x = y;} | 
						|
		y = x >> 2;  if (y != 0) {n = n - 2;  x = y;} | 
						|
		y = x >> 1;  if (y != 0) return n - 2; | 
						|
		return 32 - (n - static_cast<int>(x)); | 
						|
	} | 
						|
 | 
						|
	static int findMSB_pop(unsigned int x) | 
						|
	{ | 
						|
		x = x | (x >> 1); | 
						|
		x = x | (x >> 2); | 
						|
		x = x | (x >> 4); | 
						|
		x = x | (x >> 8); | 
						|
		x = x | (x >>16); | 
						|
		return 31 - glm::bitCount(~x); | 
						|
	} | 
						|
 | 
						|
	static int perf_int(std::size_t Count) | 
						|
	{ | 
						|
		type<int, int> const Data[] = | 
						|
		{ | 
						|
			{0x00000000, -1}, | 
						|
			{0x00000001,  0}, | 
						|
			{0x00000002,  1}, | 
						|
			{0x00000003,  1}, | 
						|
			{0x00000004,  2}, | 
						|
			{0x00000005,  2}, | 
						|
			{0x00000007,  2}, | 
						|
			{0x00000008,  3}, | 
						|
			{0x00000010,  4}, | 
						|
			{0x00000020,  5}, | 
						|
			{0x00000040,  6}, | 
						|
			{0x00000080,  7}, | 
						|
			{0x00000100,  8}, | 
						|
			{0x00000200,  9}, | 
						|
			{0x00000400, 10}, | 
						|
			{0x00000800, 11}, | 
						|
			{0x00001000, 12}, | 
						|
			{0x00002000, 13}, | 
						|
			{0x00004000, 14}, | 
						|
			{0x00008000, 15}, | 
						|
			{0x00010000, 16}, | 
						|
			{0x00020000, 17}, | 
						|
			{0x00040000, 18}, | 
						|
			{0x00080000, 19}, | 
						|
			{0x00100000, 20}, | 
						|
			{0x00200000, 21}, | 
						|
			{0x00400000, 22}, | 
						|
			{0x00800000, 23}, | 
						|
			{0x01000000, 24}, | 
						|
			{0x02000000, 25}, | 
						|
			{0x04000000, 26}, | 
						|
			{0x08000000, 27}, | 
						|
			{0x10000000, 28}, | 
						|
			{0x20000000, 29}, | 
						|
			{0x40000000, 30} | 
						|
		}; | 
						|
 | 
						|
		int Error(0); | 
						|
 | 
						|
		std::clock_t Timestamps0 = std::clock(); | 
						|
 | 
						|
		for(std::size_t k = 0; k < Count; ++k) | 
						|
		for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i) | 
						|
		{ | 
						|
			int Result = glm::findMSB(Data[i].Value); | 
						|
			Error += Data[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		std::clock_t Timestamps1 = std::clock(); | 
						|
 | 
						|
		for(std::size_t k = 0; k < Count; ++k) | 
						|
		for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i) | 
						|
		{ | 
						|
			int Result = findMSB_nlz1(Data[i].Value); | 
						|
			Error += Data[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		std::clock_t Timestamps2 = std::clock(); | 
						|
 | 
						|
		for(std::size_t k = 0; k < Count; ++k) | 
						|
		for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i) | 
						|
		{ | 
						|
			int Result = findMSB_nlz2(static_cast<unsigned int>(Data[i].Value)); | 
						|
			Error += Data[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		std::clock_t Timestamps3 = std::clock(); | 
						|
 | 
						|
		for(std::size_t k = 0; k < Count; ++k) | 
						|
		for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i) | 
						|
		{ | 
						|
			int Result = findMSB_095(static_cast<unsigned int>(Data[i].Value)); | 
						|
			Error += Data[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		std::clock_t Timestamps4 = std::clock(); | 
						|
 | 
						|
#		if GLM_HAS_BITSCAN_WINDOWS | 
						|
			for(std::size_t k = 0; k < Count; ++k) | 
						|
			for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i) | 
						|
			{ | 
						|
				int Result = findMSB_intrinsic(Data[i].Value); | 
						|
				Error += Data[i].Return == Result ? 0 : 1; | 
						|
			} | 
						|
#		endif//GLM_HAS_BITSCAN_WINDOWS | 
						|
 | 
						|
		std::clock_t Timestamps5 = std::clock(); | 
						|
 | 
						|
		for(std::size_t k = 0; k < Count; ++k) | 
						|
		for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i) | 
						|
		{ | 
						|
			int Result = findMSB_pop(static_cast<unsigned int>(Data[i].Value)); | 
						|
			Error += Data[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		std::clock_t Timestamps6 = std::clock(); | 
						|
 | 
						|
#		if GLM_ARCH & GLM_ARCH_AVX && GLM_COMPILER & GLM_COMPILER_VC | 
						|
			for(std::size_t k = 0; k < Count; ++k) | 
						|
			for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int, int>); ++i) | 
						|
			{ | 
						|
				int Result = findMSB_avx(Data[i].Value); | 
						|
				Error += Data[i].Return == Result ? 0 : 1; | 
						|
			} | 
						|
 | 
						|
			std::clock_t Timestamps7 = std::clock(); | 
						|
#		endif | 
						|
 | 
						|
		std::printf("glm::findMSB: %d clocks\n", static_cast<int>(Timestamps1 - Timestamps0)); | 
						|
		std::printf("findMSB - nlz1: %d clocks\n", static_cast<int>(Timestamps2 - Timestamps1)); | 
						|
		std::printf("findMSB - nlz2: %d clocks\n", static_cast<int>(Timestamps3 - Timestamps2)); | 
						|
		std::printf("findMSB - 0.9.5: %d clocks\n", static_cast<int>(Timestamps4 - Timestamps3)); | 
						|
 | 
						|
#		if GLM_HAS_BITSCAN_WINDOWS | 
						|
			std::printf("findMSB - intrinsics: %d clocks\n", static_cast<int>(Timestamps5 - Timestamps4)); | 
						|
#		endif//GLM_HAS_BITSCAN_WINDOWS | 
						|
		std::printf("findMSB - pop: %d clocks\n", static_cast<int>(Timestamps6 - Timestamps5)); | 
						|
 | 
						|
#		if GLM_ARCH & GLM_ARCH_AVX && GLM_COMPILER & GLM_COMPILER_VC | 
						|
			std::printf("findMSB - avx tzcnt: %d clocks\n", static_cast<int>(Timestamps7 - Timestamps6)); | 
						|
#		endif//GLM_ARCH & GLM_ARCH_AVX && GLM_PLATFORM & GLM_PLATFORM_WINDOWS | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	static int test_ivec4() | 
						|
	{ | 
						|
		type<glm::ivec4, glm::ivec4> const Data[] = | 
						|
		{ | 
						|
			{glm::ivec4(0x00000000), glm::ivec4(-1)}, | 
						|
			{glm::ivec4(0x00000001), glm::ivec4( 0)}, | 
						|
			{glm::ivec4(0x00000002), glm::ivec4( 1)}, | 
						|
			{glm::ivec4(0x00000003), glm::ivec4( 1)}, | 
						|
			{glm::ivec4(0x00000004), glm::ivec4( 2)}, | 
						|
			{glm::ivec4(0x00000005), glm::ivec4( 2)}, | 
						|
			{glm::ivec4(0x00000007), glm::ivec4( 2)}, | 
						|
			{glm::ivec4(0x00000008), glm::ivec4( 3)}, | 
						|
			{glm::ivec4(0x00000010), glm::ivec4( 4)}, | 
						|
			{glm::ivec4(0x00000020), glm::ivec4( 5)}, | 
						|
			{glm::ivec4(0x00000040), glm::ivec4( 6)}, | 
						|
			{glm::ivec4(0x00000080), glm::ivec4( 7)}, | 
						|
			{glm::ivec4(0x00000100), glm::ivec4( 8)}, | 
						|
			{glm::ivec4(0x00000200), glm::ivec4( 9)}, | 
						|
			{glm::ivec4(0x00000400), glm::ivec4(10)}, | 
						|
			{glm::ivec4(0x00000800), glm::ivec4(11)}, | 
						|
			{glm::ivec4(0x00001000), glm::ivec4(12)}, | 
						|
			{glm::ivec4(0x00002000), glm::ivec4(13)}, | 
						|
			{glm::ivec4(0x00004000), glm::ivec4(14)}, | 
						|
			{glm::ivec4(0x00008000), glm::ivec4(15)}, | 
						|
			{glm::ivec4(0x00010000), glm::ivec4(16)}, | 
						|
			{glm::ivec4(0x00020000), glm::ivec4(17)}, | 
						|
			{glm::ivec4(0x00040000), glm::ivec4(18)}, | 
						|
			{glm::ivec4(0x00080000), glm::ivec4(19)}, | 
						|
			{glm::ivec4(0x00100000), glm::ivec4(20)}, | 
						|
			{glm::ivec4(0x00200000), glm::ivec4(21)}, | 
						|
			{glm::ivec4(0x00400000), glm::ivec4(22)}, | 
						|
			{glm::ivec4(0x00800000), glm::ivec4(23)}, | 
						|
			{glm::ivec4(0x01000000), glm::ivec4(24)}, | 
						|
			{glm::ivec4(0x02000000), glm::ivec4(25)}, | 
						|
			{glm::ivec4(0x04000000), glm::ivec4(26)}, | 
						|
			{glm::ivec4(0x08000000), glm::ivec4(27)}, | 
						|
			{glm::ivec4(0x10000000), glm::ivec4(28)}, | 
						|
			{glm::ivec4(0x20000000), glm::ivec4(29)}, | 
						|
			{glm::ivec4(0x40000000), glm::ivec4(30)} | 
						|
		}; | 
						|
 | 
						|
		int Error(0); | 
						|
 | 
						|
		for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<glm::ivec4, glm::ivec4>); ++i) | 
						|
		{ | 
						|
			glm::ivec4 Result0 = glm::findMSB(Data[i].Value); | 
						|
			Error += glm::all(glm::equal(Data[i].Return, Result0)) ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	static int test_int() | 
						|
	{ | 
						|
		typedef type<glm::uint, int> entry; | 
						|
 | 
						|
		entry const Data[] = | 
						|
		{ | 
						|
			{0x00000000, -1}, | 
						|
			{0x00000001,  0}, | 
						|
			{0x00000002,  1}, | 
						|
			{0x00000003,  1}, | 
						|
			{0x00000004,  2}, | 
						|
			{0x00000005,  2}, | 
						|
			{0x00000007,  2}, | 
						|
			{0x00000008,  3}, | 
						|
			{0x00000010,  4}, | 
						|
			{0x00000020,  5}, | 
						|
			{0x00000040,  6}, | 
						|
			{0x00000080,  7}, | 
						|
			{0x00000100,  8}, | 
						|
			{0x00000200,  9}, | 
						|
			{0x00000400, 10}, | 
						|
			{0x00000800, 11}, | 
						|
			{0x00001000, 12}, | 
						|
			{0x00002000, 13}, | 
						|
			{0x00004000, 14}, | 
						|
			{0x00008000, 15}, | 
						|
			{0x00010000, 16}, | 
						|
			{0x00020000, 17}, | 
						|
			{0x00040000, 18}, | 
						|
			{0x00080000, 19}, | 
						|
			{0x00100000, 20}, | 
						|
			{0x00200000, 21}, | 
						|
			{0x00400000, 22}, | 
						|
			{0x00800000, 23}, | 
						|
			{0x01000000, 24}, | 
						|
			{0x02000000, 25}, | 
						|
			{0x04000000, 26}, | 
						|
			{0x08000000, 27}, | 
						|
			{0x10000000, 28}, | 
						|
			{0x20000000, 29}, | 
						|
			{0x40000000, 30} | 
						|
		}; | 
						|
 | 
						|
		int Error(0); | 
						|
 | 
						|
		for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) | 
						|
		{ | 
						|
			int Result0 = glm::findMSB(Data[i].Value); | 
						|
			Error += Data[i].Return == Result0 ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) | 
						|
		{ | 
						|
			int Result0 = findMSB_nlz1(Data[i].Value); | 
						|
			Error += Data[i].Return == Result0 ? 0 : 1; | 
						|
		} | 
						|
/* | 
						|
		for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) | 
						|
		{ | 
						|
			int Result0 = findMSB_nlz2(Data[i].Value); | 
						|
			Error += Data[i].Return == Result0 ? 0 : 1; | 
						|
		} | 
						|
*/ | 
						|
		for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) | 
						|
		{ | 
						|
			int Result0 = findMSB_095(Data[i].Value); | 
						|
			Error += Data[i].Return == Result0 ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
#		if GLM_HAS_BITSCAN_WINDOWS | 
						|
			for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) | 
						|
			{ | 
						|
				int Result0 = findMSB_intrinsic(Data[i].Value); | 
						|
				Error += Data[i].Return == Result0 ? 0 : 1; | 
						|
			} | 
						|
#		endif//GLM_HAS_BITSCAN_WINDOWS | 
						|
 | 
						|
		for(std::size_t i = 0; i < sizeof(Data) / sizeof(entry); ++i) | 
						|
		{ | 
						|
			int Result0 = findMSB_pop(Data[i].Value); | 
						|
			Error += Data[i].Return == Result0 ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	static int test() | 
						|
	{ | 
						|
		int Error(0); | 
						|
 | 
						|
		Error += test_ivec4(); | 
						|
		Error += test_int(); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	static int perf(std::size_t Samples) | 
						|
	{ | 
						|
		int Error(0); | 
						|
 | 
						|
		Error += perf_int(Samples); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
}//findMSB | 
						|
 | 
						|
namespace findLSB | 
						|
{ | 
						|
	template<typename genType, typename retType> | 
						|
	struct type | 
						|
	{ | 
						|
		genType		Value; | 
						|
		retType		Return; | 
						|
	}; | 
						|
 | 
						|
	typedef type<int, int> entry; | 
						|
 | 
						|
	entry const DataI32[] = | 
						|
	{ | 
						|
		{0x00000001,  0}, | 
						|
		{0x00000003,  0}, | 
						|
		{0x00000002,  1}, | 
						|
		// {0x80000000, 31}, // Clang generates an error with this | 
						|
		{0x00010000, 16}, | 
						|
		{0x7FFF0000, 16}, | 
						|
		{0x7F000000, 24}, | 
						|
		{0x7F00FF00,  8}, | 
						|
		{0x00000000, -1} | 
						|
	}; | 
						|
 | 
						|
#	if GLM_HAS_BITSCAN_WINDOWS | 
						|
		template<typename genIUType> | 
						|
		static int findLSB_intrinsic(genIUType Value) | 
						|
		{ | 
						|
			GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findLSB' only accept integer values"); | 
						|
 | 
						|
			if(Value == 0) | 
						|
				return -1; | 
						|
 | 
						|
			unsigned long Result(0); | 
						|
			_BitScanForward(&Result, Value); | 
						|
			return int(Result); | 
						|
		} | 
						|
#	endif | 
						|
 | 
						|
	template<typename genIUType> | 
						|
	static int findLSB_095(genIUType Value) | 
						|
	{ | 
						|
		GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findLSB' only accept integer values"); | 
						|
		if(Value == 0) | 
						|
			return -1; | 
						|
 | 
						|
		genIUType Bit; | 
						|
		for(Bit = genIUType(0); !(Value & (1 << Bit)); ++Bit){} | 
						|
		return Bit; | 
						|
	} | 
						|
 | 
						|
	template<typename genIUType> | 
						|
	static int findLSB_ntz2(genIUType x) | 
						|
	{ | 
						|
		if(x == 0) | 
						|
			return -1; | 
						|
 | 
						|
		return glm::bitCount(~x & (x - static_cast<genIUType>(1))); | 
						|
	} | 
						|
 | 
						|
	template<typename genIUType> | 
						|
	static int findLSB_branchfree(genIUType x) | 
						|
	{ | 
						|
		bool IsNull(x == 0); | 
						|
		int const Keep(!IsNull); | 
						|
		int const Discard(IsNull); | 
						|
 | 
						|
		return static_cast<int>(glm::bitCount(~x & (x - static_cast<genIUType>(1)))) * Keep + Discard * -1; | 
						|
	} | 
						|
 | 
						|
	static int test_int() | 
						|
	{ | 
						|
		int Error(0); | 
						|
 | 
						|
		for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) | 
						|
		{ | 
						|
			int Result = glm::findLSB(DataI32[i].Value); | 
						|
			Error += DataI32[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) | 
						|
		{ | 
						|
			int Result = findLSB_095(DataI32[i].Value); | 
						|
			Error += DataI32[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
#		if GLM_HAS_BITSCAN_WINDOWS | 
						|
			for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) | 
						|
			{ | 
						|
				int Result = findLSB_intrinsic(DataI32[i].Value); | 
						|
				Error += DataI32[i].Return == Result ? 0 : 1; | 
						|
			} | 
						|
#		endif | 
						|
 | 
						|
		for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) | 
						|
		{ | 
						|
			int Result = findLSB_ntz2(DataI32[i].Value); | 
						|
			Error += DataI32[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) | 
						|
		{ | 
						|
			int Result = findLSB_branchfree(DataI32[i].Value); | 
						|
			Error += DataI32[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	static int test() | 
						|
	{ | 
						|
		int Error(0); | 
						|
 | 
						|
		Error += test_int(); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	static int perf_int(std::size_t Count) | 
						|
	{ | 
						|
		int Error(0); | 
						|
 | 
						|
		std::clock_t Timestamps0 = std::clock(); | 
						|
 | 
						|
		for(std::size_t k = 0; k < Count; ++k) | 
						|
		for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) | 
						|
		{ | 
						|
			int Result = glm::findLSB(DataI32[i].Value); | 
						|
			Error += DataI32[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		std::clock_t Timestamps1 = std::clock(); | 
						|
 | 
						|
		for(std::size_t k = 0; k < Count; ++k) | 
						|
		for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) | 
						|
		{ | 
						|
			int Result = findLSB_095(DataI32[i].Value); | 
						|
			Error += DataI32[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		std::clock_t Timestamps2 = std::clock(); | 
						|
 | 
						|
#		if GLM_HAS_BITSCAN_WINDOWS | 
						|
			for(std::size_t k = 0; k < Count; ++k) | 
						|
			for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) | 
						|
			{ | 
						|
				int Result = findLSB_intrinsic(DataI32[i].Value); | 
						|
				Error += DataI32[i].Return == Result ? 0 : 1; | 
						|
			} | 
						|
#		endif | 
						|
 | 
						|
		std::clock_t Timestamps3 = std::clock(); | 
						|
 | 
						|
		for(std::size_t k = 0; k < Count; ++k) | 
						|
		for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) | 
						|
		{ | 
						|
			int Result = findLSB_ntz2(DataI32[i].Value); | 
						|
			Error += DataI32[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		std::clock_t Timestamps4 = std::clock(); | 
						|
 | 
						|
		for(std::size_t k = 0; k < Count; ++k) | 
						|
		for(std::size_t i = 0; i < sizeof(DataI32) / sizeof(entry); ++i) | 
						|
		{ | 
						|
			int Result = findLSB_branchfree(DataI32[i].Value); | 
						|
			Error += DataI32[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		std::clock_t Timestamps5 = std::clock(); | 
						|
 | 
						|
		std::printf("glm::findLSB: %d clocks\n", static_cast<int>(Timestamps1 - Timestamps0)); | 
						|
		std::printf("findLSB - 0.9.5: %d clocks\n", static_cast<int>(Timestamps2 - Timestamps1)); | 
						|
 | 
						|
#		if GLM_HAS_BITSCAN_WINDOWS | 
						|
			std::printf("findLSB - intrinsics: %d clocks\n", static_cast<int>(Timestamps3 - Timestamps2)); | 
						|
#		endif | 
						|
 | 
						|
		std::printf("findLSB - ntz2: %d clocks\n", static_cast<int>(Timestamps4 - Timestamps3)); | 
						|
		std::printf("findLSB - branchfree: %d clocks\n", static_cast<int>(Timestamps5 - Timestamps4)); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	static int perf(std::size_t Samples) | 
						|
	{ | 
						|
		int Error(0); | 
						|
 | 
						|
		Error += perf_int(Samples); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
}//findLSB | 
						|
 | 
						|
namespace uaddCarry | 
						|
{ | 
						|
	static int test() | 
						|
	{ | 
						|
		int Error(0); | 
						|
		 | 
						|
		{ | 
						|
			glm::uint x = std::numeric_limits<glm::uint>::max(); | 
						|
			glm::uint y = 0; | 
						|
			glm::uint Carry = 0; | 
						|
			glm::uint Result = glm::uaddCarry(x, y, Carry); | 
						|
 | 
						|
			Error += Carry == 0 ? 0 : 1; | 
						|
			Error += Result == std::numeric_limits<glm::uint>::max() ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			glm::uint x = std::numeric_limits<glm::uint>::max(); | 
						|
			glm::uint y = 1; | 
						|
			glm::uint Carry = 0; | 
						|
			glm::uint Result = glm::uaddCarry(x, y, Carry); | 
						|
 | 
						|
			Error += Carry == 1 ? 0 : 1; | 
						|
			Error += Result == 0 ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			glm::uvec1 x(std::numeric_limits<glm::uint>::max()); | 
						|
			glm::uvec1 y(0); | 
						|
			glm::uvec1 Carry(0); | 
						|
			glm::uvec1 Result(glm::uaddCarry(x, y, Carry)); | 
						|
 | 
						|
			Error += glm::all(glm::equal(Carry, glm::uvec1(0))) ? 0 : 1; | 
						|
			Error += glm::all(glm::equal(Result, glm::uvec1(std::numeric_limits<glm::uint>::max()))) ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			glm::uvec1 x(std::numeric_limits<glm::uint>::max()); | 
						|
			glm::uvec1 y(1); | 
						|
			glm::uvec1 Carry(0); | 
						|
			glm::uvec1 Result(glm::uaddCarry(x, y, Carry)); | 
						|
 | 
						|
			Error += glm::all(glm::equal(Carry, glm::uvec1(1))) ? 0 : 1; | 
						|
			Error += glm::all(glm::equal(Result, glm::uvec1(0))) ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
}//namespace uaddCarry | 
						|
 | 
						|
namespace usubBorrow | 
						|
{ | 
						|
	static int test() | 
						|
	{ | 
						|
		int Error(0); | 
						|
		 | 
						|
		{ | 
						|
			glm::uint x = 16; | 
						|
			glm::uint y = 17; | 
						|
			glm::uint Borrow = 0; | 
						|
			glm::uint Result = glm::usubBorrow(x, y, Borrow); | 
						|
 | 
						|
			Error += Borrow == 1 ? 0 : 1; | 
						|
			Error += Result == 1 ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			glm::uvec1 x(16); | 
						|
			glm::uvec1 y(17); | 
						|
			glm::uvec1 Borrow(0); | 
						|
			glm::uvec1 Result(glm::usubBorrow(x, y, Borrow)); | 
						|
 | 
						|
			Error += glm::all(glm::equal(Borrow, glm::uvec1(1))) ? 0 : 1; | 
						|
			Error += glm::all(glm::equal(Result, glm::uvec1(1))) ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			glm::uvec2 x(16); | 
						|
			glm::uvec2 y(17); | 
						|
			glm::uvec2 Borrow(0); | 
						|
			glm::uvec2 Result(glm::usubBorrow(x, y, Borrow)); | 
						|
 | 
						|
			Error += glm::all(glm::equal(Borrow, glm::uvec2(1))) ? 0 : 1; | 
						|
			Error += glm::all(glm::equal(Result, glm::uvec2(1))) ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			glm::uvec3 x(16); | 
						|
			glm::uvec3 y(17); | 
						|
			glm::uvec3 Borrow(0); | 
						|
			glm::uvec3 Result(glm::usubBorrow(x, y, Borrow)); | 
						|
 | 
						|
			Error += glm::all(glm::equal(Borrow, glm::uvec3(1))) ? 0 : 1; | 
						|
			Error += glm::all(glm::equal(Result, glm::uvec3(1))) ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			glm::uvec4 x(16); | 
						|
			glm::uvec4 y(17); | 
						|
			glm::uvec4 Borrow(0); | 
						|
			glm::uvec4 Result(glm::usubBorrow(x, y, Borrow)); | 
						|
 | 
						|
			Error += glm::all(glm::equal(Borrow, glm::uvec4(1))) ? 0 : 1; | 
						|
			Error += glm::all(glm::equal(Result, glm::uvec4(1))) ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
}//namespace usubBorrow | 
						|
 | 
						|
namespace umulExtended | 
						|
{ | 
						|
	static int test() | 
						|
	{ | 
						|
		int Error(0); | 
						|
		 | 
						|
		{ | 
						|
			glm::uint x = 2; | 
						|
			glm::uint y = 3; | 
						|
			glm::uint msb = 0; | 
						|
			glm::uint lsb = 0; | 
						|
			glm::umulExtended(x, y, msb, lsb); | 
						|
 | 
						|
			Error += msb == 0 ? 0 : 1; | 
						|
			Error += lsb == 6 ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			glm::uvec1 x(2); | 
						|
			glm::uvec1 y(3); | 
						|
			glm::uvec1 msb(0); | 
						|
			glm::uvec1 lsb(0); | 
						|
			glm::umulExtended(x, y, msb, lsb); | 
						|
 | 
						|
			Error += glm::all(glm::equal(msb, glm::uvec1(0))) ? 0 : 1; | 
						|
			Error += glm::all(glm::equal(lsb, glm::uvec1(6))) ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			glm::uvec2 x(2); | 
						|
			glm::uvec2 y(3); | 
						|
			glm::uvec2 msb(0); | 
						|
			glm::uvec2 lsb(0); | 
						|
			glm::umulExtended(x, y, msb, lsb); | 
						|
 | 
						|
			Error += glm::all(glm::equal(msb, glm::uvec2(0))) ? 0 : 1; | 
						|
			Error += glm::all(glm::equal(lsb, glm::uvec2(6))) ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			glm::uvec3 x(2); | 
						|
			glm::uvec3 y(3); | 
						|
			glm::uvec3 msb(0); | 
						|
			glm::uvec3 lsb(0); | 
						|
			glm::umulExtended(x, y, msb, lsb); | 
						|
 | 
						|
			Error += glm::all(glm::equal(msb, glm::uvec3(0))) ? 0 : 1; | 
						|
			Error += glm::all(glm::equal(lsb, glm::uvec3(6))) ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			glm::uvec4 x(2); | 
						|
			glm::uvec4 y(3); | 
						|
			glm::uvec4 msb(0); | 
						|
			glm::uvec4 lsb(0); | 
						|
			glm::umulExtended(x, y, msb, lsb); | 
						|
 | 
						|
			Error += glm::all(glm::equal(msb, glm::uvec4(0))) ? 0 : 1; | 
						|
			Error += glm::all(glm::equal(lsb, glm::uvec4(6))) ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
}//namespace umulExtended | 
						|
 | 
						|
namespace imulExtended | 
						|
{ | 
						|
	static int test() | 
						|
	{ | 
						|
		int Error(0); | 
						|
		 | 
						|
		{ | 
						|
			int x = 2; | 
						|
			int y = 3; | 
						|
			int msb = 0; | 
						|
			int lsb = 0; | 
						|
			glm::imulExtended(x, y, msb, lsb); | 
						|
 | 
						|
			Error += msb == 0 ? 0 : 1; | 
						|
			Error += lsb == 6 ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			glm::ivec1 x(2); | 
						|
			glm::ivec1 y(3); | 
						|
			glm::ivec1 msb(0); | 
						|
			glm::ivec1 lsb(0); | 
						|
			glm::imulExtended(x, y, msb, lsb); | 
						|
 | 
						|
			Error += glm::all(glm::equal(msb, glm::ivec1(0))) ? 0 : 1; | 
						|
			Error += glm::all(glm::equal(lsb, glm::ivec1(6))) ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			glm::ivec2 x(2); | 
						|
			glm::ivec2 y(3); | 
						|
			glm::ivec2 msb(0); | 
						|
			glm::ivec2 lsb(0); | 
						|
			glm::imulExtended(x, y, msb, lsb); | 
						|
 | 
						|
			Error += glm::all(glm::equal(msb, glm::ivec2(0))) ? 0 : 1; | 
						|
			Error += glm::all(glm::equal(lsb, glm::ivec2(6))) ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			glm::ivec3 x(2); | 
						|
			glm::ivec3 y(3); | 
						|
			glm::ivec3 msb(0); | 
						|
			glm::ivec3 lsb(0); | 
						|
			glm::imulExtended(x, y, msb, lsb); | 
						|
 | 
						|
			Error += glm::all(glm::equal(msb, glm::ivec3(0))) ? 0 : 1; | 
						|
			Error += glm::all(glm::equal(lsb, glm::ivec3(6))) ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			glm::ivec4 x(2); | 
						|
			glm::ivec4 y(3); | 
						|
			glm::ivec4 msb(0); | 
						|
			glm::ivec4 lsb(0); | 
						|
			glm::imulExtended(x, y, msb, lsb); | 
						|
 | 
						|
			Error += glm::all(glm::equal(msb, glm::ivec4(0))) ? 0 : 1; | 
						|
			Error += glm::all(glm::equal(lsb, glm::ivec4(6))) ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
}//namespace imulExtended | 
						|
 | 
						|
namespace bitCount | 
						|
{ | 
						|
	template<typename genType> | 
						|
	struct type | 
						|
	{ | 
						|
		genType		Value; | 
						|
		genType		Return; | 
						|
	}; | 
						|
 | 
						|
	type<int> const DataI32[] = | 
						|
	{ | 
						|
		{0x00000001,  1}, | 
						|
		{0x00000003,  2}, | 
						|
		{0x00000002,  1}, | 
						|
		{0x7fffffff, 31}, | 
						|
		{0x00000000,  0} | 
						|
	}; | 
						|
 | 
						|
	template<typename T> | 
						|
	inline int bitCount_if(T v) | 
						|
	{ | 
						|
		GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitCount' only accept integer values"); | 
						|
 | 
						|
		int Count(0); | 
						|
		for(T i = 0, n = static_cast<T>(sizeof(T) * 8); i < n; ++i) | 
						|
		{ | 
						|
			if(v & static_cast<T>(1 << i)) | 
						|
				++Count; | 
						|
		} | 
						|
		return Count; | 
						|
	} | 
						|
 | 
						|
	template<typename T> | 
						|
	inline int bitCount_vec(T v) | 
						|
	{ | 
						|
		GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitCount' only accept integer values"); | 
						|
 | 
						|
		int Count(0); | 
						|
		for(T i = 0, n = static_cast<T>(sizeof(T) * 8); i < n; ++i) | 
						|
		{ | 
						|
			Count += static_cast<int>((v >> i) & static_cast<T>(1)); | 
						|
		} | 
						|
		return Count; | 
						|
	} | 
						|
 | 
						|
	template<bool EXEC = false> | 
						|
	struct compute_bitfieldBitCountStep | 
						|
	{ | 
						|
		template<glm::length_t L, typename T, glm::qualifier Q> | 
						|
		GLM_FUNC_QUALIFIER static glm::vec<L, T, Q> call(glm::vec<L, T, Q> const& v, T, T) | 
						|
		{ | 
						|
			return v; | 
						|
		} | 
						|
	}; | 
						|
 | 
						|
	template<> | 
						|
	struct compute_bitfieldBitCountStep<true> | 
						|
	{ | 
						|
		template<glm::length_t L, typename T, glm::qualifier Q> | 
						|
		GLM_FUNC_QUALIFIER static glm::vec<L, T, Q> call(glm::vec<L, T, Q> const& v, T Mask, T Shift) | 
						|
		{ | 
						|
			return (v & Mask) + ((v >> Shift) & Mask); | 
						|
		} | 
						|
	}; | 
						|
 | 
						|
	template<glm::length_t L, typename T, glm::qualifier Q> | 
						|
	static glm::vec<L, int, Q> bitCount_bitfield(glm::vec<L, T, Q> const& v) | 
						|
	{ | 
						|
		glm::vec<L, typename glm::detail::make_unsigned<T>::type, Q> x(*reinterpret_cast<glm::vec<L, typename glm::detail::make_unsigned<T>::type, Q> const *>(&v)); | 
						|
		x = compute_bitfieldBitCountStep<sizeof(T) * 8 >=  2>::call(x, static_cast<typename glm::detail::make_unsigned<T>::type>(0x5555555555555555ull), static_cast<typename glm::detail::make_unsigned<T>::type>( 1)); | 
						|
		x = compute_bitfieldBitCountStep<sizeof(T) * 8 >=  4>::call(x, static_cast<typename glm::detail::make_unsigned<T>::type>(0x3333333333333333ull), static_cast<typename glm::detail::make_unsigned<T>::type>( 2)); | 
						|
		x = compute_bitfieldBitCountStep<sizeof(T) * 8 >=  8>::call(x, static_cast<typename glm::detail::make_unsigned<T>::type>(0x0F0F0F0F0F0F0F0Full), static_cast<typename glm::detail::make_unsigned<T>::type>( 4)); | 
						|
		x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 16>::call(x, static_cast<typename glm::detail::make_unsigned<T>::type>(0x00FF00FF00FF00FFull), static_cast<typename glm::detail::make_unsigned<T>::type>( 8)); | 
						|
		x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 32>::call(x, static_cast<typename glm::detail::make_unsigned<T>::type>(0x0000FFFF0000FFFFull), static_cast<typename glm::detail::make_unsigned<T>::type>(16)); | 
						|
		x = compute_bitfieldBitCountStep<sizeof(T) * 8 >= 64>::call(x, static_cast<typename glm::detail::make_unsigned<T>::type>(0x00000000FFFFFFFFull), static_cast<typename glm::detail::make_unsigned<T>::type>(32)); | 
						|
		return glm::vec<L, int, Q>(x); | 
						|
	} | 
						|
 | 
						|
	template<typename genType> | 
						|
	static int bitCount_bitfield(genType x) | 
						|
	{ | 
						|
		return bitCount_bitfield(glm::vec<1, genType, glm::defaultp>(x)).x; | 
						|
	} | 
						|
 | 
						|
	static int perf(std::size_t Size) | 
						|
	{ | 
						|
		int Error(0); | 
						|
 | 
						|
		std::vector<int> v; | 
						|
		v.resize(Size); | 
						|
 | 
						|
		std::vector<glm::ivec4> w; | 
						|
		w.resize(Size); | 
						|
 | 
						|
 | 
						|
		std::clock_t TimestampsA = std::clock(); | 
						|
 | 
						|
		// bitCount - TimeIf | 
						|
		{ | 
						|
			for(std::size_t i = 0, n = v.size(); i < n; ++i) | 
						|
				v[i] = bitCount_if(static_cast<int>(i)); | 
						|
		} | 
						|
 | 
						|
		std::clock_t TimestampsB = std::clock(); | 
						|
 | 
						|
		// bitCount - TimeVec | 
						|
		{ | 
						|
			for(std::size_t i = 0, n = v.size(); i < n; ++i) | 
						|
				v[i] = bitCount_vec(i); | 
						|
		} | 
						|
 | 
						|
		std::clock_t TimestampsC = std::clock(); | 
						|
 | 
						|
		// bitCount - TimeDefault | 
						|
		{ | 
						|
			for(std::size_t i = 0, n = v.size(); i < n; ++i) | 
						|
				v[i] = glm::bitCount(i); | 
						|
		} | 
						|
 | 
						|
		std::clock_t TimestampsD = std::clock(); | 
						|
 | 
						|
		// bitCount - TimeVec4 | 
						|
		{ | 
						|
			for(std::size_t i = 0, n = v.size(); i < n; ++i) | 
						|
				w[i] = glm::bitCount(glm::ivec4(static_cast<int>(i))); | 
						|
		} | 
						|
 | 
						|
		std::clock_t TimestampsE = std::clock(); | 
						|
 | 
						|
		{ | 
						|
			for(std::size_t i = 0, n = v.size(); i < n; ++i) | 
						|
				v[i] = bitCount_bitfield(static_cast<int>(i)); | 
						|
		} | 
						|
 | 
						|
		std::clock_t TimestampsF = std::clock(); | 
						|
 | 
						|
		std::printf("bitCount - TimeIf %d\n", static_cast<int>(TimestampsB - TimestampsA)); | 
						|
		std::printf("bitCount - TimeVec %d\n", static_cast<int>(TimestampsC - TimestampsB)); | 
						|
		std::printf("bitCount - TimeDefault %d\n", static_cast<int>(TimestampsD - TimestampsC)); | 
						|
		std::printf("bitCount - TimeVec4 %d\n", static_cast<int>(TimestampsE - TimestampsD)); | 
						|
		std::printf("bitCount - bitfield %d\n", static_cast<int>(TimestampsF - TimestampsE)); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	static int test() | 
						|
	{ | 
						|
		int Error(0); | 
						|
 | 
						|
		for(std::size_t i = 0, n = sizeof(DataI32) / sizeof(type<int>); i < n; ++i) | 
						|
		{ | 
						|
			int ResultA = glm::bitCount(DataI32[i].Value); | 
						|
			int ResultB = bitCount_if(DataI32[i].Value); | 
						|
			int ResultC = bitCount_vec(DataI32[i].Value); | 
						|
			int ResultE = bitCount_bitfield(DataI32[i].Value); | 
						|
 | 
						|
			Error += DataI32[i].Return == ResultA ? 0 : 1; | 
						|
			Error += DataI32[i].Return == ResultB ? 0 : 1; | 
						|
			Error += DataI32[i].Return == ResultC ? 0 : 1; | 
						|
			Error += DataI32[i].Return == ResultE ? 0 : 1; | 
						|
 | 
						|
			assert(!Error); | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
}//bitCount | 
						|
 | 
						|
int main() | 
						|
{ | 
						|
	int Error = 0; | 
						|
 | 
						|
	Error += ::bitCount::test(); | 
						|
	Error += ::bitfieldReverse::test(); | 
						|
	Error += ::findMSB::test(); | 
						|
	Error += ::findLSB::test(); | 
						|
	Error += ::umulExtended::test(); | 
						|
	Error += ::imulExtended::test(); | 
						|
	Error += ::uaddCarry::test(); | 
						|
	Error += ::usubBorrow::test(); | 
						|
	Error += ::bitfieldInsert::test(); | 
						|
	Error += ::bitfieldExtract::test(); | 
						|
 | 
						|
#	ifdef NDEBUG | 
						|
		std::size_t const Samples = 1000; | 
						|
#	else | 
						|
		std::size_t const Samples = 1; | 
						|
#	endif | 
						|
 | 
						|
	::bitCount::perf(Samples); | 
						|
	::bitfieldReverse::perf(Samples); | 
						|
	::findMSB::perf(Samples); | 
						|
	::findLSB::perf(Samples); | 
						|
 | 
						|
	return Error; | 
						|
}
 | 
						|
 |