You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
667 lines
19 KiB
667 lines
19 KiB
// (C) Copyright John Maddock 2006. |
|
// Use, modification and distribution are subject to the |
|
// Boost Software License, Version 1.0. (See accompanying file |
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
|
|
#ifndef BOOST_MATH_TOOLS_REMEZ_HPP |
|
#define BOOST_MATH_TOOLS_REMEZ_HPP |
|
|
|
#ifdef _MSC_VER |
|
#pragma once |
|
#endif |
|
|
|
#include <boost/math/tools/solve.hpp> |
|
#include <boost/math/tools/minima.hpp> |
|
#include <boost/math/tools/roots.hpp> |
|
#include <boost/math/tools/polynomial.hpp> |
|
#include <boost/function/function1.hpp> |
|
#include <boost/scoped_array.hpp> |
|
#include <boost/math/constants/constants.hpp> |
|
#include <boost/math/policies/policy.hpp> |
|
|
|
namespace boost{ namespace math{ namespace tools{ |
|
|
|
namespace detail{ |
|
|
|
// |
|
// The error function: the difference between F(x) and |
|
// the current approximation. This is the function |
|
// for which we must find the extema. |
|
// |
|
template <class T> |
|
struct remez_error_function |
|
{ |
|
typedef boost::function1<T, T const &> function_type; |
|
public: |
|
remez_error_function( |
|
function_type f_, |
|
const polynomial<T>& n, |
|
const polynomial<T>& d, |
|
bool rel_err) |
|
: f(f_), numerator(n), denominator(d), rel_error(rel_err) {} |
|
|
|
T operator()(const T& z)const |
|
{ |
|
T y = f(z); |
|
T abs = y - (numerator.evaluate(z) / denominator.evaluate(z)); |
|
T err; |
|
if(rel_error) |
|
{ |
|
if(y != 0) |
|
err = abs / fabs(y); |
|
else if(0 == abs) |
|
{ |
|
// we must be at a root, or it's not recoverable: |
|
BOOST_ASSERT(0 == abs); |
|
err = 0; |
|
} |
|
else |
|
{ |
|
// We have a divide by zero! |
|
// Lets assume that f(x) is zero as a result of |
|
// internal cancellation error that occurs as a result |
|
// of shifting a root at point z to the origin so that |
|
// the approximation can be "pinned" to pass through |
|
// the origin: in that case it really |
|
// won't matter what our approximation calculates here |
|
// as long as it's a small number, return the absolute error: |
|
err = abs; |
|
} |
|
} |
|
else |
|
err = abs; |
|
return err; |
|
} |
|
private: |
|
function_type f; |
|
polynomial<T> numerator; |
|
polynomial<T> denominator; |
|
bool rel_error; |
|
}; |
|
// |
|
// This function adapts the error function so that it's minima |
|
// are the extema of the error function. We can find the minima |
|
// with standard techniques. |
|
// |
|
template <class T> |
|
struct remez_max_error_function |
|
{ |
|
remez_max_error_function(const remez_error_function<T>& f) |
|
: func(f) {} |
|
|
|
T operator()(const T& x) |
|
{ |
|
BOOST_MATH_STD_USING |
|
return -fabs(func(x)); |
|
} |
|
private: |
|
remez_error_function<T> func; |
|
}; |
|
|
|
} // detail |
|
|
|
template <class T> |
|
class remez_minimax |
|
{ |
|
public: |
|
typedef boost::function1<T, T const &> function_type; |
|
typedef boost::numeric::ublas::vector<T> vector_type; |
|
typedef boost::numeric::ublas::matrix<T> matrix_type; |
|
|
|
remez_minimax(function_type f, unsigned oN, unsigned oD, T a, T b, bool pin = true, bool rel_err = false, int sk = 0, int bits = 0); |
|
remez_minimax(function_type f, unsigned oN, unsigned oD, T a, T b, bool pin, bool rel_err, int sk, int bits, const vector_type& points); |
|
|
|
void reset(unsigned oN, unsigned oD, T a, T b, bool pin = true, bool rel_err = false, int sk = 0, int bits = 0); |
|
void reset(unsigned oN, unsigned oD, T a, T b, bool pin, bool rel_err, int sk, int bits, const vector_type& points); |
|
|
|
void set_brake(int b) |
|
{ |
|
BOOST_ASSERT(b < 100); |
|
BOOST_ASSERT(b >= 0); |
|
m_brake = b; |
|
} |
|
|
|
T iterate(); |
|
|
|
polynomial<T> denominator()const; |
|
polynomial<T> numerator()const; |
|
|
|
vector_type const& chebyshev_points()const |
|
{ |
|
return control_points; |
|
} |
|
|
|
vector_type const& zero_points()const |
|
{ |
|
return zeros; |
|
} |
|
|
|
T error_term()const |
|
{ |
|
return solution[solution.size() - 1]; |
|
} |
|
T max_error()const |
|
{ |
|
return m_max_error; |
|
} |
|
T max_change()const |
|
{ |
|
return m_max_change; |
|
} |
|
void rotate() |
|
{ |
|
--orderN; |
|
++orderD; |
|
} |
|
void rescale(T a, T b) |
|
{ |
|
T scale = (b - a) / (max - min); |
|
for(unsigned i = 0; i < control_points.size(); ++i) |
|
{ |
|
control_points[i] = (control_points[i] - min) * scale + a; |
|
} |
|
min = a; |
|
max = b; |
|
} |
|
private: |
|
|
|
void init_chebyshev(); |
|
|
|
function_type func; // The function to approximate. |
|
vector_type control_points; // Current control points to be used for the next iteration. |
|
vector_type solution; // Solution from the last iteration contains all unknowns including the error term. |
|
vector_type zeros; // Location of points of zero error from last iteration, plus the two end points. |
|
vector_type maxima; // Location of maxima of the error function, actually contains the control points used for the last iteration. |
|
T m_max_error; // Maximum error found in last approximation. |
|
T m_max_change; // Maximum change in location of control points after last iteration. |
|
unsigned orderN; // Order of the numerator polynomial. |
|
unsigned orderD; // Order of the denominator polynomial. |
|
T min, max; // End points of the range to optimise over. |
|
bool rel_error; // If true optimise for relative not absolute error. |
|
bool pinned; // If true the approximation is "pinned" to go through the origin. |
|
unsigned unknowns; // Total number of unknowns. |
|
int m_precision; // Number of bits precision to which the zeros and maxima are found. |
|
T m_max_change_history[2]; // Past history of changes to control points. |
|
int m_brake; // amount to break by in percentage points. |
|
int m_skew; // amount to skew starting points by in percentage points: -100-100 |
|
}; |
|
|
|
#ifndef BRAKE |
|
#define BRAKE 0 |
|
#endif |
|
#ifndef SKEW |
|
#define SKEW 0 |
|
#endif |
|
|
|
template <class T> |
|
void remez_minimax<T>::init_chebyshev() |
|
{ |
|
BOOST_MATH_STD_USING |
|
// |
|
// Fill in the zeros: |
|
// |
|
unsigned terms = pinned ? orderD + orderN : orderD + orderN + 1; |
|
|
|
for(unsigned i = 0; i < terms; ++i) |
|
{ |
|
T cheb = cos((2 * terms - 1 - 2 * i) * constants::pi<T>() / (2 * terms)); |
|
cheb += 1; |
|
cheb /= 2; |
|
if(m_skew != 0) |
|
{ |
|
T p = static_cast<T>(200 + m_skew) / 200; |
|
cheb = pow(cheb, p); |
|
} |
|
cheb *= (max - min); |
|
cheb += min; |
|
zeros[i+1] = cheb; |
|
} |
|
zeros[0] = min; |
|
zeros[unknowns] = max; |
|
// perform a regular interpolation fit: |
|
matrix_type A(terms, terms); |
|
vector_type b(terms); |
|
// fill in the y values: |
|
for(unsigned i = 0; i < b.size(); ++i) |
|
{ |
|
b[i] = func(zeros[i+1]); |
|
} |
|
// fill in powers of x evaluated at each of the control points: |
|
unsigned offsetN = pinned ? 0 : 1; |
|
unsigned offsetD = offsetN + orderN; |
|
unsigned maxorder = (std::max)(orderN, orderD); |
|
for(unsigned i = 0; i < b.size(); ++i) |
|
{ |
|
T x0 = zeros[i+1]; |
|
T x = x0; |
|
if(!pinned) |
|
A(i, 0) = 1; |
|
for(unsigned j = 0; j < maxorder; ++j) |
|
{ |
|
if(j < orderN) |
|
A(i, j + offsetN) = x; |
|
if(j < orderD) |
|
{ |
|
A(i, j + offsetD) = -x * b[i]; |
|
} |
|
x *= x0; |
|
} |
|
} |
|
// |
|
// Now go ahead and solve the expression to get our solution: |
|
// |
|
vector_type l_solution = boost::math::tools::solve(A, b); |
|
// need to add a "fake" error term: |
|
l_solution.resize(unknowns); |
|
l_solution[unknowns-1] = 0; |
|
solution = l_solution; |
|
// |
|
// Now find all the extrema of the error function: |
|
// |
|
detail::remez_error_function<T> Err(func, this->numerator(), this->denominator(), rel_error); |
|
detail::remez_max_error_function<T> Ex(Err); |
|
m_max_error = 0; |
|
int max_err_location = 0; |
|
for(unsigned i = 0; i < unknowns; ++i) |
|
{ |
|
std::pair<T, T> r = brent_find_minima(Ex, zeros[i], zeros[i+1], m_precision); |
|
maxima[i] = r.first; |
|
T rel_err = fabs(r.second); |
|
if(rel_err > m_max_error) |
|
{ |
|
m_max_error = fabs(r.second); |
|
max_err_location = i; |
|
} |
|
} |
|
control_points = maxima; |
|
} |
|
|
|
template <class T> |
|
void remez_minimax<T>::reset( |
|
unsigned oN, |
|
unsigned oD, |
|
T a, |
|
T b, |
|
bool pin, |
|
bool rel_err, |
|
int sk, |
|
int bits) |
|
{ |
|
control_points = vector_type(oN + oD + (pin ? 1 : 2)); |
|
solution = control_points; |
|
zeros = vector_type(oN + oD + (pin ? 2 : 3)); |
|
maxima = control_points; |
|
orderN = oN; |
|
orderD = oD; |
|
rel_error = rel_err; |
|
pinned = pin; |
|
m_skew = sk; |
|
min = a; |
|
max = b; |
|
m_max_error = 0; |
|
unknowns = orderN + orderD + (pinned ? 1 : 2); |
|
// guess our initial control points: |
|
control_points[0] = min; |
|
control_points[unknowns - 1] = max; |
|
T interval = (max - min) / (unknowns - 1); |
|
T spot = min + interval; |
|
for(unsigned i = 1; i < control_points.size(); ++i) |
|
{ |
|
control_points[i] = spot; |
|
spot += interval; |
|
} |
|
solution[unknowns - 1] = 0; |
|
m_max_error = 0; |
|
if(bits == 0) |
|
{ |
|
// don't bother about more than float precision: |
|
m_precision = (std::min)(24, (boost::math::policies::digits<T, boost::math::policies::policy<> >() / 2) - 2); |
|
} |
|
else |
|
{ |
|
// can't be more accurate than half the bits of T: |
|
m_precision = (std::min)(bits, (boost::math::policies::digits<T, boost::math::policies::policy<> >() / 2) - 2); |
|
} |
|
m_max_change_history[0] = m_max_change_history[1] = 1; |
|
init_chebyshev(); |
|
// do one iteration whatever: |
|
//iterate(); |
|
} |
|
|
|
template <class T> |
|
inline remez_minimax<T>::remez_minimax( |
|
typename remez_minimax<T>::function_type f, |
|
unsigned oN, |
|
unsigned oD, |
|
T a, |
|
T b, |
|
bool pin, |
|
bool rel_err, |
|
int sk, |
|
int bits) |
|
: func(f) |
|
{ |
|
m_brake = 0; |
|
reset(oN, oD, a, b, pin, rel_err, sk, bits); |
|
} |
|
|
|
template <class T> |
|
void remez_minimax<T>::reset( |
|
unsigned oN, |
|
unsigned oD, |
|
T a, |
|
T b, |
|
bool pin, |
|
bool rel_err, |
|
int sk, |
|
int bits, |
|
const vector_type& points) |
|
{ |
|
control_points = vector_type(oN + oD + (pin ? 1 : 2)); |
|
solution = control_points; |
|
zeros = vector_type(oN + oD + (pin ? 2 : 3)); |
|
maxima = control_points; |
|
orderN = oN; |
|
orderD = oD; |
|
rel_error = rel_err; |
|
pinned = pin; |
|
m_skew = sk; |
|
min = a; |
|
max = b; |
|
m_max_error = 0; |
|
unknowns = orderN + orderD + (pinned ? 1 : 2); |
|
control_points = points; |
|
solution[unknowns - 1] = 0; |
|
m_max_error = 0; |
|
if(bits == 0) |
|
{ |
|
// don't bother about more than float precision: |
|
m_precision = (std::min)(24, (boost::math::policies::digits<T, boost::math::policies::policy<> >() / 2) - 2); |
|
} |
|
else |
|
{ |
|
// can't be more accurate than half the bits of T: |
|
m_precision = (std::min)(bits, (boost::math::policies::digits<T, boost::math::policies::policy<> >() / 2) - 2); |
|
} |
|
m_max_change_history[0] = m_max_change_history[1] = 1; |
|
// do one iteration whatever: |
|
//iterate(); |
|
} |
|
|
|
template <class T> |
|
inline remez_minimax<T>::remez_minimax( |
|
typename remez_minimax<T>::function_type f, |
|
unsigned oN, |
|
unsigned oD, |
|
T a, |
|
T b, |
|
bool pin, |
|
bool rel_err, |
|
int sk, |
|
int bits, |
|
const vector_type& points) |
|
: func(f) |
|
{ |
|
m_brake = 0; |
|
reset(oN, oD, a, b, pin, rel_err, sk, bits, points); |
|
} |
|
|
|
template <class T> |
|
T remez_minimax<T>::iterate() |
|
{ |
|
BOOST_MATH_STD_USING |
|
matrix_type A(unknowns, unknowns); |
|
vector_type b(unknowns); |
|
|
|
// fill in evaluation of f(x) at each of the control points: |
|
for(unsigned i = 0; i < b.size(); ++i) |
|
{ |
|
// take care that none of our control points are at the origin: |
|
if(pinned && (control_points[i] == 0)) |
|
{ |
|
if(i) |
|
control_points[i] = control_points[i-1] / 3; |
|
else |
|
control_points[i] = control_points[i+1] / 3; |
|
} |
|
b[i] = func(control_points[i]); |
|
} |
|
|
|
T err_err; |
|
unsigned convergence_count = 0; |
|
do{ |
|
// fill in powers of x evaluated at each of the control points: |
|
int sign = 1; |
|
unsigned offsetN = pinned ? 0 : 1; |
|
unsigned offsetD = offsetN + orderN; |
|
unsigned maxorder = (std::max)(orderN, orderD); |
|
T Elast = solution[unknowns - 1]; |
|
|
|
for(unsigned i = 0; i < b.size(); ++i) |
|
{ |
|
T x0 = control_points[i]; |
|
T x = x0; |
|
if(!pinned) |
|
A(i, 0) = 1; |
|
for(unsigned j = 0; j < maxorder; ++j) |
|
{ |
|
if(j < orderN) |
|
A(i, j + offsetN) = x; |
|
if(j < orderD) |
|
{ |
|
T mult = rel_error ? (b[i] - sign * fabs(b[i]) * Elast): (b[i] - sign * Elast); |
|
A(i, j + offsetD) = -x * mult; |
|
} |
|
x *= x0; |
|
} |
|
// The last variable to be solved for is the error term, |
|
// sign changes with each control point: |
|
T E = rel_error ? sign * fabs(b[i]) : sign; |
|
A(i, unknowns - 1) = E; |
|
sign = -sign; |
|
} |
|
|
|
#ifdef BOOST_MATH_INSTRUMENT |
|
for(unsigned i = 0; i < b.size(); ++i) |
|
std::cout << b[i] << " "; |
|
std::cout << "\n\n"; |
|
for(unsigned i = 0; i < b.size(); ++i) |
|
{ |
|
for(unsigned j = 0; j < b.size(); ++ j) |
|
std::cout << A(i, j) << " "; |
|
std::cout << "\n"; |
|
} |
|
std::cout << std::endl; |
|
#endif |
|
// |
|
// Now go ahead and solve the expression to get our solution: |
|
// |
|
solution = boost::math::tools::solve(A, b); |
|
|
|
err_err = (Elast != 0) ? fabs((fabs(solution[unknowns-1]) - fabs(Elast)) / fabs(Elast)) : 1; |
|
}while(orderD && (convergence_count++ < 80) && (err_err > 0.001)); |
|
|
|
// |
|
// Perform a sanity check to verify that the solution to the equations |
|
// is not so much in error as to be useless. The matrix inversion can |
|
// be very close to singular, so this can be a real problem. |
|
// |
|
vector_type sanity = prod(A, solution); |
|
for(unsigned i = 0; i < b.size(); ++i) |
|
{ |
|
T err = fabs((b[i] - sanity[i]) / fabs(b[i])); |
|
if(err > sqrt(epsilon<T>())) |
|
{ |
|
std::cerr << "Sanity check failed: more than half the digits in the found solution are in error." << std::endl; |
|
} |
|
} |
|
|
|
// |
|
// Next comes another sanity check, we want to verify that all the control |
|
// points do actually alternate in sign, in practice we may have |
|
// additional roots in the error function that cause this to fail. |
|
// Failure here is always fatal: even though this code attempts to correct |
|
// the problem it usually only postpones the inevitable. |
|
// |
|
polynomial<T> num, denom; |
|
num = this->numerator(); |
|
denom = this->denominator(); |
|
T e1 = b[0] - num.evaluate(control_points[0]) / denom.evaluate(control_points[0]); |
|
#ifdef BOOST_MATH_INSTRUMENT |
|
std::cout << e1; |
|
#endif |
|
for(unsigned i = 1; i < b.size(); ++i) |
|
{ |
|
T e2 = b[i] - num.evaluate(control_points[i]) / denom.evaluate(control_points[i]); |
|
#ifdef BOOST_MATH_INSTRUMENT |
|
std::cout << " " << e2; |
|
#endif |
|
if(e2 * e1 > 0) |
|
{ |
|
std::cerr << std::flush << "Basic sanity check failed: Error term does not alternate in sign, non-recoverable error may follow..." << std::endl; |
|
T perturbation = 0.05; |
|
do{ |
|
T point = control_points[i] * (1 - perturbation) + control_points[i-1] * perturbation; |
|
e2 = func(point) - num.evaluate(point) / denom.evaluate(point); |
|
if(e2 * e1 < 0) |
|
{ |
|
control_points[i] = point; |
|
break; |
|
} |
|
perturbation += 0.05; |
|
}while(perturbation < 0.8); |
|
|
|
if((e2 * e1 > 0) && (i + 1 < b.size())) |
|
{ |
|
perturbation = 0.05; |
|
do{ |
|
T point = control_points[i] * (1 - perturbation) + control_points[i+1] * perturbation; |
|
e2 = func(point) - num.evaluate(point) / denom.evaluate(point); |
|
if(e2 * e1 < 0) |
|
{ |
|
control_points[i] = point; |
|
break; |
|
} |
|
perturbation += 0.05; |
|
}while(perturbation < 0.8); |
|
} |
|
|
|
} |
|
e1 = e2; |
|
} |
|
|
|
#ifdef BOOST_MATH_INSTRUMENT |
|
for(unsigned i = 0; i < solution.size(); ++i) |
|
std::cout << solution[i] << " "; |
|
std::cout << std::endl << this->numerator() << std::endl; |
|
std::cout << this->denominator() << std::endl; |
|
std::cout << std::endl; |
|
#endif |
|
|
|
// |
|
// The next step is to find all the intervals in which our maxima |
|
// lie: |
|
// |
|
detail::remez_error_function<T> Err(func, this->numerator(), this->denominator(), rel_error); |
|
zeros[0] = min; |
|
zeros[unknowns] = max; |
|
for(unsigned i = 1; i < control_points.size(); ++i) |
|
{ |
|
eps_tolerance<T> tol(m_precision); |
|
boost::uintmax_t max_iter = 1000; |
|
std::pair<T, T> p = toms748_solve( |
|
Err, |
|
control_points[i-1], |
|
control_points[i], |
|
tol, |
|
max_iter); |
|
zeros[i] = (p.first + p.second) / 2; |
|
//zeros[i] = bisect(Err, control_points[i-1], control_points[i], m_precision); |
|
} |
|
// |
|
// Now find all the extrema of the error function: |
|
// |
|
detail::remez_max_error_function<T> Ex(Err); |
|
m_max_error = 0; |
|
int max_err_location = 0; |
|
for(unsigned i = 0; i < unknowns; ++i) |
|
{ |
|
std::pair<T, T> r = brent_find_minima(Ex, zeros[i], zeros[i+1], m_precision); |
|
maxima[i] = r.first; |
|
T rel_err = fabs(r.second); |
|
if(rel_err > m_max_error) |
|
{ |
|
m_max_error = fabs(r.second); |
|
max_err_location = i; |
|
} |
|
} |
|
// |
|
// Almost done now! we just need to set our control points |
|
// to the extrema, and calculate how much each point has changed |
|
// (this will be our termination condition): |
|
// |
|
swap(control_points, maxima); |
|
m_max_change = 0; |
|
int max_change_location = 0; |
|
for(unsigned i = 0; i < unknowns; ++i) |
|
{ |
|
control_points[i] = (control_points[i] * (100 - m_brake) + maxima[i] * m_brake) / 100; |
|
T change = fabs((control_points[i] - maxima[i]) / control_points[i]); |
|
#if 0 |
|
if(change > m_max_change_history[1]) |
|
{ |
|
// divergence!!! try capping the change: |
|
std::cerr << "Possible divergent step, change will be capped!!" << std::endl; |
|
change = m_max_change_history[1]; |
|
if(control_points[i] < maxima[i]) |
|
control_points[i] = maxima[i] - change * maxima[i]; |
|
else |
|
control_points[i] = maxima[i] + change * maxima[i]; |
|
} |
|
#endif |
|
if(change > m_max_change) |
|
{ |
|
m_max_change = change; |
|
max_change_location = i; |
|
} |
|
} |
|
// |
|
// store max change information: |
|
// |
|
m_max_change_history[0] = m_max_change_history[1]; |
|
m_max_change_history[1] = fabs(m_max_change); |
|
|
|
return m_max_change; |
|
} |
|
|
|
template <class T> |
|
polynomial<T> remez_minimax<T>::numerator()const |
|
{ |
|
boost::scoped_array<T> a(new T[orderN + 1]); |
|
if(pinned) |
|
a[0] = 0; |
|
unsigned terms = pinned ? orderN : orderN + 1; |
|
for(unsigned i = 0; i < terms; ++i) |
|
a[pinned ? i+1 : i] = solution[i]; |
|
return boost::math::tools::polynomial<T>(&a[0], orderN); |
|
} |
|
|
|
template <class T> |
|
polynomial<T> remez_minimax<T>::denominator()const |
|
{ |
|
unsigned terms = orderD + 1; |
|
unsigned offsetD = pinned ? orderN : (orderN + 1); |
|
boost::scoped_array<T> a(new T[terms]); |
|
a[0] = 1; |
|
for(unsigned i = 0; i < orderD; ++i) |
|
a[i+1] = solution[i + offsetD]; |
|
return boost::math::tools::polynomial<T>(&a[0], orderD); |
|
} |
|
|
|
|
|
}}} // namespaces |
|
|
|
#endif // BOOST_MATH_TOOLS_REMEZ_HPP |
|
|
|
|
|
|
|
|