You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
278 lines
11 KiB
278 lines
11 KiB
/* |
|
Copyright 2008 Intel Corporation |
|
|
|
Use, modification and distribution are subject to the Boost Software License, |
|
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at |
|
http://www.boost.org/LICENSE_1_0.txt). |
|
*/ |
|
#ifndef BOOST_POLYGON_MAX_COVER_HPP |
|
#define BOOST_POLYGON_MAX_COVER_HPP |
|
namespace boost { namespace polygon{ |
|
|
|
template <typename Unit> |
|
struct MaxCover { |
|
typedef interval_data<Unit> Interval; |
|
typedef rectangle_data<Unit> Rectangle; |
|
|
|
class Node { |
|
private: |
|
std::vector<Node*> children_; |
|
std::set<Interval> tracedPaths_; |
|
public: |
|
Rectangle rect; |
|
Node() : children_(), tracedPaths_(), rect() {} |
|
Node(const Rectangle rectIn) : children_(), tracedPaths_(), rect(rectIn) {} |
|
typedef typename std::vector<Node*>::iterator iterator; |
|
inline iterator begin() { return children_.begin(); } |
|
inline iterator end() { return children_.end(); } |
|
inline void add(Node* child) { children_.push_back(child); } |
|
inline bool tracedPath(const Interval& ivl) const { |
|
return tracedPaths_.find(ivl) != tracedPaths_.end(); |
|
} |
|
inline void addPath(const Interval& ivl) { |
|
tracedPaths_.insert(tracedPaths_.end(), ivl); |
|
} |
|
}; |
|
|
|
typedef std::pair<std::pair<Unit, Interval>, Node* > EdgeAssociation; |
|
|
|
class lessEdgeAssociation : public std::binary_function<const EdgeAssociation&, const EdgeAssociation&, bool> { |
|
public: |
|
inline lessEdgeAssociation() {} |
|
inline bool operator () (const EdgeAssociation& elem1, const EdgeAssociation& elem2) const { |
|
if(elem1.first.first < elem2.first.first) return true; |
|
if(elem1.first.first > elem2.first.first) return false; |
|
return elem1.first.second < elem2.first.second; |
|
} |
|
}; |
|
|
|
template <class cT> |
|
static inline void getMaxCover(cT& outputContainer, Node* node, orientation_2d orient) { |
|
Interval rectIvl = node->rect.get(orient); |
|
if(node->tracedPath(rectIvl)) { |
|
return; |
|
} |
|
node->addPath(rectIvl); |
|
if(node->begin() == node->end()) { |
|
//std::cout << "WRITE OUT 3: " << node->rect << std::endl; |
|
outputContainer.push_back(copy_construct<typename cT::value_type, Rectangle>(node->rect)); |
|
return; |
|
} |
|
bool writeOut = true; |
|
for(typename Node::iterator itr = node->begin(); itr != node->end(); ++itr) { |
|
getMaxCover(outputContainer, *itr, orient, node->rect); //get rectangles down path |
|
Interval nodeIvl = (*itr)->rect.get(orient); |
|
if(contains(nodeIvl, rectIvl, true)) writeOut = false; |
|
} |
|
if(writeOut) { |
|
//std::cout << "WRITE OUT 2: " << node->rect << std::endl; |
|
outputContainer.push_back(copy_construct<typename cT::value_type, Rectangle>(node->rect)); |
|
} |
|
} |
|
|
|
struct stack_element { |
|
inline stack_element() : |
|
node(), rect(), itr() {} |
|
inline stack_element(Node* n, |
|
const Rectangle& r, |
|
typename Node::iterator i) : |
|
node(n), rect(r), itr(i) {} |
|
Node* node; |
|
Rectangle rect; |
|
typename Node::iterator itr; |
|
}; |
|
|
|
template <class cT> |
|
static inline void getMaxCover(cT& outputContainer, Node* node, orientation_2d orient, |
|
Rectangle rect) { |
|
//std::cout << "New Root\n"; |
|
std::vector<stack_element> stack; |
|
typename Node::iterator itr = node->begin(); |
|
do { |
|
//std::cout << "LOOP\n"; |
|
//std::cout << node->rect << std::endl; |
|
Interval rectIvl = rect.get(orient); |
|
Interval nodeIvl = node->rect.get(orient); |
|
bool iresult = intersect(rectIvl, nodeIvl, false); |
|
bool tresult = !node->tracedPath(rectIvl); |
|
//std::cout << (itr != node->end()) << " " << iresult << " " << tresult << std::endl; |
|
Rectangle nextRect1 = Rectangle(rectIvl, rectIvl); |
|
Unit low = rect.get(orient.get_perpendicular()).low(); |
|
Unit high = node->rect.get(orient.get_perpendicular()).high(); |
|
nextRect1.set(orient.get_perpendicular(), Interval(low, high)); |
|
if(iresult && tresult) { |
|
node->addPath(rectIvl); |
|
bool writeOut = true; |
|
//check further visibility beyond this node |
|
for(typename Node::iterator itr2 = node->begin(); itr2 != node->end(); ++itr2) { |
|
Interval nodeIvl3 = (*itr2)->rect.get(orient); |
|
//if a child of this node can contain the interval then we can extend through |
|
if(contains(nodeIvl3, rectIvl, true)) writeOut = false; |
|
//std::cout << "child " << (*itr2)->rect << std::endl; |
|
} |
|
Rectangle nextRect2 = Rectangle(rectIvl, rectIvl); |
|
Unit low2 = rect.get(orient.get_perpendicular()).low(); |
|
Unit high2 = node->rect.get(orient.get_perpendicular()).high(); |
|
nextRect2.set(orient.get_perpendicular(), Interval(low2, high2)); |
|
if(writeOut) { |
|
//std::cout << "write out " << nextRect << std::endl; |
|
outputContainer.push_back(copy_construct<typename cT::value_type, Rectangle>(nextRect2)); |
|
} else { |
|
//std::cout << "supress " << nextRect << std::endl; |
|
} |
|
} |
|
if(itr != node->end() && iresult && tresult) { |
|
//std::cout << "recurse into child\n"; |
|
stack.push_back(stack_element(node, rect, itr)); |
|
rect = nextRect1; |
|
node = *itr; |
|
itr = node->begin(); |
|
} else { |
|
if(!stack.empty()) { |
|
//std::cout << "recurse out of child\n"; |
|
node = stack.back().node; |
|
rect = stack.back().rect; |
|
itr = stack.back().itr; |
|
stack.pop_back(); |
|
} else { |
|
//std::cout << "empty stack\n"; |
|
//if there were no children of the root node |
|
// Rectangle nextRect = Rectangle(rectIvl, rectIvl); |
|
// Unit low = rect.get(orient.get_perpendicular()).low(); |
|
// Unit high = node->rect.get(orient.get_perpendicular()).high(); |
|
// nextRect.set(orient.get_perpendicular(), Interval(low, high)); |
|
// outputContainer.push_back(copy_construct<typename cT::value_type, Rectangle>(nextRect)); |
|
} |
|
//std::cout << "increment " << (itr != node->end()) << std::endl; |
|
if(itr != node->end()) { |
|
++itr; |
|
if(itr != node->end()) { |
|
//std::cout << "recurse into next child.\n"; |
|
stack.push_back(stack_element(node, rect, itr)); |
|
Interval rectIvl2 = rect.get(orient); |
|
Interval nodeIvl2 = node->rect.get(orient); |
|
/*bool iresult =*/ intersect(rectIvl2, nodeIvl2, false); |
|
Rectangle nextRect2 = Rectangle(rectIvl2, rectIvl2); |
|
Unit low2 = rect.get(orient.get_perpendicular()).low(); |
|
Unit high2 = node->rect.get(orient.get_perpendicular()).high(); |
|
nextRect2.set(orient.get_perpendicular(), Interval(low2, high2)); |
|
rect = nextRect2; |
|
//std::cout << "rect for next child" << rect << std::endl; |
|
node = *itr; |
|
itr = node->begin(); |
|
} |
|
} |
|
} |
|
} while(!stack.empty() || itr != node->end()); |
|
} |
|
|
|
/* Function recursive version of getMaxCover |
|
Because the code is so much simpler than the loop algorithm I retain it for clarity |
|
|
|
template <class cT> |
|
static inline void getMaxCover(cT& outputContainer, Node* node, orientation_2d orient, |
|
const Rectangle& rect) { |
|
Interval rectIvl = rect.get(orient); |
|
Interval nodeIvl = node->rect.get(orient); |
|
if(!intersect(rectIvl, nodeIvl, false)) { |
|
return; |
|
} |
|
if(node->tracedPath(rectIvl)) { |
|
return; |
|
} |
|
node->addPath(rectIvl); |
|
Rectangle nextRect(rectIvl, rectIvl); |
|
Unit low = rect.get(orient.get_perpendicular()).low(); |
|
Unit high = node->rect.get(orient.get_perpendicular()).high(); |
|
nextRect.set(orient.get_perpendicular(), Interval(low, high)); |
|
bool writeOut = true; |
|
rectIvl = nextRect.get(orient); |
|
for(typename Node::iterator itr = node->begin(); itr != node->end(); ++itr) { |
|
nodeIvl = (*itr)->rect.get(orient); |
|
if(contains(nodeIvl, rectIvl, true)) writeOut = false; |
|
} |
|
if(writeOut) { |
|
outputContainer.push_back(copy_construct<typename cT::value_type, Rectangle>(nextRect)); |
|
} |
|
for(typename Node::iterator itr = node->begin(); itr != node->end(); ++itr) { |
|
getMaxCover(outputContainer, *itr, orient, nextRect); |
|
} |
|
} |
|
*/ |
|
|
|
//iterator range is assummed to be in topological order meaning all node's trailing |
|
//edges are in sorted order |
|
template <class iT> |
|
static inline void computeDag(iT beginNode, iT endNode, orientation_2d orient, |
|
std::size_t size) { |
|
std::vector<EdgeAssociation> leadingEdges; |
|
leadingEdges.reserve(size); |
|
for(iT iter = beginNode; iter != endNode; ++iter) { |
|
Node* nodep = &(*iter); |
|
Unit leading = nodep->rect.get(orient.get_perpendicular()).low(); |
|
Interval rectIvl = nodep->rect.get(orient); |
|
leadingEdges.push_back(EdgeAssociation(std::pair<Unit, Interval>(leading, rectIvl), nodep)); |
|
} |
|
gtlsort(leadingEdges.begin(), leadingEdges.end(), lessEdgeAssociation()); |
|
typename std::vector<EdgeAssociation>::iterator leadingBegin = leadingEdges.begin(); |
|
iT trailingBegin = beginNode; |
|
while(leadingBegin != leadingEdges.end()) { |
|
EdgeAssociation& leadingSegment = (*leadingBegin); |
|
Unit trailing = (*trailingBegin).rect.get(orient.get_perpendicular()).high(); |
|
Interval ivl = (*trailingBegin).rect.get(orient); |
|
std::pair<Unit, Interval> trailingSegment(trailing, ivl); |
|
if(leadingSegment.first.first < trailingSegment.first) { |
|
++leadingBegin; |
|
continue; |
|
} |
|
if(leadingSegment.first.first > trailingSegment.first) { |
|
++trailingBegin; |
|
continue; |
|
} |
|
if(leadingSegment.first.second.high() <= trailingSegment.second.low()) { |
|
++leadingBegin; |
|
continue; |
|
} |
|
if(trailingSegment.second.high() <= leadingSegment.first.second.low()) { |
|
++trailingBegin; |
|
continue; |
|
} |
|
//leading segment intersects trailing segment |
|
(*trailingBegin).add((*leadingBegin).second); |
|
if(leadingSegment.first.second.high() > trailingSegment.second.high()) { |
|
++trailingBegin; |
|
continue; |
|
} |
|
if(trailingSegment.second.high() > leadingSegment.first.second.high()) { |
|
++leadingBegin; |
|
continue; |
|
} |
|
++leadingBegin; |
|
++trailingBegin; |
|
} |
|
} |
|
|
|
template <class cT> |
|
static inline void getMaxCover(cT& outputContainer, |
|
const std::vector<Rectangle>& rects, orientation_2d orient) { |
|
if(rects.empty()) return; |
|
std::vector<Node> nodes; |
|
{ |
|
if(rects.size() == 1) { |
|
outputContainer.push_back(copy_construct<typename cT::value_type, Rectangle>(rects[0])); |
|
return; |
|
} |
|
nodes.reserve(rects.size()); |
|
for(std::size_t i = 0; i < rects.size(); ++i) { nodes.push_back(Node(rects[i])); } |
|
} |
|
computeDag(nodes.begin(), nodes.end(), orient, nodes.size()); |
|
for(std::size_t i = 0; i < nodes.size(); ++i) { |
|
getMaxCover(outputContainer, &(nodes[i]), orient); |
|
} |
|
} |
|
|
|
}; |
|
} |
|
} |
|
|
|
#endif
|
|
|