You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
320 lines
8.6 KiB
320 lines
8.6 KiB
// (C) Copyright John Maddock 2008. |
|
// Use, modification and distribution are subject to the |
|
// Boost Software License, Version 1.0. (See accompanying file |
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
|
|
#ifndef BOOST_MATH_SPECIAL_NEXT_HPP |
|
#define BOOST_MATH_SPECIAL_NEXT_HPP |
|
|
|
#ifdef _MSC_VER |
|
#pragma once |
|
#endif |
|
|
|
#include <boost/math/policies/error_handling.hpp> |
|
#include <boost/math/special_functions/fpclassify.hpp> |
|
#include <boost/math/special_functions/sign.hpp> |
|
#include <boost/math/special_functions/trunc.hpp> |
|
|
|
#ifdef BOOST_MSVC |
|
#include <float.h> |
|
#endif |
|
|
|
namespace boost{ namespace math{ |
|
|
|
namespace detail{ |
|
|
|
template <class T> |
|
inline T get_smallest_value(mpl::true_ const&) |
|
{ |
|
return std::numeric_limits<T>::denorm_min(); |
|
} |
|
|
|
template <class T> |
|
inline T get_smallest_value(mpl::false_ const&) |
|
{ |
|
return tools::min_value<T>(); |
|
} |
|
|
|
template <class T> |
|
inline T get_smallest_value() |
|
{ |
|
#if defined(BOOST_MSVC) && (BOOST_MSVC <= 1310) |
|
return get_smallest_value<T>(mpl::bool_<std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::has_denorm == 1)>()); |
|
#else |
|
return get_smallest_value<T>(mpl::bool_<std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::has_denorm == std::denorm_present)>()); |
|
#endif |
|
} |
|
|
|
} |
|
|
|
template <class T, class Policy> |
|
T float_next(const T& val, const Policy& pol) |
|
{ |
|
BOOST_MATH_STD_USING |
|
int expon; |
|
static const char* function = "float_next<%1%>(%1%)"; |
|
|
|
if(!(boost::math::isfinite)(val)) |
|
{ |
|
if(val < 0) |
|
return -tools::max_value<T>(); |
|
return policies::raise_domain_error<T>( |
|
function, |
|
"Argument must be finite, but got %1%", val, pol); |
|
} |
|
|
|
if(val >= tools::max_value<T>()) |
|
return policies::raise_overflow_error<T>(function, 0, pol); |
|
|
|
if(val == 0) |
|
return detail::get_smallest_value<T>(); |
|
|
|
if(-0.5f == frexp(val, &expon)) |
|
--expon; // reduce exponent when val is a power of two, and negative. |
|
T diff = ldexp(T(1), expon - tools::digits<T>()); |
|
if(diff == 0) |
|
diff = detail::get_smallest_value<T>(); |
|
return val + diff; |
|
} |
|
|
|
#ifdef BOOST_MSVC |
|
template <class Policy> |
|
inline double float_next(const double& val, const Policy& pol) |
|
{ |
|
static const char* function = "float_next<%1%>(%1%)"; |
|
|
|
if(!(boost::math::isfinite)(val) && (val > 0)) |
|
return policies::raise_domain_error<double>( |
|
function, |
|
"Argument must be finite, but got %1%", val, pol); |
|
|
|
if(val >= tools::max_value<double>()) |
|
return policies::raise_overflow_error<double>(function, 0, pol); |
|
|
|
return ::_nextafter(val, tools::max_value<double>()); |
|
} |
|
#endif |
|
|
|
template <class T> |
|
inline T float_next(const T& val) |
|
{ |
|
return float_next(val, policies::policy<>()); |
|
} |
|
|
|
template <class T, class Policy> |
|
T float_prior(const T& val, const Policy& pol) |
|
{ |
|
BOOST_MATH_STD_USING |
|
int expon; |
|
static const char* function = "float_prior<%1%>(%1%)"; |
|
|
|
if(!(boost::math::isfinite)(val)) |
|
{ |
|
if(val > 0) |
|
return tools::max_value<T>(); |
|
return policies::raise_domain_error<T>( |
|
function, |
|
"Argument must be finite, but got %1%", val, pol); |
|
} |
|
|
|
if(val <= -tools::max_value<T>()) |
|
return -policies::raise_overflow_error<T>(function, 0, pol); |
|
|
|
if(val == 0) |
|
return -detail::get_smallest_value<T>(); |
|
|
|
T remain = frexp(val, &expon); |
|
if(remain == 0.5) |
|
--expon; // when val is a power of two we must reduce the exponent |
|
T diff = ldexp(T(1), expon - tools::digits<T>()); |
|
if(diff == 0) |
|
diff = detail::get_smallest_value<T>(); |
|
return val - diff; |
|
} |
|
|
|
#ifdef BOOST_MSVC |
|
template <class Policy> |
|
inline double float_prior(const double& val, const Policy& pol) |
|
{ |
|
static const char* function = "float_prior<%1%>(%1%)"; |
|
|
|
if(!(boost::math::isfinite)(val) && (val < 0)) |
|
return policies::raise_domain_error<double>( |
|
function, |
|
"Argument must be finite, but got %1%", val, pol); |
|
|
|
if(val <= -tools::max_value<double>()) |
|
return -policies::raise_overflow_error<double>(function, 0, pol); |
|
|
|
return ::_nextafter(val, -tools::max_value<double>()); |
|
} |
|
#endif |
|
|
|
template <class T> |
|
inline T float_prior(const T& val) |
|
{ |
|
return float_prior(val, policies::policy<>()); |
|
} |
|
|
|
template <class T, class Policy> |
|
inline T nextafter(const T& val, const T& direction, const Policy& pol) |
|
{ |
|
return val < direction ? boost::math::float_next(val, pol) : val == direction ? val : boost::math::float_prior(val, pol); |
|
} |
|
|
|
template <class T> |
|
inline T nextafter(const T& val, const T& direction) |
|
{ |
|
return nextafter(val, direction, policies::policy<>()); |
|
} |
|
|
|
template <class T, class Policy> |
|
T float_distance(const T& a, const T& b, const Policy& pol) |
|
{ |
|
BOOST_MATH_STD_USING |
|
// |
|
// Error handling: |
|
// |
|
static const char* function = "float_distance<%1%>(%1%, %1%)"; |
|
if(!(boost::math::isfinite)(a)) |
|
return policies::raise_domain_error<T>( |
|
function, |
|
"Argument a must be finite, but got %1%", a, pol); |
|
if(!(boost::math::isfinite)(b)) |
|
return policies::raise_domain_error<T>( |
|
function, |
|
"Argument b must be finite, but got %1%", b, pol); |
|
// |
|
// Special cases: |
|
// |
|
if(a > b) |
|
return -float_distance(b, a); |
|
if(a == b) |
|
return 0; |
|
if(a == 0) |
|
return 1 + fabs(float_distance(static_cast<T>(boost::math::sign(b) * detail::get_smallest_value<T>()), b, pol)); |
|
if(b == 0) |
|
return 1 + fabs(float_distance(static_cast<T>(boost::math::sign(a) * detail::get_smallest_value<T>()), a, pol)); |
|
if(boost::math::sign(a) != boost::math::sign(b)) |
|
return 2 + fabs(float_distance(static_cast<T>(boost::math::sign(b) * detail::get_smallest_value<T>()), b, pol)) |
|
+ fabs(float_distance(static_cast<T>(boost::math::sign(a) * detail::get_smallest_value<T>()), a, pol)); |
|
// |
|
// By the time we get here, both a and b must have the same sign, we want |
|
// b > a and both postive for the following logic: |
|
// |
|
if(a < 0) |
|
return float_distance(static_cast<T>(-b), static_cast<T>(-a)); |
|
|
|
BOOST_ASSERT(a >= 0); |
|
BOOST_ASSERT(b >= a); |
|
|
|
int expon; |
|
// |
|
// Note that if a is a denorm then the usual formula fails |
|
// because we actually have fewer than tools::digits<T>() |
|
// significant bits in the representation: |
|
// |
|
frexp(((boost::math::fpclassify)(a) == FP_SUBNORMAL) ? tools::min_value<T>() : a, &expon); |
|
T upper = ldexp(T(1), expon); |
|
T result = 0; |
|
expon = tools::digits<T>() - expon; |
|
// |
|
// If b is greater than upper, then we *must* split the calculation |
|
// as the size of the ULP changes with each order of magnitude change: |
|
// |
|
if(b > upper) |
|
{ |
|
result = float_distance(upper, b); |
|
} |
|
// |
|
// Use compensated double-double addition to avoid rounding |
|
// errors in the subtraction: |
|
// |
|
T mb = -(std::min)(upper, b); |
|
T x = a + mb; |
|
T z = x - a; |
|
T y = (a - (x - z)) + (mb - z); |
|
if(x < 0) |
|
{ |
|
x = -x; |
|
y = -y; |
|
} |
|
result += ldexp(x, expon) + ldexp(y, expon); |
|
// |
|
// Result must be an integer: |
|
// |
|
BOOST_ASSERT(result == floor(result)); |
|
return result; |
|
} |
|
|
|
template <class T> |
|
T float_distance(const T& a, const T& b) |
|
{ |
|
return boost::math::float_distance(a, b, policies::policy<>()); |
|
} |
|
|
|
template <class T, class Policy> |
|
T float_advance(T val, int distance, const Policy& pol) |
|
{ |
|
// |
|
// Error handling: |
|
// |
|
static const char* function = "float_advance<%1%>(%1%, int)"; |
|
if(!(boost::math::isfinite)(val)) |
|
return policies::raise_domain_error<T>( |
|
function, |
|
"Argument val must be finite, but got %1%", val, pol); |
|
|
|
if(val < 0) |
|
return -float_advance(-val, -distance, pol); |
|
if(distance == 0) |
|
return val; |
|
if(distance == 1) |
|
return float_next(val, pol); |
|
if(distance == -1) |
|
return float_prior(val, pol); |
|
BOOST_MATH_STD_USING |
|
int expon; |
|
frexp(val, &expon); |
|
T limit = ldexp((distance < 0 ? T(0.5f) : T(1)), expon); |
|
if(val <= tools::min_value<T>()) |
|
{ |
|
limit = sign(T(distance)) * tools::min_value<T>(); |
|
} |
|
T limit_distance = float_distance(val, limit); |
|
while(fabs(limit_distance) < abs(distance)) |
|
{ |
|
distance -= itrunc(limit_distance); |
|
val = limit; |
|
if(distance < 0) |
|
{ |
|
limit /= 2; |
|
expon--; |
|
} |
|
else |
|
{ |
|
limit *= 2; |
|
expon++; |
|
} |
|
limit_distance = float_distance(val, limit); |
|
} |
|
if((0.5f == frexp(val, &expon)) && (distance < 0)) |
|
--expon; |
|
T diff = 0; |
|
if(val != 0) |
|
diff = distance * ldexp(T(1), expon - tools::digits<T>()); |
|
if(diff == 0) |
|
diff = distance * detail::get_smallest_value<T>(); |
|
return val += diff; |
|
} |
|
|
|
template <class T> |
|
inline T float_advance(const T& val, int distance) |
|
{ |
|
return boost::math::float_advance(val, distance, policies::policy<>()); |
|
} |
|
|
|
}} // namespaces |
|
|
|
#endif // BOOST_MATH_SPECIAL_NEXT_HPP |
|
|
|
|