You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
1807 lines
67 KiB
1807 lines
67 KiB
/* |
|
Copyright 2008 Intel Corporation |
|
|
|
Use, modification and distribution are subject to the Boost Software License, |
|
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at |
|
http://www.boost.org/LICENSE_1_0.txt). |
|
*/ |
|
#ifndef BOOST_POLYGON_POLYGON_FORMATION_HPP |
|
#define BOOST_POLYGON_POLYGON_FORMATION_HPP |
|
namespace boost { namespace polygon{ |
|
|
|
namespace polygon_formation { |
|
|
|
/* |
|
* End has two states, HEAD and TAIL as is represented by a bool |
|
*/ |
|
typedef bool End; |
|
|
|
/* |
|
* HEAD End is represented as false because it is the lesser state |
|
*/ |
|
const End HEAD = false; |
|
|
|
/* |
|
* TAIL End is represented by true because TAIL comes after head and 1 after 0 |
|
*/ |
|
const End TAIL = true; |
|
|
|
/* |
|
* 2D turning direction, left and right sides (is a boolean value since it has two states.) |
|
*/ |
|
typedef bool Side; |
|
|
|
/* |
|
* LEFT Side is 0 because we inuitively think left to right; left < right |
|
*/ |
|
const Side LEFT = false; |
|
|
|
/* |
|
* RIGHT Side is 1 so that right > left |
|
*/ |
|
const Side RIGHT = true; |
|
|
|
/* |
|
* The PolyLine class is data storage and services for building and representing partial polygons. |
|
* As the polyline is added to it extends its storage to accomodate the data. |
|
* PolyLines can be joined head-to-head/head-to-tail when it is determined that two polylines are |
|
* part of the same polygon. |
|
* PolyLines keep state information about what orientation their incomplete head and tail geometry have, |
|
* which side of the polyline is solid and whether the polyline is joined head-to-head and tail-to-head. |
|
* PolyLines have nothing whatsoever to do with holes. |
|
* It may be valuable to collect a histogram of PolyLine lengths used by an algorithm on its typical data |
|
* sets and tune the allocation of the initial vector of coordinate data to be greater than or equal to |
|
* the mean, median, mode, or mean plus some number of standard deviation, or just generally large enough |
|
* to prevent too much unnecesary reallocations, but not too big that it wastes a lot of memory and degrades cache |
|
* performance. |
|
*/ |
|
template <typename Unit> |
|
class PolyLine { |
|
private: |
|
//data |
|
|
|
/* |
|
* ptdata_ a vector of coordiantes |
|
* if VERTICAL_HEAD, first coordiante is an X |
|
* else first coordinate is a Y |
|
*/ |
|
std::vector<Unit> ptdata_; |
|
|
|
/* |
|
* head and tail points to other polylines before and after this in a chain |
|
*/ |
|
PolyLine* headp_; |
|
PolyLine* tailp_; |
|
|
|
/* |
|
* state bitmask |
|
* bit zero is orientation, 0 H, 1 V |
|
* bit 1 is head connectivity, 0 for head, 1 for tail |
|
* bit 2 is tail connectivity, 0 for head, 1 for tail |
|
* bit 3 is solid to left of PolyLine when 1, right when 0 |
|
*/ |
|
int state_; |
|
|
|
public: |
|
/* |
|
* default constructor (for preallocation) |
|
*/ |
|
PolyLine(); |
|
|
|
/* |
|
* constructor that takes the orientation, coordiante and side to which there is solid |
|
*/ |
|
PolyLine(orientation_2d orient, Unit coord, Side side); |
|
|
|
//copy constructor |
|
PolyLine(const PolyLine& pline); |
|
|
|
//destructor |
|
~PolyLine(); |
|
|
|
//assignment operator |
|
PolyLine& operator=(const PolyLine& that); |
|
|
|
//equivalence operator |
|
bool operator==(const PolyLine& b) const; |
|
|
|
/* |
|
* valid PolyLine (only default constructed polylines are invalid.) |
|
*/ |
|
bool isValid() const; |
|
|
|
/* |
|
* Orientation of Head |
|
*/ |
|
orientation_2d headOrient() const; |
|
|
|
/* |
|
* returns true if first coordinate is an X value (first segment is vertical) |
|
*/ |
|
bool verticalHead() const; |
|
|
|
/* |
|
* returns the orientation_2d fo the tail |
|
*/ |
|
orientation_2d tailOrient() const; |
|
|
|
/* |
|
* returns true if last coordinate is an X value (last segment is vertical) |
|
*/ |
|
bool verticalTail() const; |
|
|
|
/* |
|
* retrun true if PolyLine has odd number of coordiantes |
|
*/ |
|
bool oddLength() const; |
|
|
|
/* |
|
* retrun the End of the other polyline that the specified end of this polyline is connected to |
|
*/ |
|
End endConnectivity(End end) const; |
|
|
|
/* |
|
* retrun true if the head of this polyline is connect to the tail of a polyline |
|
*/ |
|
bool headToTail() const; |
|
/* |
|
* retrun true if the head of this polyline is connect to the head of a polyline |
|
*/ |
|
bool headToHead() const; |
|
|
|
/* |
|
* retrun true if the tail of this polyline is connect to the tail of a polyline |
|
*/ |
|
bool tailToTail() const; |
|
/* |
|
* retrun true if the tail of this polyline is connect to the head of a polyline |
|
*/ |
|
bool tailToHead() const; |
|
|
|
/* |
|
* retrun the side on which there is solid for this polyline |
|
*/ |
|
Side solidSide() const; |
|
|
|
/* |
|
* retrun true if there is solid to the right of this polyline |
|
*/ |
|
bool solidToRight() const; |
|
|
|
/* |
|
* returns true if the polyline tail is not connected |
|
*/ |
|
bool active() const; |
|
|
|
/* |
|
* adds a coordinate value to the end of the polyline changing the tail orientation |
|
*/ |
|
PolyLine& pushCoordinate(Unit coord); |
|
|
|
/* |
|
* removes a coordinate value at the end of the polyline changing the tail orientation |
|
*/ |
|
PolyLine& popCoordinate(); |
|
|
|
/* |
|
* extends the tail of the polyline to include the point, changing orientation if needed |
|
*/ |
|
PolyLine& pushPoint(const point_data<Unit>& point); |
|
|
|
/* |
|
* changes the last coordinate of the tail of the polyline by the amount of the delta |
|
*/ |
|
PolyLine& extendTail(Unit delta); |
|
|
|
/* |
|
* join thisEnd of this polyline to that polyline's end |
|
*/ |
|
PolyLine& joinTo(End thisEnd, PolyLine& that, End end); |
|
|
|
/* |
|
* join an end of this polyline to the tail of that polyline |
|
*/ |
|
PolyLine& joinToTail(PolyLine& that, End end); |
|
|
|
/* |
|
* join an end of this polyline to the head of that polyline |
|
*/ |
|
PolyLine& joinToHead(PolyLine& that, End end); |
|
|
|
/* |
|
* join the head of this polyline to the head of that polyline |
|
*/ |
|
//join this to that in the given way |
|
PolyLine& joinHeadToHead(PolyLine& that); |
|
|
|
/* |
|
* join the head of this polyline to the tail of that polyline |
|
*/ |
|
PolyLine& joinHeadToTail(PolyLine& that); |
|
|
|
/* |
|
* join the tail of this polyline to the head of that polyline |
|
*/ |
|
PolyLine& joinTailToHead(PolyLine& that); |
|
|
|
/* |
|
* join the tail of this polyline to the tail of that polyline |
|
*/ |
|
PolyLine& joinTailToTail(PolyLine& that); |
|
|
|
/* |
|
* dissconnect the tail at the end of the polygon |
|
*/ |
|
PolyLine& disconnectTails(); |
|
|
|
/* |
|
* get the coordinate at one end of this polyline, by default the tail end |
|
*/ |
|
Unit getEndCoord(End end = TAIL) const; |
|
|
|
/* |
|
* get the point on the polyline at the given index (polylines have the same number of coordinates as points |
|
*/ |
|
point_data<Unit> getPoint(unsigned int index) const; |
|
|
|
/* |
|
* get the point on one end of the polyline, by default the tail |
|
*/ |
|
point_data<Unit> getEndPoint(End end = TAIL) const; |
|
|
|
/* |
|
* get the orientation of a segment by index |
|
*/ |
|
orientation_2d segmentOrient(unsigned int index = 0) const; |
|
|
|
/* |
|
* get a coordinate by index using the square bracket operator |
|
*/ |
|
Unit operator[] (unsigned int index) const; |
|
|
|
/* |
|
* get the number of segments/points/coordinates in the polyline |
|
*/ |
|
unsigned int numSegments() const; |
|
|
|
/* |
|
* get the pointer to the next polyline at one end of this |
|
*/ |
|
PolyLine* next(End end) const; |
|
|
|
/* |
|
* write out coordinates of this and all attached polylines to a single vector |
|
*/ |
|
PolyLine* writeOut(std::vector<Unit>& outVec, End startEnd = TAIL) const; |
|
|
|
private: |
|
//methods |
|
PolyLine& joinTo_(End thisEnd, PolyLine& that, End end); |
|
}; |
|
|
|
//forward declaration |
|
template<bool orientT, typename Unit> |
|
class PolyLinePolygonData; |
|
|
|
//forward declaration |
|
template<bool orientT, typename Unit> |
|
class PolyLinePolygonWithHolesData; |
|
|
|
/* |
|
* ActiveTail represents an edge of an incomplete polygon. |
|
* |
|
* An ActiveTail object is the active tail end of a polyline object, which may (should) be the attached to |
|
* a chain of polyline objects through a pointer. The ActiveTail class provides an abstraction between |
|
* and algorithm that builds polygons and the PolyLine data representation of incomplete polygons that are |
|
* being built. It does this by providing an iterface to access the information about the last edge at the |
|
* tail of the PolyLine it is associated with. To a polygon constructing algorithm, an ActiveTail is a floating |
|
* edge of an incomplete polygon and has an orientation and coordinate value, as well as knowing which side of |
|
* that edge is supposed to be solid or space. Any incomplete polygon will have two active tails. Active tails |
|
* may be joined together to merge two incomplete polygons into a larger incomplete polygon. If two active tails |
|
* that are to be merged are the oppositve ends of the same incomplete polygon that indicates that the polygon |
|
* has been closed and is complete. The active tail keeps a pointer to the other active tail of its incomplete |
|
* polygon so that it is easy to check this condition. These pointers are updated when active tails are joined. |
|
* The active tail also keeps a list of pointers to active tail objects that serve as handles to closed holes. In |
|
* this way a hole can be associated to another incomplete polygon, which will eventually be its enclosing shell, |
|
* or reassociate the hole to another incomplete polygon in the case that it become a hole itself. Alternately, |
|
* the active tail may add a filiment to stitch a hole into a shell and "fracture" the hole out of the interior |
|
* of a polygon. The active tail maintains a static output buffer to temporarily write polygon data to when |
|
* it outputs a figure so that outputting a polygon does not require the allocation of a temporary buffer. This |
|
* static buffer should be destroyed whenever the program determines that it won't need it anymore and would prefer to |
|
* release the memory it has allocated back to the system. |
|
*/ |
|
template <typename Unit> |
|
class ActiveTail { |
|
private: |
|
//data |
|
PolyLine<Unit>* tailp_; |
|
ActiveTail *otherTailp_; |
|
std::list<ActiveTail*> holesList_; |
|
public: |
|
|
|
/* |
|
* iterator over coordinates of the figure |
|
*/ |
|
class iterator { |
|
private: |
|
const PolyLine<Unit>* pLine_; |
|
const PolyLine<Unit>* pLineEnd_; |
|
unsigned int index_; |
|
unsigned int indexEnd_; |
|
End startEnd_; |
|
public: |
|
inline iterator() : pLine_(), pLineEnd_(), index_(), indexEnd_(), startEnd_() {} |
|
inline iterator(const ActiveTail* at, bool isHole, orientation_2d orient) : |
|
pLine_(), pLineEnd_(), index_(), indexEnd_(), startEnd_() { |
|
//if it is a hole and orientation is vertical or it is not a hole and orientation is horizontal |
|
//we want to use this active tail, otherwise we want to use the other active tail |
|
startEnd_ = TAIL; |
|
if(!isHole ^ (orient == HORIZONTAL)) { |
|
//switch winding direction |
|
at = at->getOtherActiveTail(); |
|
} |
|
//now we have the right winding direction |
|
//if it is horizontal we need to skip the first element |
|
pLine_ = at->getTail(); |
|
index_ = at->getTail()->numSegments() - 1; |
|
if((at->getOrient() == HORIZONTAL) ^ (orient == HORIZONTAL)) { |
|
pLineEnd_ = at->getTail(); |
|
indexEnd_ = pLineEnd_->numSegments() - 1; |
|
if(index_ == 0) { |
|
pLine_ = at->getTail()->next(HEAD); |
|
if(at->getTail()->endConnectivity(HEAD) == TAIL) { |
|
index_ = pLine_->numSegments() -1; |
|
} else { |
|
startEnd_ = HEAD; |
|
index_ = 0; |
|
} |
|
} else { --index_; } |
|
} else { |
|
pLineEnd_ = at->getOtherActiveTail()->getTail(); |
|
indexEnd_ = pLineEnd_->numSegments() - 1; |
|
} |
|
at->getTail()->joinTailToTail(*(at->getOtherActiveTail()->getTail())); |
|
} |
|
//use bitwise copy and assign provided by the compiler |
|
inline iterator& operator++() { |
|
if(pLine_ == pLineEnd_ && index_ == indexEnd_) { |
|
pLine_ = 0; |
|
index_ = 0; |
|
return *this; |
|
} |
|
if(startEnd_ == HEAD) { |
|
++index_; |
|
if(index_ == pLine_->numSegments()) { |
|
End end = pLine_->endConnectivity(TAIL); |
|
pLine_ = pLine_->next(TAIL); |
|
if(end == TAIL) { |
|
startEnd_ = TAIL; |
|
index_ = pLine_->numSegments() -1; |
|
} else { |
|
index_ = 0; |
|
} |
|
} |
|
} else { |
|
if(index_ == 0) { |
|
End end = pLine_->endConnectivity(HEAD); |
|
pLine_ = pLine_->next(HEAD); |
|
if(end == TAIL) { |
|
index_ = pLine_->numSegments() -1; |
|
} else { |
|
startEnd_ = HEAD; |
|
index_ = 0; |
|
} |
|
} else { |
|
--index_; |
|
} |
|
} |
|
return *this; |
|
} |
|
inline const iterator operator++(int) { |
|
iterator tmp(*this); |
|
++(*this); |
|
return tmp; |
|
} |
|
inline bool operator==(const iterator& that) const { |
|
return pLine_ == that.pLine_ && index_ == that.index_; |
|
} |
|
inline bool operator!=(const iterator& that) const { |
|
return pLine_ != that.pLine_ || index_ != that.index_; |
|
} |
|
inline Unit operator*() { return (*pLine_)[index_]; } |
|
}; |
|
|
|
/* |
|
* iterator over holes contained within the figure |
|
*/ |
|
typedef typename std::list<ActiveTail*>::const_iterator iteratorHoles; |
|
|
|
//default constructor |
|
ActiveTail(); |
|
|
|
//constructor |
|
ActiveTail(orientation_2d orient, Unit coord, Side solidToRight, ActiveTail* otherTailp); |
|
|
|
//constructor |
|
ActiveTail(PolyLine<Unit>* active, ActiveTail* otherTailp); |
|
|
|
//copy constructor |
|
ActiveTail(const ActiveTail& that); |
|
|
|
//destructor |
|
~ActiveTail(); |
|
|
|
//assignment operator |
|
ActiveTail& operator=(const ActiveTail& that); |
|
|
|
//equivalence operator |
|
bool operator==(const ActiveTail& b) const; |
|
|
|
/* |
|
* comparison operators, ActiveTail objects are sortable by geometry |
|
*/ |
|
bool operator<(const ActiveTail& b) const; |
|
bool operator<=(const ActiveTail& b) const; |
|
bool operator>(const ActiveTail& b) const; |
|
bool operator>=(const ActiveTail& b) const; |
|
|
|
/* |
|
* get the pointer to the polyline that this is an active tail of |
|
*/ |
|
PolyLine<Unit>* getTail() const; |
|
|
|
/* |
|
* get the pointer to the polyline at the other end of the chain |
|
*/ |
|
PolyLine<Unit>* getOtherTail() const; |
|
|
|
/* |
|
* get the pointer to the activetail at the other end of the chain |
|
*/ |
|
ActiveTail* getOtherActiveTail() const; |
|
|
|
/* |
|
* test if another active tail is the other end of the chain |
|
*/ |
|
bool isOtherTail(const ActiveTail& b); |
|
|
|
/* |
|
* update this end of chain pointer to new polyline |
|
*/ |
|
ActiveTail& updateTail(PolyLine<Unit>* newTail); |
|
|
|
/* |
|
* associate a hole to this active tail by the specified policy |
|
*/ |
|
ActiveTail* addHole(ActiveTail* hole, bool fractureHoles); |
|
|
|
/* |
|
* get the list of holes |
|
*/ |
|
const std::list<ActiveTail*>& getHoles() const; |
|
|
|
/* |
|
* copy holes from that to this |
|
*/ |
|
void copyHoles(ActiveTail& that); |
|
|
|
/* |
|
* find out if solid to right |
|
*/ |
|
bool solidToRight() const; |
|
|
|
/* |
|
* get coordinate (getCoord and getCoordinate are aliases for eachother) |
|
*/ |
|
Unit getCoord() const; |
|
Unit getCoordinate() const; |
|
|
|
/* |
|
* get the tail orientation |
|
*/ |
|
orientation_2d getOrient() const; |
|
|
|
/* |
|
* add a coordinate to the polygon at this active tail end, properly handle degenerate edges by removing redundant coordinate |
|
*/ |
|
void pushCoordinate(Unit coord); |
|
|
|
/* |
|
* write the figure that this active tail points to out to the temp buffer |
|
*/ |
|
void writeOutFigure(std::vector<Unit>& outVec, bool isHole = false) const; |
|
|
|
/* |
|
* write the figure that this active tail points to out through iterators |
|
*/ |
|
void writeOutFigureItrs(iterator& beginOut, iterator& endOut, bool isHole = false, orientation_2d orient = VERTICAL) const; |
|
iterator begin(bool isHole, orientation_2d orient) const; |
|
iterator end() const; |
|
|
|
/* |
|
* write the holes that this active tail points to out through iterators |
|
*/ |
|
void writeOutFigureHoleItrs(iteratorHoles& beginOut, iteratorHoles& endOut) const; |
|
iteratorHoles beginHoles() const; |
|
iteratorHoles endHoles() const; |
|
|
|
/* |
|
* joins the two chains that the two active tail tails are ends of |
|
* checks for closure of figure and writes out polygons appropriately |
|
* returns a handle to a hole if one is closed |
|
*/ |
|
static ActiveTail* joinChains(ActiveTail* at1, ActiveTail* at2, bool solid, std::vector<Unit>& outBufferTmp); |
|
template <typename PolygonT> |
|
static ActiveTail* joinChains(ActiveTail* at1, ActiveTail* at2, bool solid, typename std::vector<PolygonT>& outBufferTmp); |
|
|
|
/* |
|
* deallocate temp buffer |
|
*/ |
|
static void destroyOutBuffer(); |
|
|
|
/* |
|
* deallocate all polygon data this active tail points to (deep delete, call only from one of a pair of active tails) |
|
*/ |
|
void destroyContents(); |
|
}; |
|
|
|
/* allocate a polyline object */ |
|
template <typename Unit> |
|
PolyLine<Unit>* createPolyLine(orientation_2d orient, Unit coord, Side side); |
|
|
|
/* deallocate a polyline object */ |
|
template <typename Unit> |
|
void destroyPolyLine(PolyLine<Unit>* pLine); |
|
|
|
/* allocate an activetail object */ |
|
template <typename Unit> |
|
ActiveTail<Unit>* createActiveTail(); |
|
|
|
/* deallocate an activetail object */ |
|
template <typename Unit> |
|
void destroyActiveTail(ActiveTail<Unit>* aTail); |
|
|
|
template<bool orientT, typename Unit> |
|
class PolyLineHoleData { |
|
private: |
|
ActiveTail<Unit>* p_; |
|
public: |
|
typedef Unit coordinate_type; |
|
typedef typename ActiveTail<Unit>::iterator compact_iterator_type; |
|
typedef iterator_compact_to_points<compact_iterator_type, point_data<coordinate_type> > iterator_type; |
|
inline PolyLineHoleData() : p_(0) {} |
|
inline PolyLineHoleData(ActiveTail<Unit>* p) : p_(p) {} |
|
//use default copy and assign |
|
inline compact_iterator_type begin_compact() const { return p_->begin(true, (orientT ? VERTICAL : HORIZONTAL)); } |
|
inline compact_iterator_type end_compact() const { return p_->end(); } |
|
inline iterator_type begin() const { return iterator_type(begin_compact(), end_compact()); } |
|
inline iterator_type end() const { return iterator_type(end_compact(), end_compact()); } |
|
inline std::size_t size() const { return 0; } |
|
inline ActiveTail<Unit>* yield() { return p_; } |
|
template<class iT> |
|
inline PolyLineHoleData& set(iT inputBegin, iT inputEnd) { |
|
return *this; |
|
} |
|
template<class iT> |
|
inline PolyLineHoleData& set_compact(iT inputBegin, iT inputEnd) { |
|
return *this; |
|
} |
|
|
|
}; |
|
|
|
template<bool orientT, typename Unit> |
|
class PolyLinePolygonWithHolesData { |
|
private: |
|
ActiveTail<Unit>* p_; |
|
public: |
|
typedef Unit coordinate_type; |
|
typedef typename ActiveTail<Unit>::iterator compact_iterator_type; |
|
typedef iterator_compact_to_points<compact_iterator_type, point_data<coordinate_type> > iterator_type; |
|
typedef PolyLineHoleData<orientT, Unit> hole_type; |
|
typedef typename coordinate_traits<Unit>::area_type area_type; |
|
class iteratorHoles { |
|
private: |
|
typename ActiveTail<Unit>::iteratorHoles itr_; |
|
public: |
|
inline iteratorHoles() : itr_() {} |
|
inline iteratorHoles(typename ActiveTail<Unit>::iteratorHoles itr) : itr_(itr) {} |
|
//use bitwise copy and assign provided by the compiler |
|
inline iteratorHoles& operator++() { |
|
++itr_; |
|
return *this; |
|
} |
|
inline const iteratorHoles operator++(int) { |
|
iteratorHoles tmp(*this); |
|
++(*this); |
|
return tmp; |
|
} |
|
inline bool operator==(const iteratorHoles& that) const { |
|
return itr_ == that.itr_; |
|
} |
|
inline bool operator!=(const iteratorHoles& that) const { |
|
return itr_ != that.itr_; |
|
} |
|
inline PolyLineHoleData<orientT, Unit> operator*() { return PolyLineHoleData<orientT, Unit>(*itr_);} |
|
}; |
|
typedef iteratorHoles iterator_holes_type; |
|
|
|
inline PolyLinePolygonWithHolesData() : p_(0) {} |
|
inline PolyLinePolygonWithHolesData(ActiveTail<Unit>* p) : p_(p) {} |
|
//use default copy and assign |
|
inline compact_iterator_type begin_compact() const { return p_->begin(false, (orientT ? VERTICAL : HORIZONTAL)); } |
|
inline compact_iterator_type end_compact() const { return p_->end(); } |
|
inline iterator_type begin() const { return iterator_type(begin_compact(), end_compact()); } |
|
inline iterator_type end() const { return iterator_type(end_compact(), end_compact()); } |
|
inline iteratorHoles begin_holes() const { return iteratorHoles(p_->beginHoles()); } |
|
inline iteratorHoles end_holes() const { return iteratorHoles(p_->endHoles()); } |
|
inline ActiveTail<Unit>* yield() { return p_; } |
|
//stub out these four required functions that will not be used but are needed for the interface |
|
inline std::size_t size_holes() const { return 0; } |
|
inline std::size_t size() const { return 0; } |
|
template<class iT> |
|
inline PolyLinePolygonWithHolesData& set(iT inputBegin, iT inputEnd) { |
|
return *this; |
|
} |
|
template<class iT> |
|
inline PolyLinePolygonWithHolesData& set_compact(iT inputBegin, iT inputEnd) { |
|
return *this; |
|
} |
|
|
|
// initialize a polygon from x,y values, it is assumed that the first is an x |
|
// and that the input is a well behaved polygon |
|
template<class iT> |
|
inline PolyLinePolygonWithHolesData& set_holes(iT inputBegin, iT inputEnd) { |
|
return *this; |
|
} |
|
}; |
|
|
|
|
|
template <bool orientT, typename Unit, typename polygon_concept_type> |
|
struct PolyLineType { }; |
|
template <bool orientT, typename Unit> |
|
struct PolyLineType<orientT, Unit, polygon_90_with_holes_concept> { typedef PolyLinePolygonWithHolesData<orientT, Unit> type; }; |
|
template <bool orientT, typename Unit> |
|
struct PolyLineType<orientT, Unit, polygon_45_with_holes_concept> { typedef PolyLinePolygonWithHolesData<orientT, Unit> type; }; |
|
template <bool orientT, typename Unit> |
|
struct PolyLineType<orientT, Unit, polygon_with_holes_concept> { typedef PolyLinePolygonWithHolesData<orientT, Unit> type; }; |
|
template <bool orientT, typename Unit> |
|
struct PolyLineType<orientT, Unit, polygon_90_concept> { typedef PolyLineHoleData<orientT, Unit> type; }; |
|
template <bool orientT, typename Unit> |
|
struct PolyLineType<orientT, Unit, polygon_45_concept> { typedef PolyLineHoleData<orientT, Unit> type; }; |
|
template <bool orientT, typename Unit> |
|
struct PolyLineType<orientT, Unit, polygon_concept> { typedef PolyLineHoleData<orientT, Unit> type; }; |
|
|
|
template <bool orientT, typename Unit, typename polygon_concept_type> |
|
class ScanLineToPolygonItrs { |
|
private: |
|
std::map<Unit, ActiveTail<Unit>*> tailMap_; |
|
typedef typename PolyLineType<orientT, Unit, polygon_concept_type>::type PolyLinePolygonData; |
|
std::vector<PolyLinePolygonData> outputPolygons_; |
|
bool fractureHoles_; |
|
public: |
|
typedef typename std::vector<PolyLinePolygonData>::iterator iterator; |
|
inline ScanLineToPolygonItrs() : tailMap_(), outputPolygons_(), fractureHoles_(false) {} |
|
/* construct a scanline with the proper offsets, protocol and options */ |
|
inline ScanLineToPolygonItrs(bool fractureHoles) : tailMap_(), outputPolygons_(), fractureHoles_(fractureHoles) {} |
|
|
|
~ScanLineToPolygonItrs() { clearOutput_(); } |
|
|
|
/* process all vertical edges, left and right, at a unique x coordinate, edges must be sorted low to high */ |
|
void processEdges(iterator& beginOutput, iterator& endOutput, |
|
Unit currentX, std::vector<interval_data<Unit> >& leftEdges, |
|
std::vector<interval_data<Unit> >& rightEdges); |
|
|
|
private: |
|
void clearOutput_(); |
|
}; |
|
|
|
/* |
|
* ScanLine does all the work of stitching together polygons from incoming vertical edges |
|
*/ |
|
// template <typename Unit, typename polygon_concept_type> |
|
// class ScanLineToPolygons { |
|
// private: |
|
// ScanLineToPolygonItrs<true, Unit> scanline_; |
|
// public: |
|
// inline ScanLineToPolygons() : scanline_() {} |
|
// /* construct a scanline with the proper offsets, protocol and options */ |
|
// inline ScanLineToPolygons(bool fractureHoles) : scanline_(fractureHoles) {} |
|
|
|
// /* process all vertical edges, left and right, at a unique x coordinate, edges must be sorted low to high */ |
|
// inline void processEdges(std::vector<Unit>& outBufferTmp, Unit currentX, std::vector<interval_data<Unit> >& leftEdges, |
|
// std::vector<interval_data<Unit> >& rightEdges) { |
|
// typename ScanLineToPolygonItrs<true, Unit>::iterator itr, endItr; |
|
// scanline_.processEdges(itr, endItr, currentX, leftEdges, rightEdges); |
|
// //copy data into outBufferTmp |
|
// while(itr != endItr) { |
|
// typename PolyLinePolygonData<true, Unit>::iterator pditr; |
|
// outBufferTmp.push_back(0); |
|
// unsigned int sizeIndex = outBufferTmp.size() - 1; |
|
// int count = 0; |
|
// for(pditr = (*itr).begin(); pditr != (*itr).end(); ++pditr) { |
|
// outBufferTmp.push_back(*pditr); |
|
// ++count; |
|
// } |
|
// outBufferTmp[sizeIndex] = count; |
|
// typename PolyLinePolygonData<true, Unit>::iteratorHoles pdHoleItr; |
|
// for(pdHoleItr = (*itr).beginHoles(); pdHoleItr != (*itr).endHoles(); ++pdHoleItr) { |
|
// outBufferTmp.push_back(0); |
|
// unsigned int sizeIndex2 = outBufferTmp.size() - 1; |
|
// int count2 = 0; |
|
// for(pditr = (*pdHoleItr).begin(); pditr != (*pdHoleItr).end(); ++pditr) { |
|
// outBufferTmp.push_back(*pditr); |
|
// ++count2; |
|
// } |
|
// outBufferTmp[sizeIndex2] = -count; |
|
// } |
|
// ++itr; |
|
// } |
|
// } |
|
// }; |
|
|
|
const int VERTICAL_HEAD = 1, HEAD_TO_TAIL = 2, TAIL_TO_TAIL = 4, SOLID_TO_RIGHT = 8; |
|
|
|
//EVERY FUNCTION in this DEF file should be explicitly defined as inline |
|
|
|
//microsoft compiler improperly warns whenever you cast an integer to bool |
|
//call this function on an integer to convert it to bool without a warning |
|
template <class T> |
|
inline bool to_bool(const T& val) { return val != 0; } |
|
|
|
//default constructor (for preallocation) |
|
template <typename Unit> |
|
inline PolyLine<Unit>::PolyLine() : ptdata_() ,headp_(0), tailp_(0), state_(-1) {} |
|
|
|
//constructor |
|
template <typename Unit> |
|
inline PolyLine<Unit>::PolyLine(orientation_2d orient, Unit coord, Side side) : |
|
ptdata_(1, coord), |
|
headp_(0), |
|
tailp_(0), |
|
state_(orient.to_int() + |
|
(side << 3)) {} |
|
|
|
//copy constructor |
|
template <typename Unit> |
|
inline PolyLine<Unit>::PolyLine(const PolyLine<Unit>& pline) : ptdata_(pline.ptdata_), |
|
headp_(pline.headp_), |
|
tailp_(pline.tailp_), |
|
state_(pline.state_) {} |
|
|
|
//destructor |
|
template <typename Unit> |
|
inline PolyLine<Unit>::~PolyLine() { |
|
//clear out data just in case it is read later |
|
headp_ = tailp_ = 0; |
|
state_ = 0; |
|
} |
|
|
|
template <typename Unit> |
|
inline PolyLine<Unit>& PolyLine<Unit>::operator=(const PolyLine<Unit>& that) { |
|
if(!(this == &that)) { |
|
headp_ = that.headp_; |
|
tailp_ = that.tailp_; |
|
ptdata_ = that.ptdata_; |
|
state_ = that.state_; |
|
} |
|
return *this; |
|
} |
|
|
|
template <typename Unit> |
|
inline bool PolyLine<Unit>::operator==(const PolyLine<Unit>& b) const { |
|
return this == &b || (state_ == b.state_ && |
|
headp_ == b.headp_ && |
|
tailp_ == b.tailp_); |
|
} |
|
|
|
//valid PolyLine |
|
template <typename Unit> |
|
inline bool PolyLine<Unit>::isValid() const { |
|
return state_ > -1; } |
|
|
|
//first coordinate is an X value |
|
//first segment is vertical |
|
template <typename Unit> |
|
inline bool PolyLine<Unit>::verticalHead() const { |
|
return state_ & VERTICAL_HEAD; |
|
} |
|
|
|
//retrun true is PolyLine has odd number of coordiantes |
|
template <typename Unit> |
|
inline bool PolyLine<Unit>::oddLength() const { |
|
return to_bool((ptdata_.size()-1) % 2); |
|
} |
|
|
|
//last coordiante is an X value |
|
//last segment is vertical |
|
template <typename Unit> |
|
inline bool PolyLine<Unit>::verticalTail() const { |
|
return to_bool(verticalHead() ^ oddLength()); |
|
} |
|
|
|
template <typename Unit> |
|
inline orientation_2d PolyLine<Unit>::tailOrient() const { |
|
return (verticalTail() ? VERTICAL : HORIZONTAL); |
|
} |
|
|
|
template <typename Unit> |
|
inline orientation_2d PolyLine<Unit>::headOrient() const { |
|
return (verticalHead() ? VERTICAL : HORIZONTAL); |
|
} |
|
|
|
template <typename Unit> |
|
inline End PolyLine<Unit>::endConnectivity(End end) const { |
|
//Tail should be defined as true |
|
if(end) { return tailToTail(); } |
|
return headToTail(); |
|
} |
|
|
|
template <typename Unit> |
|
inline bool PolyLine<Unit>::headToTail() const { |
|
return to_bool(state_ & HEAD_TO_TAIL); |
|
} |
|
|
|
template <typename Unit> |
|
inline bool PolyLine<Unit>::headToHead() const { |
|
return to_bool(!headToTail()); |
|
} |
|
|
|
template <typename Unit> |
|
inline bool PolyLine<Unit>::tailToHead() const { |
|
return to_bool(!tailToTail()); |
|
} |
|
|
|
template <typename Unit> |
|
inline bool PolyLine<Unit>::tailToTail() const { |
|
return to_bool(state_ & TAIL_TO_TAIL); |
|
} |
|
|
|
template <typename Unit> |
|
inline Side PolyLine<Unit>::solidSide() const { |
|
return solidToRight(); } |
|
|
|
template <typename Unit> |
|
inline bool PolyLine<Unit>::solidToRight() const { |
|
return to_bool(state_ & SOLID_TO_RIGHT) != 0; |
|
} |
|
|
|
template <typename Unit> |
|
inline bool PolyLine<Unit>::active() const { |
|
return !to_bool(tailp_); |
|
} |
|
|
|
template <typename Unit> |
|
inline PolyLine<Unit>& PolyLine<Unit>::pushCoordinate(Unit coord) { |
|
ptdata_.push_back(coord); |
|
return *this; |
|
} |
|
|
|
template <typename Unit> |
|
inline PolyLine<Unit>& PolyLine<Unit>::popCoordinate() { |
|
ptdata_.pop_back(); |
|
return *this; |
|
} |
|
|
|
template <typename Unit> |
|
inline PolyLine<Unit>& PolyLine<Unit>::pushPoint(const point_data<Unit>& point) { |
|
point_data<Unit> endPt = getEndPoint(); |
|
//vertical is true, horizontal is false |
|
if((tailOrient().to_int() ? point.get(VERTICAL) == endPt.get(VERTICAL) : point.get(HORIZONTAL) == endPt.get(HORIZONTAL))) { |
|
//we were pushing a colinear segment |
|
return popCoordinate(); |
|
} |
|
return pushCoordinate(tailOrient().to_int() ? point.get(VERTICAL) : point.get(HORIZONTAL)); |
|
} |
|
|
|
template <typename Unit> |
|
inline PolyLine<Unit>& PolyLine<Unit>::extendTail(Unit delta) { |
|
ptdata_.back() += delta; |
|
return *this; |
|
} |
|
|
|
//private member function that creates a link from this PolyLine to that |
|
template <typename Unit> |
|
inline PolyLine<Unit>& PolyLine<Unit>::joinTo_(End thisEnd, PolyLine<Unit>& that, End end) { |
|
if(thisEnd){ |
|
tailp_ = &that; |
|
state_ &= ~TAIL_TO_TAIL; //clear any previous state_ of bit (for safety) |
|
state_ |= (end << 2); //place bit into mask |
|
} else { |
|
headp_ = &that; |
|
state_ &= ~HEAD_TO_TAIL; //clear any previous state_ of bit (for safety) |
|
state_ |= (end << 1); //place bit into mask |
|
} |
|
return *this; |
|
} |
|
|
|
//join two PolyLines (both ways of the association) |
|
template <typename Unit> |
|
inline PolyLine<Unit>& PolyLine<Unit>::joinTo(End thisEnd, PolyLine<Unit>& that, End end) { |
|
joinTo_(thisEnd, that, end); |
|
that.joinTo_(end, *this, thisEnd); |
|
return *this; |
|
} |
|
|
|
//convenience functions for joining PolyLines |
|
template <typename Unit> |
|
inline PolyLine<Unit>& PolyLine<Unit>::joinToTail(PolyLine<Unit>& that, End end) { |
|
return joinTo(TAIL, that, end); |
|
} |
|
template <typename Unit> |
|
inline PolyLine<Unit>& PolyLine<Unit>::joinToHead(PolyLine<Unit>& that, End end) { |
|
return joinTo(HEAD, that, end); |
|
} |
|
template <typename Unit> |
|
inline PolyLine<Unit>& PolyLine<Unit>::joinHeadToHead(PolyLine<Unit>& that) { |
|
return joinToHead(that, HEAD); |
|
} |
|
template <typename Unit> |
|
inline PolyLine<Unit>& PolyLine<Unit>::joinHeadToTail(PolyLine<Unit>& that) { |
|
return joinToHead(that, TAIL); |
|
} |
|
template <typename Unit> |
|
inline PolyLine<Unit>& PolyLine<Unit>::joinTailToHead(PolyLine<Unit>& that) { |
|
return joinToTail(that, HEAD); |
|
} |
|
template <typename Unit> |
|
inline PolyLine<Unit>& PolyLine<Unit>::joinTailToTail(PolyLine<Unit>& that) { |
|
return joinToTail(that, TAIL); |
|
} |
|
|
|
template <typename Unit> |
|
inline PolyLine<Unit>& PolyLine<Unit>::disconnectTails() { |
|
next(TAIL)->state_ &= !TAIL_TO_TAIL; |
|
next(TAIL)->tailp_ = 0; |
|
state_ &= !TAIL_TO_TAIL; |
|
tailp_ = 0; |
|
return *this; |
|
} |
|
|
|
template <typename Unit> |
|
inline Unit PolyLine<Unit>::getEndCoord(End end) const { |
|
if(end) |
|
return ptdata_.back(); |
|
return ptdata_.front(); |
|
} |
|
|
|
template <typename Unit> |
|
inline orientation_2d PolyLine<Unit>::segmentOrient(unsigned int index) const { |
|
return (to_bool((unsigned int)verticalHead() ^ (index % 2)) ? VERTICAL : HORIZONTAL); |
|
} |
|
|
|
template <typename Unit> |
|
inline point_data<Unit> PolyLine<Unit>::getPoint(unsigned int index) const { |
|
//assert(isValid() && headp_->isValid()) ("PolyLine: headp_ must be valid"); |
|
point_data<Unit> pt; |
|
pt.set(HORIZONTAL, ptdata_[index]); |
|
pt.set(VERTICAL, ptdata_[index]); |
|
Unit prevCoord; |
|
if(index == 0) { |
|
prevCoord = headp_->getEndCoord(headToTail()); |
|
} else { |
|
prevCoord = ptdata_[index-1]; |
|
} |
|
pt.set(segmentOrient(index), prevCoord); |
|
return pt; |
|
} |
|
|
|
template <typename Unit> |
|
inline point_data<Unit> PolyLine<Unit>::getEndPoint(End end) const { |
|
return getPoint((end ? numSegments() - 1 : (unsigned int)0)); |
|
} |
|
|
|
template <typename Unit> |
|
inline Unit PolyLine<Unit>::operator[] (unsigned int index) const { |
|
//assert(ptdata_.size() > index) ("PolyLine: out of bounds index"); |
|
return ptdata_[index]; |
|
} |
|
|
|
template <typename Unit> |
|
inline unsigned int PolyLine<Unit>::numSegments() const { |
|
return ptdata_.size(); |
|
} |
|
|
|
template <typename Unit> |
|
inline PolyLine<Unit>* PolyLine<Unit>::next(End end) const { |
|
return (end ? tailp_ : headp_); |
|
} |
|
|
|
template <typename Unit> |
|
inline ActiveTail<Unit>::ActiveTail() : tailp_(0), otherTailp_(0), holesList_() {} |
|
|
|
template <typename Unit> |
|
inline ActiveTail<Unit>::ActiveTail(orientation_2d orient, Unit coord, Side solidToRight, ActiveTail* otherTailp) : |
|
tailp_(0), otherTailp_(0), holesList_() { |
|
tailp_ = createPolyLine(orient, coord, solidToRight); |
|
otherTailp_ = otherTailp; |
|
} |
|
|
|
template <typename Unit> |
|
inline ActiveTail<Unit>::ActiveTail(PolyLine<Unit>* active, ActiveTail<Unit>* otherTailp) : |
|
tailp_(active), otherTailp_(otherTailp), holesList_() {} |
|
|
|
//copy constructor |
|
template <typename Unit> |
|
inline ActiveTail<Unit>::ActiveTail(const ActiveTail<Unit>& that) : tailp_(that.tailp_), otherTailp_(that.otherTailp_), holesList_() {} |
|
|
|
//destructor |
|
template <typename Unit> |
|
inline ActiveTail<Unit>::~ActiveTail() { |
|
//clear them in case the memory is read later |
|
tailp_ = 0; otherTailp_ = 0; |
|
} |
|
|
|
template <typename Unit> |
|
inline ActiveTail<Unit>& ActiveTail<Unit>::operator=(const ActiveTail<Unit>& that) { |
|
//self assignment is safe in this case |
|
tailp_ = that.tailp_; |
|
otherTailp_ = that.otherTailp_; |
|
return *this; |
|
} |
|
|
|
template <typename Unit> |
|
inline bool ActiveTail<Unit>::operator==(const ActiveTail<Unit>& b) const { |
|
return tailp_ == b.tailp_ && otherTailp_ == b.otherTailp_; |
|
} |
|
|
|
template <typename Unit> |
|
inline bool ActiveTail<Unit>::operator<(const ActiveTail<Unit>& b) const { |
|
return tailp_->getEndPoint().get(VERTICAL) < b.tailp_->getEndPoint().get(VERTICAL); |
|
} |
|
|
|
template <typename Unit> |
|
inline bool ActiveTail<Unit>::operator<=(const ActiveTail<Unit>& b) const { |
|
return !(*this > b); } |
|
|
|
template <typename Unit> |
|
inline bool ActiveTail<Unit>::operator>(const ActiveTail<Unit>& b) const { |
|
return b < (*this); } |
|
|
|
template <typename Unit> |
|
inline bool ActiveTail<Unit>::operator>=(const ActiveTail<Unit>& b) const { |
|
return !(*this < b); } |
|
|
|
template <typename Unit> |
|
inline PolyLine<Unit>* ActiveTail<Unit>::getTail() const { |
|
return tailp_; } |
|
|
|
template <typename Unit> |
|
inline PolyLine<Unit>* ActiveTail<Unit>::getOtherTail() const { |
|
return otherTailp_->tailp_; } |
|
|
|
template <typename Unit> |
|
inline ActiveTail<Unit>* ActiveTail<Unit>::getOtherActiveTail() const { |
|
return otherTailp_; } |
|
|
|
template <typename Unit> |
|
inline bool ActiveTail<Unit>::isOtherTail(const ActiveTail<Unit>& b) { |
|
// assert( (tailp_ == b.getOtherTail() && getOtherTail() == b.tailp_) || |
|
// (tailp_ != b.getOtherTail() && getOtherTail() != b.tailp_)) |
|
// ("ActiveTail: Active tails out of sync"); |
|
return otherTailp_ == &b; |
|
} |
|
|
|
template <typename Unit> |
|
inline ActiveTail<Unit>& ActiveTail<Unit>::updateTail(PolyLine<Unit>* newTail) { |
|
tailp_ = newTail; |
|
return *this; |
|
} |
|
|
|
template <typename Unit> |
|
inline ActiveTail<Unit>* ActiveTail<Unit>::addHole(ActiveTail<Unit>* hole, bool fractureHoles) { |
|
if(!fractureHoles){ |
|
holesList_.push_back(hole); |
|
copyHoles(*hole); |
|
copyHoles(*(hole->getOtherActiveTail())); |
|
return this; |
|
} |
|
ActiveTail<Unit>* h, *v; |
|
ActiveTail<Unit>* other = hole->getOtherActiveTail(); |
|
if(other->getOrient() == VERTICAL) { |
|
//assert that hole.getOrient() == HORIZONTAL |
|
//this case should never happen |
|
h = hole; |
|
v = other; |
|
} else { |
|
//assert that hole.getOrient() == VERTICAL |
|
h = other; |
|
v = hole; |
|
} |
|
h->pushCoordinate(v->getCoordinate()); |
|
//assert that h->getOrient() == VERTICAL |
|
//v->pushCoordinate(getCoordinate()); |
|
//assert that v->getOrient() == VERTICAL |
|
//I can't close a figure by adding a hole, so pass zero for xMin and yMin |
|
std::vector<Unit> tmpVec; |
|
ActiveTail<Unit>::joinChains(this, h, false, tmpVec); |
|
return v; |
|
} |
|
|
|
template <typename Unit> |
|
inline const std::list<ActiveTail<Unit>*>& ActiveTail<Unit>::getHoles() const { |
|
return holesList_; |
|
} |
|
|
|
template <typename Unit> |
|
inline void ActiveTail<Unit>::copyHoles(ActiveTail<Unit>& that) { |
|
holesList_.splice(holesList_.end(), that.holesList_); //splice the two lists together |
|
} |
|
|
|
template <typename Unit> |
|
inline bool ActiveTail<Unit>::solidToRight() const { |
|
return getTail()->solidToRight(); } |
|
|
|
template <typename Unit> |
|
inline Unit ActiveTail<Unit>::getCoord() const { |
|
return getTail()->getEndCoord(); } |
|
|
|
template <typename Unit> |
|
inline Unit ActiveTail<Unit>::getCoordinate() const { |
|
return getCoord(); } |
|
|
|
template <typename Unit> |
|
inline orientation_2d ActiveTail<Unit>::getOrient() const { |
|
return getTail()->tailOrient(); } |
|
|
|
template <typename Unit> |
|
inline void ActiveTail<Unit>::pushCoordinate(Unit coord) { |
|
//appropriately handle any co-linear polyline segments by calling push point internally |
|
point_data<Unit> p; |
|
p.set(HORIZONTAL, coord); |
|
p.set(VERTICAL, coord); |
|
//if we are vertical assign the last coordinate (an X) to p.x, else to p.y |
|
p.set(getOrient().get_perpendicular(), getCoordinate()); |
|
tailp_->pushPoint(p); |
|
} |
|
|
|
|
|
//global utility functions |
|
template <typename Unit> |
|
inline PolyLine<Unit>* createPolyLine(orientation_2d orient, Unit coord, Side side) { |
|
return new PolyLine<Unit>(orient, coord, side); |
|
} |
|
|
|
template <typename Unit> |
|
inline void destroyPolyLine(PolyLine<Unit>* pLine) { |
|
delete pLine; |
|
} |
|
|
|
template <typename Unit> |
|
inline ActiveTail<Unit>* createActiveTail() { |
|
//consider replacing system allocator with ActiveTail memory pool |
|
return new ActiveTail<Unit>(); |
|
} |
|
|
|
template <typename Unit> |
|
inline void destroyActiveTail(ActiveTail<Unit>* aTail) { |
|
delete aTail; |
|
} |
|
|
|
|
|
//no recursion, to prevent max recursion depth errors |
|
template <typename Unit> |
|
inline void ActiveTail<Unit>::destroyContents() { |
|
tailp_->disconnectTails(); |
|
PolyLine<Unit>* nextPolyLinep = tailp_->next(HEAD); |
|
End end = tailp_->endConnectivity(HEAD); |
|
destroyPolyLine(tailp_); |
|
while(nextPolyLinep) { |
|
End nextEnd = nextPolyLinep->endConnectivity(!end); //get the direction of next polyLine |
|
PolyLine<Unit>* nextNextPolyLinep = nextPolyLinep->next(!end); //get the next polyline |
|
destroyPolyLine(nextPolyLinep); //destroy the current polyline |
|
end = nextEnd; |
|
nextPolyLinep = nextNextPolyLinep; |
|
} |
|
} |
|
|
|
template <typename Unit> |
|
inline typename ActiveTail<Unit>::iterator ActiveTail<Unit>::begin(bool isHole, orientation_2d orient) const { |
|
return iterator(this, isHole, orient); |
|
} |
|
|
|
template <typename Unit> |
|
inline typename ActiveTail<Unit>::iterator ActiveTail<Unit>::end() const { |
|
return iterator(); |
|
} |
|
|
|
template <typename Unit> |
|
inline typename ActiveTail<Unit>::iteratorHoles ActiveTail<Unit>::beginHoles() const { |
|
return holesList_.begin(); |
|
} |
|
|
|
template <typename Unit> |
|
inline typename ActiveTail<Unit>::iteratorHoles ActiveTail<Unit>::endHoles() const { |
|
return holesList_.end(); |
|
} |
|
|
|
template <typename Unit> |
|
inline void ActiveTail<Unit>::writeOutFigureItrs(iterator& beginOut, iterator& endOut, bool isHole, orientation_2d orient) const { |
|
beginOut = begin(isHole, orient); |
|
endOut = end(); |
|
} |
|
|
|
template <typename Unit> |
|
inline void ActiveTail<Unit>::writeOutFigureHoleItrs(iteratorHoles& beginOut, iteratorHoles& endOut) const { |
|
beginOut = beginHoles(); |
|
endOut = endHoles(); |
|
} |
|
|
|
template <typename Unit> |
|
inline void ActiveTail<Unit>::writeOutFigure(std::vector<Unit>& outVec, bool isHole) const { |
|
//we start writing out the polyLine that this active tail points to at its tail |
|
std::size_t size = outVec.size(); |
|
outVec.push_back(0); //place holder for size |
|
PolyLine<Unit>* nextPolyLinep = 0; |
|
if(!isHole){ |
|
nextPolyLinep = otherTailp_->tailp_->writeOut(outVec); |
|
} else { |
|
nextPolyLinep = tailp_->writeOut(outVec); |
|
} |
|
Unit firsty = outVec[size + 1]; |
|
if((getOrient() == HORIZONTAL) ^ !isHole) { |
|
//our first coordinate is a y value, so we need to rotate it to the end |
|
typename std::vector<Unit>::iterator tmpItr = outVec.begin(); |
|
tmpItr += size; |
|
outVec.erase(++tmpItr); //erase the 2nd element |
|
} |
|
End startEnd = tailp_->endConnectivity(HEAD); |
|
if(isHole) startEnd = otherTailp_->tailp_->endConnectivity(HEAD); |
|
while(nextPolyLinep) { |
|
bool nextStartEnd = nextPolyLinep->endConnectivity(!startEnd); |
|
nextPolyLinep = nextPolyLinep->writeOut(outVec, startEnd); |
|
startEnd = nextStartEnd; |
|
} |
|
if((getOrient() == HORIZONTAL) ^ !isHole) { |
|
//we want to push the y value onto the end since we ought to have ended with an x |
|
outVec.push_back(firsty); //should never be executed because we want first value to be an x |
|
} |
|
//the vector contains the coordinates of the linked list of PolyLines in the correct order |
|
//first element is supposed to be the size |
|
outVec[size] = outVec.size() - 1 - size; //number of coordinates in vector |
|
//assert outVec[size] % 2 == 0 //it should be even |
|
//make the size negative for holes |
|
outVec[size] *= (isHole ? -1 : 1); |
|
} |
|
|
|
//no recursion to prevent max recursion depth errors |
|
template <typename Unit> |
|
inline PolyLine<Unit>* PolyLine<Unit>::writeOut(std::vector<Unit>& outVec, End startEnd) const { |
|
if(startEnd == HEAD){ |
|
//forward order |
|
outVec.insert(outVec.end(), ptdata_.begin(), ptdata_.end()); |
|
return tailp_; |
|
}else{ |
|
//reverse order |
|
//do not reserve because we expect outVec to be large enough already |
|
for(int i = ptdata_.size() - 1; i >= 0; --i){ |
|
outVec.push_back(ptdata_[i]); |
|
} |
|
//NT didn't know about this version of the API.... |
|
//outVec.insert(outVec.end(), ptdata_.rbegin(), ptdata_.rend()); |
|
return headp_; |
|
} |
|
} |
|
|
|
//solid indicates if it was joined by a solit or a space |
|
template <typename Unit> |
|
inline ActiveTail<Unit>* ActiveTail<Unit>::joinChains(ActiveTail<Unit>* at1, ActiveTail<Unit>* at2, bool solid, std::vector<Unit>& outBufferTmp) |
|
{ |
|
//checks to see if we closed a figure |
|
if(at1->isOtherTail(*at2)){ |
|
//value of solid tells us if we closed solid or hole |
|
//and output the solid or handle the hole appropriately |
|
//if the hole needs to fracture across horizontal partition boundary we need to notify |
|
//the calling context to do so |
|
if(solid) { |
|
//the chains are being joined because there is solid to the right |
|
//this means that if the figure is closed at this point it must be a hole |
|
//because otherwise it would have to have another vertex to the right of this one |
|
//and would not be closed at this point |
|
return at1; |
|
} else { |
|
//assert pG != 0 |
|
//the figure that was closed is a shell |
|
at1->writeOutFigure(outBufferTmp); |
|
//process holes of the polygon |
|
at1->copyHoles(*at2); //there should not be holes on at2, but if there are, copy them over |
|
const std::list<ActiveTail<Unit>*>& holes = at1->getHoles(); |
|
for(typename std::list<ActiveTail<Unit>*>::const_iterator litr = holes.begin(); litr != holes.end(); ++litr) { |
|
(*litr)->writeOutFigure(outBufferTmp, true); |
|
//delete the hole |
|
(*litr)->destroyContents(); |
|
destroyActiveTail((*litr)->getOtherActiveTail()); |
|
destroyActiveTail((*litr)); |
|
} |
|
//delete the polygon |
|
at1->destroyContents(); |
|
//at2 contents are the same as at1, so it should not destroy them |
|
destroyActiveTail(at1); |
|
destroyActiveTail(at2); |
|
} |
|
return 0; |
|
} |
|
//join the two partial polygons into one large partial polygon |
|
at1->getTail()->joinTailToTail(*(at2->getTail())); |
|
*(at1->getOtherActiveTail()) = ActiveTail(at1->getOtherTail(), at2->getOtherActiveTail()); |
|
*(at2->getOtherActiveTail()) = ActiveTail(at2->getOtherTail(), at1->getOtherActiveTail()); |
|
at1->getOtherActiveTail()->copyHoles(*at1); |
|
at1->getOtherActiveTail()->copyHoles(*at2); |
|
destroyActiveTail(at1); |
|
destroyActiveTail(at2); |
|
return 0; |
|
} |
|
|
|
//solid indicates if it was joined by a solit or a space |
|
template <typename Unit> |
|
template <typename PolygonT> |
|
inline ActiveTail<Unit>* ActiveTail<Unit>::joinChains(ActiveTail<Unit>* at1, ActiveTail<Unit>* at2, bool solid, |
|
std::vector<PolygonT>& outBufferTmp) { |
|
//checks to see if we closed a figure |
|
if(at1->isOtherTail(*at2)){ |
|
//value of solid tells us if we closed solid or hole |
|
//and output the solid or handle the hole appropriately |
|
//if the hole needs to fracture across horizontal partition boundary we need to notify |
|
//the calling context to do so |
|
if(solid) { |
|
//the chains are being joined because there is solid to the right |
|
//this means that if the figure is closed at this point it must be a hole |
|
//because otherwise it would have to have another vertex to the right of this one |
|
//and would not be closed at this point |
|
return at1; |
|
} else { |
|
//assert pG != 0 |
|
//the figure that was closed is a shell |
|
outBufferTmp.push_back(at1); |
|
at1->copyHoles(*at2); //there should not be holes on at2, but if there are, copy them over |
|
} |
|
return 0; |
|
} |
|
//join the two partial polygons into one large partial polygon |
|
at1->getTail()->joinTailToTail(*(at2->getTail())); |
|
*(at1->getOtherActiveTail()) = ActiveTail<Unit>(at1->getOtherTail(), at2->getOtherActiveTail()); |
|
*(at2->getOtherActiveTail()) = ActiveTail<Unit>(at2->getOtherTail(), at1->getOtherActiveTail()); |
|
at1->getOtherActiveTail()->copyHoles(*at1); |
|
at1->getOtherActiveTail()->copyHoles(*at2); |
|
destroyActiveTail(at1); |
|
destroyActiveTail(at2); |
|
return 0; |
|
} |
|
|
|
template <class TKey, class T> inline typename std::map<TKey, T>::iterator findAtNext(std::map<TKey, T>& theMap, |
|
typename std::map<TKey, T>::iterator pos, const TKey& key) |
|
{ |
|
if(pos == theMap.end()) return theMap.find(key); |
|
//if they match the mapItr is pointing to the correct position |
|
if(pos->first < key) { |
|
return theMap.find(key); |
|
} |
|
if(pos->first > key) { |
|
return theMap.end(); |
|
} |
|
//else they are equal and no need to do anything to the iterator |
|
return pos; |
|
} |
|
|
|
// createActiveTailsAsPair is called in these two end cases of geometry |
|
// 1. lower left concave corner |
|
// ###| |
|
// ###| |
|
// ###|### |
|
// ###|### |
|
// 2. lower left convex corner |
|
// |### |
|
// |### |
|
// | |
|
// | |
|
// In case 1 there may be a hole propigated up from the bottom. If the fracture option is enabled |
|
// the two active tails that form the filament fracture line edges can become the new active tail pair |
|
// by pushing x and y onto them. Otherwise the hole simply needs to be associated to one of the new active tails |
|
// with add hole |
|
template <typename Unit> |
|
inline std::pair<ActiveTail<Unit>*, ActiveTail<Unit>*> createActiveTailsAsPair(Unit x, Unit y, bool solid, ActiveTail<Unit>* phole, bool fractureHoles) { |
|
ActiveTail<Unit>* at1 = 0; |
|
ActiveTail<Unit>* at2 = 0; |
|
if(!phole || !fractureHoles){ |
|
at1 = createActiveTail<Unit>(); |
|
at2 = createActiveTail<Unit>(); |
|
(*at1) = ActiveTail<Unit>(VERTICAL, x, solid, at2); |
|
(*at2) = ActiveTail<Unit>(HORIZONTAL, y, !solid, at1); |
|
//provide a function through activeTail class to provide this |
|
at1->getTail()->joinHeadToHead(*(at2->getTail())); |
|
if(phole) |
|
at1->addHole(phole, fractureHoles); //assert fractureHoles == false |
|
return std::pair<ActiveTail<Unit>*, ActiveTail<Unit>*>(at1, at2); |
|
} |
|
//assert phole is not null |
|
//assert fractureHoles is true |
|
if(phole->getOrient() == VERTICAL) { |
|
at2 = phole; |
|
} else { |
|
at2 = phole->getOtherActiveTail(); //should never be executed since orientation is expected to be vertical |
|
} |
|
//assert solid == false, we should be creating a corner with solid below and to the left if there was a hole |
|
at1 = at2->getOtherActiveTail(); |
|
//assert at1 is horizontal |
|
at1->pushCoordinate(x); |
|
//assert at2 is vertical |
|
at2->pushCoordinate(y); |
|
return std::pair<ActiveTail<Unit>*, ActiveTail<Unit>*>(at1, at2); |
|
} |
|
|
|
//Process edges connects vertical input edges (right or left edges of figures) to horizontal edges stored as member |
|
//data of the scanline object. It also creates now horizontal edges as needed to construct figures from edge data. |
|
// |
|
//There are only 12 geometric end cases where the scanline intersects a horizontal edge and even fewer unique |
|
//actions to take: |
|
// 1. Solid on both sides of the vertical partition after the current position and space on both sides before |
|
// ###|### |
|
// ###|### |
|
// | |
|
// | |
|
// This case does not need to be handled because there is no vertical edge at the current x coordinate. |
|
// |
|
// 2. Solid on both sides of the vertical partition before the current position and space on both sides after |
|
// | |
|
// | |
|
// ###|### |
|
// ###|### |
|
// This case does not need to be handled because there is no vertical edge at the current x coordinate. |
|
// |
|
// 3. Solid on the left of the vertical partition after the current position and space elsewhere |
|
// ###| |
|
// ###| |
|
// | |
|
// | |
|
// The horizontal edge from the left is found and turns upward because of the vertical right edge to become |
|
// the currently active vertical edge. |
|
// |
|
// 4. Solid on the left of the vertical partion before the current position and space elsewhere |
|
// | |
|
// | |
|
// ###| |
|
// ###| |
|
// The horizontal edge from the left is found and joined to the currently active vertical edge. |
|
// |
|
// 5. Solid to the right above and below and solid to the left above current position. |
|
// ###|### |
|
// ###|### |
|
// |### |
|
// |### |
|
// The horizontal edge from the left is found and joined to the currently active vertical edge, |
|
// potentially closing a hole. |
|
// |
|
// 6. Solid on the left of the vertical partion before the current position and solid to the right above and below |
|
// |### |
|
// |### |
|
// ###|### |
|
// ###|### |
|
// The horizontal edge from the left is found and turns upward because of the vertical right edge to become |
|
// the currently active vertical edge. |
|
// |
|
// 7. Solid on the right of the vertical partition after the current position and space elsewhere |
|
// |### |
|
// |### |
|
// | |
|
// | |
|
// Create two new ActiveTails, one is added to the horizontal edges and the other becomes the vertical currentTail |
|
// |
|
// 8. Solid on the right of the vertical partion before the current position and space elsewhere |
|
// | |
|
// | |
|
// |### |
|
// |### |
|
// The currentTail vertical edge turns right and is added to the horizontal edges data |
|
// |
|
// 9. Solid to the right above and solid to the left above and below current position. |
|
// ###|### |
|
// ###|### |
|
// ###| |
|
// ###| |
|
// The currentTail vertical edge turns right and is added to the horizontal edges data |
|
// |
|
// 10. Solid on the left of the vertical partion above and below the current position and solid to the right below |
|
// ###| |
|
// ###| |
|
// ###|### |
|
// ###|### |
|
// Create two new ActiveTails, one is added to the horizontal edges data and the other becomes the vertical currentTail |
|
// |
|
// 11. Solid to the right above and solid to the left below current position. |
|
// |### |
|
// |### |
|
// ###| |
|
// ###| |
|
// The currentTail vertical edge joins the horizontal edge from the left (may close a polygon) |
|
// Create two new ActiveTails, one is added to the horizontal edges data and the other becomes the vertical currentTail |
|
// |
|
// 12. Solid on the left of the vertical partion above the current position and solid to the right below |
|
// ###| |
|
// ###| |
|
// |### |
|
// |### |
|
// The currentTail vertical edge turns right and is added to the horizontal edges data. |
|
// The horizontal edge from the left turns upward and becomes the currentTail vertical edge |
|
// |
|
template <bool orientT, typename Unit, typename polygon_concept_type> |
|
inline void ScanLineToPolygonItrs<orientT, Unit, polygon_concept_type>:: |
|
processEdges(iterator& beginOutput, iterator& endOutput, |
|
Unit currentX, std::vector<interval_data<Unit> >& leftEdges, |
|
std::vector<interval_data<Unit> >& rightEdges) { |
|
clearOutput_(); |
|
typename std::map<Unit, ActiveTail<Unit>*>::iterator nextMapItr = tailMap_.begin(); |
|
//foreach edge |
|
unsigned int leftIndex = 0; |
|
unsigned int rightIndex = 0; |
|
bool bottomAlreadyProcessed = false; |
|
ActiveTail<Unit>* currentTail = 0; |
|
const Unit UnitMax = (std::numeric_limits<Unit>::max)(); |
|
while(leftIndex < leftEdges.size() || rightIndex < rightEdges.size()) { |
|
interval_data<Unit> edges[2] = {interval_data<Unit> (UnitMax, UnitMax), interval_data<Unit> (UnitMax, UnitMax)}; |
|
bool haveNextEdge = true; |
|
if(leftIndex < leftEdges.size()) |
|
edges[0] = leftEdges[leftIndex]; |
|
else |
|
haveNextEdge = false; |
|
if(rightIndex < rightEdges.size()) |
|
edges[1] = rightEdges[rightIndex]; |
|
else |
|
haveNextEdge = false; |
|
bool trailingEdge = edges[1].get(LOW) < edges[0].get(LOW); |
|
interval_data<Unit> & edge = edges[trailingEdge]; |
|
interval_data<Unit> & nextEdge = edges[!trailingEdge]; |
|
//process this edge |
|
if(!bottomAlreadyProcessed) { |
|
//assert currentTail = 0 |
|
|
|
//process the bottom end of this edge |
|
typename std::map<Unit, ActiveTail<Unit>*>::iterator thisMapItr = findAtNext(tailMap_, nextMapItr, edge.get(LOW)); |
|
if(thisMapItr != tailMap_.end()) { |
|
//there is an edge in the map at the low end of this edge |
|
//it needs to turn upward and become the current tail |
|
ActiveTail<Unit>* tail = thisMapItr->second; |
|
if(currentTail) { |
|
//stitch currentTail into this tail |
|
currentTail = tail->addHole(currentTail, fractureHoles_); |
|
if(!fractureHoles_) |
|
currentTail->pushCoordinate(currentX); |
|
} else { |
|
currentTail = tail; |
|
currentTail->pushCoordinate(currentX); |
|
} |
|
//assert currentTail->getOrient() == VERTICAL |
|
nextMapItr = thisMapItr; //set nextMapItr to the next position after this one |
|
++nextMapItr; |
|
//remove thisMapItr from the map |
|
tailMap_.erase(thisMapItr); |
|
} else { |
|
//there is no edge in the map at the low end of this edge |
|
//we need to create one and another one to be the current vertical tail |
|
//if this is a trailing edge then there is space to the right of the vertical edge |
|
//so pass the inverse of trailingEdge to indicate solid to the right |
|
std::pair<ActiveTail<Unit>*, ActiveTail<Unit>*> tailPair = |
|
createActiveTailsAsPair(currentX, edge.get(LOW), !trailingEdge, currentTail, fractureHoles_); |
|
currentTail = tailPair.first; |
|
tailMap_.insert(nextMapItr, std::pair<Unit, ActiveTail<Unit>*>(edge.get(LOW), tailPair.second)); |
|
// leave nextMapItr unchanged |
|
} |
|
|
|
} |
|
if(haveNextEdge && edge.get(HIGH) == nextEdge.get(LOW)) { |
|
//the top of this edge is equal to the bottom of the next edge, process them both |
|
bottomAlreadyProcessed = true; |
|
typename std::map<Unit, ActiveTail<Unit>*>::iterator thisMapItr = findAtNext(tailMap_, nextMapItr, edge.get(HIGH)); |
|
if(thisMapItr == tailMap_.end()) //assert this should never happen |
|
return; |
|
if(trailingEdge) { |
|
//geometry at this position |
|
// |## |
|
// |## |
|
// ----- |
|
// ##| |
|
// ##| |
|
//current tail should join thisMapItr tail |
|
ActiveTail<Unit>* tail = thisMapItr->second; |
|
//pass false because they are being joined because space is to the right and it will close a solid figure |
|
ActiveTail<Unit>::joinChains(currentTail, tail, false, outputPolygons_); |
|
//two new tails are created, the vertical becomes current tail, the horizontal becomes thisMapItr tail |
|
//pass true becuase they are created at the lower left corner of some solid |
|
//pass null because there is no hole pointer possible |
|
std::pair<ActiveTail<Unit>*, ActiveTail<Unit>*> tailPair = |
|
createActiveTailsAsPair<Unit>(currentX, edge.get(HIGH), true, 0, fractureHoles_); |
|
currentTail = tailPair.first; |
|
thisMapItr->second = tailPair.second; |
|
} else { |
|
//geometry at this position |
|
// ##| |
|
// ##| |
|
// ----- |
|
// |## |
|
// |## |
|
//current tail should turn right |
|
currentTail->pushCoordinate(edge.get(HIGH)); |
|
//thisMapItr tail should turn up |
|
thisMapItr->second->pushCoordinate(currentX); |
|
//thisMapItr tail becomes current tail and current tail becomes thisMapItr tail |
|
std::swap(currentTail, thisMapItr->second); |
|
} |
|
nextMapItr = thisMapItr; //set nextMapItr to the next position after this one |
|
++nextMapItr; |
|
} else { |
|
//there is a gap between the top of this edge and the bottom of the next, process the top of this edge |
|
bottomAlreadyProcessed = false; |
|
//process the top of this edge |
|
typename std::map<Unit, ActiveTail<Unit>*>::iterator thisMapItr = findAtNext(tailMap_, nextMapItr, edge.get(HIGH)); |
|
if(thisMapItr != tailMap_.end()) { |
|
//thisMapItr is pointing to a horizontal edge in the map at the top of this vertical edge |
|
//we need to join them and potentially close a figure |
|
//assert currentTail != 0 |
|
ActiveTail<Unit>* tail = thisMapItr->second; |
|
//pass the opositve of trailing edge to mean that they are joined because of solid to the right |
|
currentTail = ActiveTail<Unit>::joinChains(currentTail, tail, !trailingEdge, outputPolygons_); |
|
nextMapItr = thisMapItr; //set nextMapItr to the next position after this one |
|
++nextMapItr; |
|
if(currentTail) { |
|
Unit nextItrY = UnitMax; |
|
if(nextMapItr != tailMap_.end()) { |
|
nextItrY = nextMapItr->first; |
|
} |
|
//for it to be a hole this must have been a left edge |
|
Unit leftY = UnitMax; |
|
if(leftIndex + 1 < leftEdges.size()) |
|
leftY = leftEdges[leftIndex+1].get(LOW); |
|
Unit rightY = nextEdge.get(LOW); |
|
if(!haveNextEdge || (nextItrY < leftY && nextItrY < rightY)) { |
|
//we need to add it to the next edge above it in the map |
|
tail = nextMapItr->second; |
|
tail = tail->addHole(currentTail, fractureHoles_); |
|
if(fractureHoles_) { |
|
//some small additional work stitching in the filament |
|
tail->pushCoordinate(nextItrY); |
|
nextMapItr->second = tail; |
|
} |
|
//set current tail to null |
|
currentTail = 0; |
|
} |
|
} |
|
//delete thisMapItr from the map |
|
tailMap_.erase(thisMapItr); |
|
} else { |
|
//currentTail must turn right and be added into the map |
|
currentTail->pushCoordinate(edge.get(HIGH)); |
|
//assert currentTail->getOrient() == HORIZONTAL |
|
tailMap_.insert(nextMapItr, std::pair<Unit, ActiveTail<Unit>*>(edge.get(HIGH), currentTail)); |
|
//set currentTail to null |
|
currentTail = 0; |
|
//leave nextMapItr unchanged, it is still next |
|
} |
|
} |
|
|
|
//increment index |
|
leftIndex += !trailingEdge; |
|
rightIndex += trailingEdge; |
|
} //end while |
|
beginOutput = outputPolygons_.begin(); |
|
endOutput = outputPolygons_.end(); |
|
} //end function |
|
|
|
template<bool orientT, typename Unit, typename polygon_concept_type> |
|
inline void ScanLineToPolygonItrs<orientT, Unit, polygon_concept_type>::clearOutput_() { |
|
for(std::size_t i = 0; i < outputPolygons_.size(); ++i) { |
|
ActiveTail<Unit>* at1 = outputPolygons_[i].yield(); |
|
const std::list<ActiveTail<Unit>*>& holes = at1->getHoles(); |
|
for(typename std::list<ActiveTail<Unit>*>::const_iterator litr = holes.begin(); litr != holes.end(); ++litr) { |
|
//delete the hole |
|
(*litr)->destroyContents(); |
|
destroyActiveTail((*litr)->getOtherActiveTail()); |
|
destroyActiveTail((*litr)); |
|
} |
|
//delete the polygon |
|
at1->destroyContents(); |
|
//at2 contents are the same as at1, so it should not destroy them |
|
destroyActiveTail((at1)->getOtherActiveTail()); |
|
destroyActiveTail(at1); |
|
} |
|
outputPolygons_.clear(); |
|
} |
|
|
|
} //polygon_formation namespace |
|
|
|
template <bool orientT, typename Unit> |
|
struct geometry_concept<polygon_formation::PolyLinePolygonWithHolesData<orientT, Unit> > { |
|
typedef polygon_90_with_holes_concept type; |
|
}; |
|
|
|
template <bool orientT, typename Unit> |
|
struct geometry_concept<polygon_formation::PolyLineHoleData<orientT, Unit> > { |
|
typedef polygon_90_concept type; |
|
}; |
|
|
|
//public API to access polygon formation algorithm |
|
template <typename output_container, typename iterator_type, typename concept_type> |
|
unsigned int get_polygons(output_container& container, iterator_type begin, iterator_type end, |
|
orientation_2d orient, bool fracture_holes, concept_type ) { |
|
typedef typename output_container::value_type polygon_type; |
|
typedef typename std::iterator_traits<iterator_type>::value_type::first_type coordinate_type; |
|
polygon_type poly; |
|
unsigned int countPolygons = 0; |
|
typedef typename geometry_concept<polygon_type>::type polygon_concept_type; |
|
polygon_formation::ScanLineToPolygonItrs<true, coordinate_type, polygon_concept_type> scanlineToPolygonItrsV(fracture_holes); |
|
polygon_formation::ScanLineToPolygonItrs<false, coordinate_type, polygon_concept_type> scanlineToPolygonItrsH(fracture_holes); |
|
std::vector<interval_data<coordinate_type> > leftEdges; |
|
std::vector<interval_data<coordinate_type> > rightEdges; |
|
coordinate_type prevPos = (std::numeric_limits<coordinate_type>::max)(); |
|
coordinate_type prevY = (std::numeric_limits<coordinate_type>::max)(); |
|
int count = 0; |
|
for(iterator_type itr = begin; |
|
itr != end; ++ itr) { |
|
coordinate_type pos = (*itr).first; |
|
if(pos != prevPos) { |
|
if(orient == VERTICAL) { |
|
typename polygon_formation::ScanLineToPolygonItrs<true, coordinate_type, polygon_concept_type>::iterator itrPoly, itrPolyEnd; |
|
scanlineToPolygonItrsV.processEdges(itrPoly, itrPolyEnd, prevPos, leftEdges, rightEdges); |
|
for( ; itrPoly != itrPolyEnd; ++ itrPoly) { |
|
++countPolygons; |
|
assign(poly, *itrPoly); |
|
container.insert(container.end(), poly); |
|
} |
|
} else { |
|
typename polygon_formation::ScanLineToPolygonItrs<false, coordinate_type, polygon_concept_type>::iterator itrPoly, itrPolyEnd; |
|
scanlineToPolygonItrsH.processEdges(itrPoly, itrPolyEnd, prevPos, leftEdges, rightEdges); |
|
for( ; itrPoly != itrPolyEnd; ++ itrPoly) { |
|
++countPolygons; |
|
assign(poly, *itrPoly); |
|
container.insert(container.end(), poly); |
|
} |
|
} |
|
leftEdges.clear(); |
|
rightEdges.clear(); |
|
prevPos = pos; |
|
prevY = (*itr).second.first; |
|
count = (*itr).second.second; |
|
continue; |
|
} |
|
coordinate_type y = (*itr).second.first; |
|
if(count != 0 && y != prevY) { |
|
std::pair<interval_data<coordinate_type>, int> element(interval_data<coordinate_type>(prevY, y), count); |
|
if(element.second == 1) { |
|
if(leftEdges.size() && leftEdges.back().high() == element.first.low()) { |
|
encompass(leftEdges.back(), element.first); |
|
} else { |
|
leftEdges.push_back(element.first); |
|
} |
|
} else { |
|
if(rightEdges.size() && rightEdges.back().high() == element.first.low()) { |
|
encompass(rightEdges.back(), element.first); |
|
} else { |
|
rightEdges.push_back(element.first); |
|
} |
|
} |
|
|
|
} |
|
prevY = y; |
|
count += (*itr).second.second; |
|
} |
|
if(orient == VERTICAL) { |
|
typename polygon_formation::ScanLineToPolygonItrs<true, coordinate_type, polygon_concept_type>::iterator itrPoly, itrPolyEnd; |
|
scanlineToPolygonItrsV.processEdges(itrPoly, itrPolyEnd, prevPos, leftEdges, rightEdges); |
|
for( ; itrPoly != itrPolyEnd; ++ itrPoly) { |
|
++countPolygons; |
|
assign(poly, *itrPoly); |
|
container.insert(container.end(), poly); |
|
} |
|
} else { |
|
typename polygon_formation::ScanLineToPolygonItrs<false, coordinate_type, polygon_concept_type>::iterator itrPoly, itrPolyEnd; |
|
scanlineToPolygonItrsH.processEdges(itrPoly, itrPolyEnd, prevPos, leftEdges, rightEdges); |
|
for( ; itrPoly != itrPolyEnd; ++ itrPoly) { |
|
++countPolygons; |
|
assign(poly, *itrPoly); |
|
container.insert(container.end(), poly); |
|
} |
|
} |
|
return countPolygons; |
|
} |
|
|
|
} |
|
} |
|
#endif |
|
|
|
|