You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
584 lines
16 KiB
584 lines
16 KiB
// (C) Copyright John Maddock 2006. |
|
// Use, modification and distribution are subject to the |
|
// Boost Software License, Version 1.0. (See accompanying file |
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
|
|
#ifndef BOOST_MATH_TOOLS_SOLVE_ROOT_HPP |
|
#define BOOST_MATH_TOOLS_SOLVE_ROOT_HPP |
|
|
|
#ifdef _MSC_VER |
|
#pragma once |
|
#endif |
|
|
|
#include <boost/math/tools/precision.hpp> |
|
#include <boost/math/policies/error_handling.hpp> |
|
#include <boost/math/tools/config.hpp> |
|
#include <boost/math/special_functions/sign.hpp> |
|
#include <boost/cstdint.hpp> |
|
#include <limits> |
|
|
|
namespace boost{ namespace math{ namespace tools{ |
|
|
|
template <class T> |
|
class eps_tolerance |
|
{ |
|
public: |
|
eps_tolerance(unsigned bits) |
|
{ |
|
BOOST_MATH_STD_USING |
|
eps = (std::max)(T(ldexp(1.0F, 1-bits)), T(2 * tools::epsilon<T>())); |
|
} |
|
bool operator()(const T& a, const T& b) |
|
{ |
|
BOOST_MATH_STD_USING |
|
return fabs(a - b) <= (eps * (std::min)(fabs(a), fabs(b))); |
|
} |
|
private: |
|
T eps; |
|
}; |
|
|
|
struct equal_floor |
|
{ |
|
equal_floor(){} |
|
template <class T> |
|
bool operator()(const T& a, const T& b) |
|
{ |
|
BOOST_MATH_STD_USING |
|
return floor(a) == floor(b); |
|
} |
|
}; |
|
|
|
struct equal_ceil |
|
{ |
|
equal_ceil(){} |
|
template <class T> |
|
bool operator()(const T& a, const T& b) |
|
{ |
|
BOOST_MATH_STD_USING |
|
return ceil(a) == ceil(b); |
|
} |
|
}; |
|
|
|
struct equal_nearest_integer |
|
{ |
|
equal_nearest_integer(){} |
|
template <class T> |
|
bool operator()(const T& a, const T& b) |
|
{ |
|
BOOST_MATH_STD_USING |
|
return floor(a + 0.5f) == floor(b + 0.5f); |
|
} |
|
}; |
|
|
|
namespace detail{ |
|
|
|
template <class F, class T> |
|
void bracket(F f, T& a, T& b, T c, T& fa, T& fb, T& d, T& fd) |
|
{ |
|
// |
|
// Given a point c inside the existing enclosing interval |
|
// [a, b] sets a = c if f(c) == 0, otherwise finds the new |
|
// enclosing interval: either [a, c] or [c, b] and sets |
|
// d and fd to the point that has just been removed from |
|
// the interval. In other words d is the third best guess |
|
// to the root. |
|
// |
|
BOOST_MATH_STD_USING // For ADL of std math functions |
|
T tol = tools::epsilon<T>() * 2; |
|
// |
|
// If the interval [a,b] is very small, or if c is too close |
|
// to one end of the interval then we need to adjust the |
|
// location of c accordingly: |
|
// |
|
if((b - a) < 2 * tol * a) |
|
{ |
|
c = a + (b - a) / 2; |
|
} |
|
else if(c <= a + fabs(a) * tol) |
|
{ |
|
c = a + fabs(a) * tol; |
|
} |
|
else if(c >= b - fabs(b) * tol) |
|
{ |
|
c = b - fabs(a) * tol; |
|
} |
|
// |
|
// OK, lets invoke f(c): |
|
// |
|
T fc = f(c); |
|
// |
|
// if we have a zero then we have an exact solution to the root: |
|
// |
|
if(fc == 0) |
|
{ |
|
a = c; |
|
fa = 0; |
|
d = 0; |
|
fd = 0; |
|
return; |
|
} |
|
// |
|
// Non-zero fc, update the interval: |
|
// |
|
if(boost::math::sign(fa) * boost::math::sign(fc) < 0) |
|
{ |
|
d = b; |
|
fd = fb; |
|
b = c; |
|
fb = fc; |
|
} |
|
else |
|
{ |
|
d = a; |
|
fd = fa; |
|
a = c; |
|
fa= fc; |
|
} |
|
} |
|
|
|
template <class T> |
|
inline T safe_div(T num, T denom, T r) |
|
{ |
|
// |
|
// return num / denom without overflow, |
|
// return r if overflow would occur. |
|
// |
|
BOOST_MATH_STD_USING // For ADL of std math functions |
|
|
|
if(fabs(denom) < 1) |
|
{ |
|
if(fabs(denom * tools::max_value<T>()) <= fabs(num)) |
|
return r; |
|
} |
|
return num / denom; |
|
} |
|
|
|
template <class T> |
|
inline T secant_interpolate(const T& a, const T& b, const T& fa, const T& fb) |
|
{ |
|
// |
|
// Performs standard secant interpolation of [a,b] given |
|
// function evaluations f(a) and f(b). Performs a bisection |
|
// if secant interpolation would leave us very close to either |
|
// a or b. Rationale: we only call this function when at least |
|
// one other form of interpolation has already failed, so we know |
|
// that the function is unlikely to be smooth with a root very |
|
// close to a or b. |
|
// |
|
BOOST_MATH_STD_USING // For ADL of std math functions |
|
|
|
T tol = tools::epsilon<T>() * 5; |
|
T c = a - (fa / (fb - fa)) * (b - a); |
|
if((c <= a + fabs(a) * tol) || (c >= b - fabs(b) * tol)) |
|
return (a + b) / 2; |
|
return c; |
|
} |
|
|
|
template <class T> |
|
T quadratic_interpolate(const T& a, const T& b, T const& d, |
|
const T& fa, const T& fb, T const& fd, |
|
unsigned count) |
|
{ |
|
// |
|
// Performs quadratic interpolation to determine the next point, |
|
// takes count Newton steps to find the location of the |
|
// quadratic polynomial. |
|
// |
|
// Point d must lie outside of the interval [a,b], it is the third |
|
// best approximation to the root, after a and b. |
|
// |
|
// Note: this does not guarentee to find a root |
|
// inside [a, b], so we fall back to a secant step should |
|
// the result be out of range. |
|
// |
|
// Start by obtaining the coefficients of the quadratic polynomial: |
|
// |
|
T B = safe_div(T(fb - fa), T(b - a), tools::max_value<T>()); |
|
T A = safe_div(T(fd - fb), T(d - b), tools::max_value<T>()); |
|
A = safe_div(T(A - B), T(d - a), T(0)); |
|
|
|
if(a == 0) |
|
{ |
|
// failure to determine coefficients, try a secant step: |
|
return secant_interpolate(a, b, fa, fb); |
|
} |
|
// |
|
// Determine the starting point of the Newton steps: |
|
// |
|
T c; |
|
if(boost::math::sign(A) * boost::math::sign(fa) > 0) |
|
{ |
|
c = a; |
|
} |
|
else |
|
{ |
|
c = b; |
|
} |
|
// |
|
// Take the Newton steps: |
|
// |
|
for(unsigned i = 1; i <= count; ++i) |
|
{ |
|
//c -= safe_div(B * c, (B + A * (2 * c - a - b)), 1 + c - a); |
|
c -= safe_div(T(fa+(B+A*(c-b))*(c-a)), T(B + A * (2 * c - a - b)), T(1 + c - a)); |
|
} |
|
if((c <= a) || (c >= b)) |
|
{ |
|
// Oops, failure, try a secant step: |
|
c = secant_interpolate(a, b, fa, fb); |
|
} |
|
return c; |
|
} |
|
|
|
template <class T> |
|
T cubic_interpolate(const T& a, const T& b, const T& d, |
|
const T& e, const T& fa, const T& fb, |
|
const T& fd, const T& fe) |
|
{ |
|
// |
|
// Uses inverse cubic interpolation of f(x) at points |
|
// [a,b,d,e] to obtain an approximate root of f(x). |
|
// Points d and e lie outside the interval [a,b] |
|
// and are the third and forth best approximations |
|
// to the root that we have found so far. |
|
// |
|
// Note: this does not guarentee to find a root |
|
// inside [a, b], so we fall back to quadratic |
|
// interpolation in case of an erroneous result. |
|
// |
|
BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b |
|
<< " d = " << d << " e = " << e << " fa = " << fa << " fb = " << fb |
|
<< " fd = " << fd << " fe = " << fe); |
|
T q11 = (d - e) * fd / (fe - fd); |
|
T q21 = (b - d) * fb / (fd - fb); |
|
T q31 = (a - b) * fa / (fb - fa); |
|
T d21 = (b - d) * fd / (fd - fb); |
|
T d31 = (a - b) * fb / (fb - fa); |
|
BOOST_MATH_INSTRUMENT_CODE( |
|
"q11 = " << q11 << " q21 = " << q21 << " q31 = " << q31 |
|
<< " d21 = " << d21 << " d31 = " << d31); |
|
T q22 = (d21 - q11) * fb / (fe - fb); |
|
T q32 = (d31 - q21) * fa / (fd - fa); |
|
T d32 = (d31 - q21) * fd / (fd - fa); |
|
T q33 = (d32 - q22) * fa / (fe - fa); |
|
T c = q31 + q32 + q33 + a; |
|
BOOST_MATH_INSTRUMENT_CODE( |
|
"q22 = " << q22 << " q32 = " << q32 << " d32 = " << d32 |
|
<< " q33 = " << q33 << " c = " << c); |
|
|
|
if((c <= a) || (c >= b)) |
|
{ |
|
// Out of bounds step, fall back to quadratic interpolation: |
|
c = quadratic_interpolate(a, b, d, fa, fb, fd, 3); |
|
BOOST_MATH_INSTRUMENT_CODE( |
|
"Out of bounds interpolation, falling back to quadratic interpolation. c = " << c); |
|
} |
|
|
|
return c; |
|
} |
|
|
|
} // namespace detail |
|
|
|
template <class F, class T, class Tol, class Policy> |
|
std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol) |
|
{ |
|
// |
|
// Main entry point and logic for Toms Algorithm 748 |
|
// root finder. |
|
// |
|
BOOST_MATH_STD_USING // For ADL of std math functions |
|
|
|
static const char* function = "boost::math::tools::toms748_solve<%1%>"; |
|
|
|
boost::uintmax_t count = max_iter; |
|
T a, b, fa, fb, c, u, fu, a0, b0, d, fd, e, fe; |
|
static const T mu = 0.5f; |
|
|
|
// initialise a, b and fa, fb: |
|
a = ax; |
|
b = bx; |
|
if(a >= b) |
|
policies::raise_domain_error( |
|
function, |
|
"Parameters a and b out of order: a=%1%", a, pol); |
|
fa = fax; |
|
fb = fbx; |
|
|
|
if(tol(a, b) || (fa == 0) || (fb == 0)) |
|
{ |
|
max_iter = 0; |
|
if(fa == 0) |
|
b = a; |
|
else if(fb == 0) |
|
a = b; |
|
return std::make_pair(a, b); |
|
} |
|
|
|
if(boost::math::sign(fa) * boost::math::sign(fb) > 0) |
|
policies::raise_domain_error( |
|
function, |
|
"Parameters a and b do not bracket the root: a=%1%", a, pol); |
|
// dummy value for fd, e and fe: |
|
fe = e = fd = 1e5F; |
|
|
|
if(fa != 0) |
|
{ |
|
// |
|
// On the first step we take a secant step: |
|
// |
|
c = detail::secant_interpolate(a, b, fa, fb); |
|
detail::bracket(f, a, b, c, fa, fb, d, fd); |
|
--count; |
|
BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); |
|
|
|
if(count && (fa != 0) && !tol(a, b)) |
|
{ |
|
// |
|
// On the second step we take a quadratic interpolation: |
|
// |
|
c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2); |
|
e = d; |
|
fe = fd; |
|
detail::bracket(f, a, b, c, fa, fb, d, fd); |
|
--count; |
|
BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); |
|
} |
|
} |
|
|
|
while(count && (fa != 0) && !tol(a, b)) |
|
{ |
|
// save our brackets: |
|
a0 = a; |
|
b0 = b; |
|
// |
|
// Starting with the third step taken |
|
// we can use either quadratic or cubic interpolation. |
|
// Cubic interpolation requires that all four function values |
|
// fa, fb, fd, and fe are distinct, should that not be the case |
|
// then variable prof will get set to true, and we'll end up |
|
// taking a quadratic step instead. |
|
// |
|
T min_diff = tools::min_value<T>() * 32; |
|
bool prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff); |
|
if(prof) |
|
{ |
|
c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2); |
|
BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!"); |
|
} |
|
else |
|
{ |
|
c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe); |
|
} |
|
// |
|
// re-bracket, and check for termination: |
|
// |
|
e = d; |
|
fe = fd; |
|
detail::bracket(f, a, b, c, fa, fb, d, fd); |
|
if((0 == --count) || (fa == 0) || tol(a, b)) |
|
break; |
|
BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); |
|
// |
|
// Now another interpolated step: |
|
// |
|
prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff); |
|
if(prof) |
|
{ |
|
c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 3); |
|
BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!"); |
|
} |
|
else |
|
{ |
|
c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe); |
|
} |
|
// |
|
// Bracket again, and check termination condition, update e: |
|
// |
|
detail::bracket(f, a, b, c, fa, fb, d, fd); |
|
if((0 == --count) || (fa == 0) || tol(a, b)) |
|
break; |
|
BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); |
|
// |
|
// Now we take a double-length secant step: |
|
// |
|
if(fabs(fa) < fabs(fb)) |
|
{ |
|
u = a; |
|
fu = fa; |
|
} |
|
else |
|
{ |
|
u = b; |
|
fu = fb; |
|
} |
|
c = u - 2 * (fu / (fb - fa)) * (b - a); |
|
if(fabs(c - u) > (b - a) / 2) |
|
{ |
|
c = a + (b - a) / 2; |
|
} |
|
// |
|
// Bracket again, and check termination condition: |
|
// |
|
e = d; |
|
fe = fd; |
|
detail::bracket(f, a, b, c, fa, fb, d, fd); |
|
if((0 == --count) || (fa == 0) || tol(a, b)) |
|
break; |
|
BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); |
|
// |
|
// And finally... check to see if an additional bisection step is |
|
// to be taken, we do this if we're not converging fast enough: |
|
// |
|
if((b - a) < mu * (b0 - a0)) |
|
continue; |
|
// |
|
// bracket again on a bisection: |
|
// |
|
e = d; |
|
fe = fd; |
|
detail::bracket(f, a, b, T(a + (b - a) / 2), fa, fb, d, fd); |
|
--count; |
|
BOOST_MATH_INSTRUMENT_CODE("Not converging: Taking a bisection!!!!"); |
|
BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); |
|
} // while loop |
|
|
|
max_iter -= count; |
|
if(fa == 0) |
|
{ |
|
b = a; |
|
} |
|
else if(fb == 0) |
|
{ |
|
a = b; |
|
} |
|
return std::make_pair(a, b); |
|
} |
|
|
|
template <class F, class T, class Tol> |
|
inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter) |
|
{ |
|
return toms748_solve(f, ax, bx, fax, fbx, tol, max_iter, policies::policy<>()); |
|
} |
|
|
|
template <class F, class T, class Tol, class Policy> |
|
inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol) |
|
{ |
|
max_iter -= 2; |
|
std::pair<T, T> r = toms748_solve(f, ax, bx, f(ax), f(bx), tol, max_iter, pol); |
|
max_iter += 2; |
|
return r; |
|
} |
|
|
|
template <class F, class T, class Tol> |
|
inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter) |
|
{ |
|
return toms748_solve(f, ax, bx, tol, max_iter, policies::policy<>()); |
|
} |
|
|
|
template <class F, class T, class Tol, class Policy> |
|
std::pair<T, T> bracket_and_solve_root(F f, const T& guess, T factor, bool rising, Tol tol, boost::uintmax_t& max_iter, const Policy& pol) |
|
{ |
|
BOOST_MATH_STD_USING |
|
static const char* function = "boost::math::tools::bracket_and_solve_root<%1%>"; |
|
// |
|
// Set up inital brackets: |
|
// |
|
T a = guess; |
|
T b = a; |
|
T fa = f(a); |
|
T fb = fa; |
|
// |
|
// Set up invocation count: |
|
// |
|
boost::uintmax_t count = max_iter - 1; |
|
|
|
if((fa < 0) == (guess < 0 ? !rising : rising)) |
|
{ |
|
// |
|
// Zero is to the right of b, so walk upwards |
|
// until we find it: |
|
// |
|
while((boost::math::sign)(fb) == (boost::math::sign)(fa)) |
|
{ |
|
if(count == 0) |
|
policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, pol); |
|
// |
|
// Heuristic: every 20 iterations we double the growth factor in case the |
|
// initial guess was *really* bad ! |
|
// |
|
if((max_iter - count) % 20 == 0) |
|
factor *= 2; |
|
// |
|
// Now go ahead and move our guess by "factor": |
|
// |
|
a = b; |
|
fa = fb; |
|
b *= factor; |
|
fb = f(b); |
|
--count; |
|
BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count); |
|
} |
|
} |
|
else |
|
{ |
|
// |
|
// Zero is to the left of a, so walk downwards |
|
// until we find it: |
|
// |
|
while((boost::math::sign)(fb) == (boost::math::sign)(fa)) |
|
{ |
|
if(fabs(a) < tools::min_value<T>()) |
|
{ |
|
// Escape route just in case the answer is zero! |
|
max_iter -= count; |
|
max_iter += 1; |
|
return a > 0 ? std::make_pair(T(0), T(a)) : std::make_pair(T(a), T(0)); |
|
} |
|
if(count == 0) |
|
policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, pol); |
|
// |
|
// Heuristic: every 20 iterations we double the growth factor in case the |
|
// initial guess was *really* bad ! |
|
// |
|
if((max_iter - count) % 20 == 0) |
|
factor *= 2; |
|
// |
|
// Now go ahead and move are guess by "factor": |
|
// |
|
b = a; |
|
fb = fa; |
|
a /= factor; |
|
fa = f(a); |
|
--count; |
|
BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count); |
|
} |
|
} |
|
max_iter -= count; |
|
max_iter += 1; |
|
std::pair<T, T> r = toms748_solve( |
|
f, |
|
(a < 0 ? b : a), |
|
(a < 0 ? a : b), |
|
(a < 0 ? fb : fa), |
|
(a < 0 ? fa : fb), |
|
tol, |
|
count, |
|
pol); |
|
max_iter += count; |
|
BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count); |
|
return r; |
|
} |
|
|
|
template <class F, class T, class Tol> |
|
inline std::pair<T, T> bracket_and_solve_root(F f, const T& guess, const T& factor, bool rising, Tol tol, boost::uintmax_t& max_iter) |
|
{ |
|
return bracket_and_solve_root(f, guess, factor, rising, tol, max_iter, policies::policy<>()); |
|
} |
|
|
|
} // namespace tools |
|
} // namespace math |
|
} // namespace boost |
|
|
|
|
|
#endif // BOOST_MATH_TOOLS_SOLVE_ROOT_HPP |
|
|
|
|