You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
1551 lines
47 KiB
1551 lines
47 KiB
|
|
// Copyright John Maddock 2006-7. |
|
// Copyright Paul A. Bristow 2007. |
|
|
|
// Use, modification and distribution are subject to the |
|
// Boost Software License, Version 1.0. (See accompanying file |
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
|
|
#ifndef BOOST_MATH_SF_GAMMA_HPP |
|
#define BOOST_MATH_SF_GAMMA_HPP |
|
|
|
#ifdef _MSC_VER |
|
#pragma once |
|
#endif |
|
|
|
#include <boost/config.hpp> |
|
#ifdef BOOST_MSVC |
|
# pragma warning(push) |
|
# pragma warning(disable: 4127 4701) |
|
// // For lexical_cast, until fixed in 1.35? |
|
// // conditional expression is constant & |
|
// // Potentially uninitialized local variable 'name' used |
|
#endif |
|
#include <boost/lexical_cast.hpp> |
|
#ifdef BOOST_MSVC |
|
# pragma warning(pop) |
|
#endif |
|
#include <boost/math/tools/series.hpp> |
|
#include <boost/math/tools/fraction.hpp> |
|
#include <boost/math/tools/precision.hpp> |
|
#include <boost/math/tools/promotion.hpp> |
|
#include <boost/math/policies/error_handling.hpp> |
|
#include <boost/math/constants/constants.hpp> |
|
#include <boost/math/special_functions/math_fwd.hpp> |
|
#include <boost/math/special_functions/log1p.hpp> |
|
#include <boost/math/special_functions/trunc.hpp> |
|
#include <boost/math/special_functions/powm1.hpp> |
|
#include <boost/math/special_functions/sqrt1pm1.hpp> |
|
#include <boost/math/special_functions/lanczos.hpp> |
|
#include <boost/math/special_functions/fpclassify.hpp> |
|
#include <boost/math/special_functions/detail/igamma_large.hpp> |
|
#include <boost/math/special_functions/detail/unchecked_factorial.hpp> |
|
#include <boost/math/special_functions/detail/lgamma_small.hpp> |
|
#include <boost/type_traits/is_convertible.hpp> |
|
#include <boost/assert.hpp> |
|
#include <boost/mpl/greater.hpp> |
|
#include <boost/mpl/equal_to.hpp> |
|
#include <boost/mpl/greater.hpp> |
|
|
|
#include <boost/config/no_tr1/cmath.hpp> |
|
#include <algorithm> |
|
|
|
#ifdef BOOST_MATH_INSTRUMENT |
|
#include <iostream> |
|
#include <iomanip> |
|
#include <typeinfo> |
|
#endif |
|
|
|
#ifdef BOOST_MSVC |
|
# pragma warning(push) |
|
# pragma warning(disable: 4702) // unreachable code (return after domain_error throw). |
|
# pragma warning(disable: 4127) // conditional expression is constant. |
|
# pragma warning(disable: 4100) // unreferenced formal parameter. |
|
// Several variables made comments, |
|
// but some difficulty as whether referenced on not may depend on macro values. |
|
// So to be safe, 4100 warnings suppressed. |
|
// TODO - revisit this? |
|
#endif |
|
|
|
namespace boost{ namespace math{ |
|
|
|
namespace detail{ |
|
|
|
template <class T> |
|
inline bool is_odd(T v, const boost::true_type&) |
|
{ |
|
int i = static_cast<int>(v); |
|
return i&1; |
|
} |
|
template <class T> |
|
inline bool is_odd(T v, const boost::false_type&) |
|
{ |
|
// Oh dear can't cast T to int! |
|
BOOST_MATH_STD_USING |
|
T modulus = v - 2 * floor(v/2); |
|
return static_cast<bool>(modulus != 0); |
|
} |
|
template <class T> |
|
inline bool is_odd(T v) |
|
{ |
|
return is_odd(v, ::boost::is_convertible<T, int>()); |
|
} |
|
|
|
template <class T> |
|
T sinpx(T z) |
|
{ |
|
// Ad hoc function calculates x * sin(pi * x), |
|
// taking extra care near when x is near a whole number. |
|
BOOST_MATH_STD_USING |
|
int sign = 1; |
|
if(z < 0) |
|
{ |
|
z = -z; |
|
} |
|
else |
|
{ |
|
sign = -sign; |
|
} |
|
T fl = floor(z); |
|
T dist; |
|
if(is_odd(fl)) |
|
{ |
|
fl += 1; |
|
dist = fl - z; |
|
sign = -sign; |
|
} |
|
else |
|
{ |
|
dist = z - fl; |
|
} |
|
BOOST_ASSERT(fl >= 0); |
|
if(dist > 0.5) |
|
dist = 1 - dist; |
|
T result = sin(dist*boost::math::constants::pi<T>()); |
|
return sign*z*result; |
|
} // template <class T> T sinpx(T z) |
|
// |
|
// tgamma(z), with Lanczos support: |
|
// |
|
template <class T, class Policy, class L> |
|
T gamma_imp(T z, const Policy& pol, const L& l) |
|
{ |
|
BOOST_MATH_STD_USING |
|
|
|
T result = 1; |
|
|
|
#ifdef BOOST_MATH_INSTRUMENT |
|
static bool b = false; |
|
if(!b) |
|
{ |
|
std::cout << "tgamma_imp called with " << typeid(z).name() << " " << typeid(l).name() << std::endl; |
|
b = true; |
|
} |
|
#endif |
|
static const char* function = "boost::math::tgamma<%1%>(%1%)"; |
|
|
|
if(z <= 0) |
|
{ |
|
if(floor(z) == z) |
|
return policies::raise_pole_error<T>(function, "Evaluation of tgamma at a negative integer %1%.", z, pol); |
|
if(z <= -20) |
|
{ |
|
result = gamma_imp(T(-z), pol, l) * sinpx(z); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(result); |
|
if((fabs(result) < 1) && (tools::max_value<T>() * fabs(result) < boost::math::constants::pi<T>())) |
|
return policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol); |
|
result = -boost::math::constants::pi<T>() / result; |
|
if(result == 0) |
|
return policies::raise_underflow_error<T>(function, "Result of tgamma is too small to represent.", pol); |
|
if((boost::math::fpclassify)(result) == (int)FP_SUBNORMAL) |
|
return policies::raise_denorm_error<T>(function, "Result of tgamma is denormalized.", result, pol); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(result); |
|
return result; |
|
} |
|
|
|
// shift z to > 1: |
|
while(z < 0) |
|
{ |
|
result /= z; |
|
z += 1; |
|
} |
|
} |
|
BOOST_MATH_INSTRUMENT_VARIABLE(result); |
|
if((floor(z) == z) && (z < max_factorial<T>::value)) |
|
{ |
|
result *= unchecked_factorial<T>(itrunc(z, pol) - 1); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(result); |
|
} |
|
else |
|
{ |
|
result *= L::lanczos_sum(z); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(result); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(tools::log_max_value<T>()); |
|
if(z * log(z) > tools::log_max_value<T>()) |
|
{ |
|
// we're going to overflow unless this is done with care: |
|
T zgh = (z + static_cast<T>(L::g()) - boost::math::constants::half<T>()); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(zgh); |
|
if(log(zgh) * z / 2 > tools::log_max_value<T>()) |
|
return policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol); |
|
T hp = pow(zgh, (z / 2) - T(0.25)); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(hp); |
|
result *= hp / exp(zgh); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(result); |
|
if(tools::max_value<T>() / hp < result) |
|
return policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol); |
|
result *= hp; |
|
BOOST_MATH_INSTRUMENT_VARIABLE(result); |
|
} |
|
else |
|
{ |
|
T zgh = (z + static_cast<T>(L::g()) - boost::math::constants::half<T>()); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(zgh); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(pow(zgh, z - boost::math::constants::half<T>())); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(exp(zgh)); |
|
result *= pow(zgh, z - boost::math::constants::half<T>()) / exp(zgh); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(result); |
|
} |
|
} |
|
return result; |
|
} |
|
// |
|
// lgamma(z) with Lanczos support: |
|
// |
|
template <class T, class Policy, class L> |
|
T lgamma_imp(T z, const Policy& pol, const L& l, int* sign = 0) |
|
{ |
|
#ifdef BOOST_MATH_INSTRUMENT |
|
static bool b = false; |
|
if(!b) |
|
{ |
|
std::cout << "lgamma_imp called with " << typeid(z).name() << " " << typeid(l).name() << std::endl; |
|
b = true; |
|
} |
|
#endif |
|
|
|
BOOST_MATH_STD_USING |
|
|
|
static const char* function = "boost::math::lgamma<%1%>(%1%)"; |
|
|
|
T result = 0; |
|
int sresult = 1; |
|
if(z <= 0) |
|
{ |
|
// reflection formula: |
|
if(floor(z) == z) |
|
return policies::raise_pole_error<T>(function, "Evaluation of lgamma at a negative integer %1%.", z, pol); |
|
|
|
T t = sinpx(z); |
|
z = -z; |
|
if(t < 0) |
|
{ |
|
t = -t; |
|
} |
|
else |
|
{ |
|
sresult = -sresult; |
|
} |
|
result = log(boost::math::constants::pi<T>()) - lgamma_imp(z, pol, l) - log(t); |
|
} |
|
else if(z < 15) |
|
{ |
|
typedef typename policies::precision<T, Policy>::type precision_type; |
|
typedef typename mpl::if_< |
|
mpl::and_< |
|
mpl::less_equal<precision_type, mpl::int_<64> >, |
|
mpl::greater<precision_type, mpl::int_<0> > |
|
>, |
|
mpl::int_<64>, |
|
typename mpl::if_< |
|
mpl::and_< |
|
mpl::less_equal<precision_type, mpl::int_<113> >, |
|
mpl::greater<precision_type, mpl::int_<0> > |
|
>, |
|
mpl::int_<113>, mpl::int_<0> >::type |
|
>::type tag_type; |
|
result = lgamma_small_imp<T>(z, T(z - 1), T(z - 2), tag_type(), pol, l); |
|
} |
|
else if((z >= 3) && (z < 100)) |
|
{ |
|
// taking the log of tgamma reduces the error, no danger of overflow here: |
|
result = log(gamma_imp(z, pol, l)); |
|
} |
|
else |
|
{ |
|
// regular evaluation: |
|
T zgh = static_cast<T>(z + L::g() - boost::math::constants::half<T>()); |
|
result = log(zgh) - 1; |
|
result *= z - 0.5f; |
|
result += log(L::lanczos_sum_expG_scaled(z)); |
|
} |
|
|
|
if(sign) |
|
*sign = sresult; |
|
return result; |
|
} |
|
|
|
// |
|
// Incomplete gamma functions follow: |
|
// |
|
template <class T> |
|
struct upper_incomplete_gamma_fract |
|
{ |
|
private: |
|
T z, a; |
|
int k; |
|
public: |
|
typedef std::pair<T,T> result_type; |
|
|
|
upper_incomplete_gamma_fract(T a1, T z1) |
|
: z(z1-a1+1), a(a1), k(0) |
|
{ |
|
} |
|
|
|
result_type operator()() |
|
{ |
|
++k; |
|
z += 2; |
|
return result_type(k * (a - k), z); |
|
} |
|
}; |
|
|
|
template <class T> |
|
inline T upper_gamma_fraction(T a, T z, T eps) |
|
{ |
|
// Multiply result by z^a * e^-z to get the full |
|
// upper incomplete integral. Divide by tgamma(z) |
|
// to normalise. |
|
upper_incomplete_gamma_fract<T> f(a, z); |
|
return 1 / (z - a + 1 + boost::math::tools::continued_fraction_a(f, eps)); |
|
} |
|
|
|
template <class T> |
|
struct lower_incomplete_gamma_series |
|
{ |
|
private: |
|
T a, z, result; |
|
public: |
|
typedef T result_type; |
|
lower_incomplete_gamma_series(T a1, T z1) : a(a1), z(z1), result(1){} |
|
|
|
T operator()() |
|
{ |
|
T r = result; |
|
a += 1; |
|
result *= z/a; |
|
return r; |
|
} |
|
}; |
|
|
|
template <class T, class Policy> |
|
inline T lower_gamma_series(T a, T z, const Policy& pol, T init_value = 0) |
|
{ |
|
// Multiply result by ((z^a) * (e^-z) / a) to get the full |
|
// lower incomplete integral. Then divide by tgamma(a) |
|
// to get the normalised value. |
|
lower_incomplete_gamma_series<T> s(a, z); |
|
boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
|
T factor = policies::get_epsilon<T, Policy>(); |
|
T result = boost::math::tools::sum_series(s, factor, max_iter, init_value); |
|
policies::check_series_iterations<T>("boost::math::detail::lower_gamma_series<%1%>(%1%)", max_iter, pol); |
|
return result; |
|
} |
|
|
|
// |
|
// Fully generic tgamma and lgamma use the incomplete partial |
|
// sums added together: |
|
// |
|
template <class T, class Policy> |
|
T gamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos& l) |
|
{ |
|
static const char* function = "boost::math::tgamma<%1%>(%1%)"; |
|
BOOST_MATH_STD_USING |
|
if((z <= 0) && (floor(z) == z)) |
|
return policies::raise_pole_error<T>(function, "Evaluation of tgamma at a negative integer %1%.", z, pol); |
|
if(z <= -20) |
|
{ |
|
T result = gamma_imp(T(-z), pol, l) * sinpx(z); |
|
if((fabs(result) < 1) && (tools::max_value<T>() * fabs(result) < boost::math::constants::pi<T>())) |
|
return policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol); |
|
result = -boost::math::constants::pi<T>() / result; |
|
if(result == 0) |
|
return policies::raise_underflow_error<T>(function, "Result of tgamma is too small to represent.", pol); |
|
if((boost::math::fpclassify)(result) == (int)FP_SUBNORMAL) |
|
return policies::raise_denorm_error<T>(function, "Result of tgamma is denormalized.", result, pol); |
|
return result; |
|
} |
|
// |
|
// The upper gamma fraction is *very* slow for z < 6, actually it's very |
|
// slow to converge everywhere but recursing until z > 6 gets rid of the |
|
// worst of it's behaviour. |
|
// |
|
T prefix = 1; |
|
while(z < 6) |
|
{ |
|
prefix /= z; |
|
z += 1; |
|
} |
|
BOOST_MATH_INSTRUMENT_CODE(prefix); |
|
if((floor(z) == z) && (z < max_factorial<T>::value)) |
|
{ |
|
prefix *= unchecked_factorial<T>(itrunc(z, pol) - 1); |
|
} |
|
else |
|
{ |
|
prefix = prefix * pow(z / boost::math::constants::e<T>(), z); |
|
BOOST_MATH_INSTRUMENT_CODE(prefix); |
|
T sum = detail::lower_gamma_series(z, z, pol) / z; |
|
BOOST_MATH_INSTRUMENT_CODE(sum); |
|
sum += detail::upper_gamma_fraction(z, z, ::boost::math::policies::get_epsilon<T, Policy>()); |
|
BOOST_MATH_INSTRUMENT_CODE(sum); |
|
if(fabs(tools::max_value<T>() / prefix) < fabs(sum)) |
|
return policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol); |
|
BOOST_MATH_INSTRUMENT_CODE((sum * prefix)); |
|
return sum * prefix; |
|
} |
|
return prefix; |
|
} |
|
|
|
template <class T, class Policy> |
|
T lgamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos& l, int*sign) |
|
{ |
|
BOOST_MATH_STD_USING |
|
|
|
static const char* function = "boost::math::lgamma<%1%>(%1%)"; |
|
T result = 0; |
|
int sresult = 1; |
|
if(z <= 0) |
|
{ |
|
if(floor(z) == z) |
|
return policies::raise_pole_error<T>(function, "Evaluation of tgamma at a negative integer %1%.", z, pol); |
|
T t = detail::sinpx(z); |
|
z = -z; |
|
if(t < 0) |
|
{ |
|
t = -t; |
|
} |
|
else |
|
{ |
|
sresult = -sresult; |
|
} |
|
result = log(boost::math::constants::pi<T>()) - lgamma_imp(z, pol, l, 0) - log(t); |
|
} |
|
else if((z != 1) && (z != 2)) |
|
{ |
|
T limit = (std::max)(T(z+1), T(10)); |
|
T prefix = z * log(limit) - limit; |
|
T sum = detail::lower_gamma_series(z, limit, pol) / z; |
|
sum += detail::upper_gamma_fraction(z, limit, ::boost::math::policies::get_epsilon<T, Policy>()); |
|
result = log(sum) + prefix; |
|
} |
|
if(sign) |
|
*sign = sresult; |
|
return result; |
|
} |
|
// |
|
// This helper calculates tgamma(dz+1)-1 without cancellation errors, |
|
// used by the upper incomplete gamma with z < 1: |
|
// |
|
template <class T, class Policy, class L> |
|
T tgammap1m1_imp(T dz, Policy const& pol, const L& l) |
|
{ |
|
BOOST_MATH_STD_USING |
|
|
|
typedef typename policies::precision<T,Policy>::type precision_type; |
|
|
|
typedef typename mpl::if_< |
|
mpl::or_< |
|
mpl::less_equal<precision_type, mpl::int_<0> >, |
|
mpl::greater<precision_type, mpl::int_<113> > |
|
>, |
|
typename mpl::if_< |
|
is_same<L, lanczos::lanczos24m113>, |
|
mpl::int_<113>, |
|
mpl::int_<0> |
|
>::type, |
|
typename mpl::if_< |
|
mpl::less_equal<precision_type, mpl::int_<64> >, |
|
mpl::int_<64>, mpl::int_<113> >::type |
|
>::type tag_type; |
|
|
|
T result; |
|
if(dz < 0) |
|
{ |
|
if(dz < -0.5) |
|
{ |
|
// Best method is simply to subtract 1 from tgamma: |
|
result = boost::math::tgamma(1+dz, pol) - 1; |
|
BOOST_MATH_INSTRUMENT_CODE(result); |
|
} |
|
else |
|
{ |
|
// Use expm1 on lgamma: |
|
result = boost::math::expm1(-boost::math::log1p(dz, pol) |
|
+ lgamma_small_imp<T>(dz+2, dz + 1, dz, tag_type(), pol, l)); |
|
BOOST_MATH_INSTRUMENT_CODE(result); |
|
} |
|
} |
|
else |
|
{ |
|
if(dz < 2) |
|
{ |
|
// Use expm1 on lgamma: |
|
result = boost::math::expm1(lgamma_small_imp<T>(dz+1, dz, dz-1, tag_type(), pol, l), pol); |
|
BOOST_MATH_INSTRUMENT_CODE(result); |
|
} |
|
else |
|
{ |
|
// Best method is simply to subtract 1 from tgamma: |
|
result = boost::math::tgamma(1+dz, pol) - 1; |
|
BOOST_MATH_INSTRUMENT_CODE(result); |
|
} |
|
} |
|
|
|
return result; |
|
} |
|
|
|
template <class T, class Policy> |
|
inline T tgammap1m1_imp(T dz, Policy const& pol, |
|
const ::boost::math::lanczos::undefined_lanczos& l) |
|
{ |
|
BOOST_MATH_STD_USING // ADL of std names |
|
// |
|
// There should be a better solution than this, but the |
|
// algebra isn't easy for the general case.... |
|
// Start by subracting 1 from tgamma: |
|
// |
|
T result = gamma_imp(T(1 + dz), pol, l) - 1; |
|
BOOST_MATH_INSTRUMENT_CODE(result); |
|
// |
|
// Test the level of cancellation error observed: we loose one bit |
|
// for each power of 2 the result is less than 1. If we would get |
|
// more bits from our most precise lgamma rational approximation, |
|
// then use that instead: |
|
// |
|
BOOST_MATH_INSTRUMENT_CODE((dz > -0.5)); |
|
BOOST_MATH_INSTRUMENT_CODE((dz < 2)); |
|
BOOST_MATH_INSTRUMENT_CODE((ldexp(1.0, boost::math::policies::digits<T, Policy>()) * fabs(result) < 1e34)); |
|
if((dz > -0.5) && (dz < 2) && (ldexp(1.0, boost::math::policies::digits<T, Policy>()) * fabs(result) < 1e34)) |
|
{ |
|
result = tgammap1m1_imp(dz, pol, boost::math::lanczos::lanczos24m113()); |
|
BOOST_MATH_INSTRUMENT_CODE(result); |
|
} |
|
return result; |
|
} |
|
|
|
// |
|
// Series representation for upper fraction when z is small: |
|
// |
|
template <class T> |
|
struct small_gamma2_series |
|
{ |
|
typedef T result_type; |
|
|
|
small_gamma2_series(T a_, T x_) : result(-x_), x(-x_), apn(a_+1), n(1){} |
|
|
|
T operator()() |
|
{ |
|
T r = result / (apn); |
|
result *= x; |
|
result /= ++n; |
|
apn += 1; |
|
return r; |
|
} |
|
|
|
private: |
|
T result, x, apn; |
|
int n; |
|
}; |
|
// |
|
// calculate power term prefix (z^a)(e^-z) used in the non-normalised |
|
// incomplete gammas: |
|
// |
|
template <class T, class Policy> |
|
T full_igamma_prefix(T a, T z, const Policy& pol) |
|
{ |
|
BOOST_MATH_STD_USING |
|
|
|
T prefix; |
|
T alz = a * log(z); |
|
|
|
if(z >= 1) |
|
{ |
|
if((alz < tools::log_max_value<T>()) && (-z > tools::log_min_value<T>())) |
|
{ |
|
prefix = pow(z, a) * exp(-z); |
|
} |
|
else if(a >= 1) |
|
{ |
|
prefix = pow(z / exp(z/a), a); |
|
} |
|
else |
|
{ |
|
prefix = exp(alz - z); |
|
} |
|
} |
|
else |
|
{ |
|
if(alz > tools::log_min_value<T>()) |
|
{ |
|
prefix = pow(z, a) * exp(-z); |
|
} |
|
else if(z/a < tools::log_max_value<T>()) |
|
{ |
|
prefix = pow(z / exp(z/a), a); |
|
} |
|
else |
|
{ |
|
prefix = exp(alz - z); |
|
} |
|
} |
|
// |
|
// This error handling isn't very good: it happens after the fact |
|
// rather than before it... |
|
// |
|
if((boost::math::fpclassify)(prefix) == (int)FP_INFINITE) |
|
policies::raise_overflow_error<T>("boost::math::detail::full_igamma_prefix<%1%>(%1%, %1%)", "Result of incomplete gamma function is too large to represent.", pol); |
|
|
|
return prefix; |
|
} |
|
// |
|
// Compute (z^a)(e^-z)/tgamma(a) |
|
// most if the error occurs in this function: |
|
// |
|
template <class T, class Policy, class L> |
|
T regularised_gamma_prefix(T a, T z, const Policy& pol, const L& l) |
|
{ |
|
BOOST_MATH_STD_USING |
|
T agh = a + static_cast<T>(L::g()) - T(0.5); |
|
T prefix; |
|
T d = ((z - a) - static_cast<T>(L::g()) + T(0.5)) / agh; |
|
|
|
if(a < 1) |
|
{ |
|
// |
|
// We have to treat a < 1 as a special case because our Lanczos |
|
// approximations are optimised against the factorials with a > 1, |
|
// and for high precision types especially (128-bit reals for example) |
|
// very small values of a can give rather eroneous results for gamma |
|
// unless we do this: |
|
// |
|
// TODO: is this still required? Lanczos approx should be better now? |
|
// |
|
if(z <= tools::log_min_value<T>()) |
|
{ |
|
// Oh dear, have to use logs, should be free of cancellation errors though: |
|
return exp(a * log(z) - z - lgamma_imp(a, pol, l)); |
|
} |
|
else |
|
{ |
|
// direct calculation, no danger of overflow as gamma(a) < 1/a |
|
// for small a. |
|
return pow(z, a) * exp(-z) / gamma_imp(a, pol, l); |
|
} |
|
} |
|
else if((fabs(d*d*a) <= 100) && (a > 150)) |
|
{ |
|
// special case for large a and a ~ z. |
|
prefix = a * boost::math::log1pmx(d, pol) + z * static_cast<T>(0.5 - L::g()) / agh; |
|
prefix = exp(prefix); |
|
} |
|
else |
|
{ |
|
// |
|
// general case. |
|
// direct computation is most accurate, but use various fallbacks |
|
// for different parts of the problem domain: |
|
// |
|
T alz = a * log(z / agh); |
|
T amz = a - z; |
|
if(((std::min)(alz, amz) <= tools::log_min_value<T>()) || ((std::max)(alz, amz) >= tools::log_max_value<T>())) |
|
{ |
|
T amza = amz / a; |
|
if(((std::min)(alz, amz)/2 > tools::log_min_value<T>()) && ((std::max)(alz, amz)/2 < tools::log_max_value<T>())) |
|
{ |
|
// compute square root of the result and then square it: |
|
T sq = pow(z / agh, a / 2) * exp(amz / 2); |
|
prefix = sq * sq; |
|
} |
|
else if(((std::min)(alz, amz)/4 > tools::log_min_value<T>()) && ((std::max)(alz, amz)/4 < tools::log_max_value<T>()) && (z > a)) |
|
{ |
|
// compute the 4th root of the result then square it twice: |
|
T sq = pow(z / agh, a / 4) * exp(amz / 4); |
|
prefix = sq * sq; |
|
prefix *= prefix; |
|
} |
|
else if((amza > tools::log_min_value<T>()) && (amza < tools::log_max_value<T>())) |
|
{ |
|
prefix = pow((z * exp(amza)) / agh, a); |
|
} |
|
else |
|
{ |
|
prefix = exp(alz + amz); |
|
} |
|
} |
|
else |
|
{ |
|
prefix = pow(z / agh, a) * exp(amz); |
|
} |
|
} |
|
prefix *= sqrt(agh / boost::math::constants::e<T>()) / L::lanczos_sum_expG_scaled(a); |
|
return prefix; |
|
} |
|
// |
|
// And again, without Lanczos support: |
|
// |
|
template <class T, class Policy> |
|
T regularised_gamma_prefix(T a, T z, const Policy& pol, const lanczos::undefined_lanczos&) |
|
{ |
|
BOOST_MATH_STD_USING |
|
|
|
T limit = (std::max)(T(10), a); |
|
T sum = detail::lower_gamma_series(a, limit, pol) / a; |
|
sum += detail::upper_gamma_fraction(a, limit, ::boost::math::policies::get_epsilon<T, Policy>()); |
|
|
|
if(a < 10) |
|
{ |
|
// special case for small a: |
|
T prefix = pow(z / 10, a); |
|
prefix *= exp(10-z); |
|
if(0 == prefix) |
|
{ |
|
prefix = pow((z * exp((10-z)/a)) / 10, a); |
|
} |
|
prefix /= sum; |
|
return prefix; |
|
} |
|
|
|
T zoa = z / a; |
|
T amz = a - z; |
|
T alzoa = a * log(zoa); |
|
T prefix; |
|
if(((std::min)(alzoa, amz) <= tools::log_min_value<T>()) || ((std::max)(alzoa, amz) >= tools::log_max_value<T>())) |
|
{ |
|
T amza = amz / a; |
|
if((amza <= tools::log_min_value<T>()) || (amza >= tools::log_max_value<T>())) |
|
{ |
|
prefix = exp(alzoa + amz); |
|
} |
|
else |
|
{ |
|
prefix = pow(zoa * exp(amza), a); |
|
} |
|
} |
|
else |
|
{ |
|
prefix = pow(zoa, a) * exp(amz); |
|
} |
|
prefix /= sum; |
|
return prefix; |
|
} |
|
// |
|
// Upper gamma fraction for very small a: |
|
// |
|
template <class T, class Policy> |
|
inline T tgamma_small_upper_part(T a, T x, const Policy& pol, T* pgam = 0, bool invert = false, T* pderivative = 0) |
|
{ |
|
BOOST_MATH_STD_USING // ADL of std functions. |
|
// |
|
// Compute the full upper fraction (Q) when a is very small: |
|
// |
|
T result; |
|
result = boost::math::tgamma1pm1(a, pol); |
|
if(pgam) |
|
*pgam = (result + 1) / a; |
|
T p = boost::math::powm1(x, a, pol); |
|
result -= p; |
|
result /= a; |
|
detail::small_gamma2_series<T> s(a, x); |
|
boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>() - 10; |
|
p += 1; |
|
if(pderivative) |
|
*pderivative = p / (*pgam * exp(x)); |
|
T init_value = invert ? *pgam : 0; |
|
result = -p * tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter, (init_value - result) / p); |
|
policies::check_series_iterations<T>("boost::math::tgamma_small_upper_part<%1%>(%1%, %1%)", max_iter, pol); |
|
if(invert) |
|
result = -result; |
|
return result; |
|
} |
|
// |
|
// Upper gamma fraction for integer a: |
|
// |
|
template <class T, class Policy> |
|
inline T finite_gamma_q(T a, T x, Policy const& pol, T* pderivative = 0) |
|
{ |
|
// |
|
// Calculates normalised Q when a is an integer: |
|
// |
|
BOOST_MATH_STD_USING |
|
T e = exp(-x); |
|
T sum = e; |
|
if(sum != 0) |
|
{ |
|
T term = sum; |
|
for(unsigned n = 1; n < a; ++n) |
|
{ |
|
term /= n; |
|
term *= x; |
|
sum += term; |
|
} |
|
} |
|
if(pderivative) |
|
{ |
|
*pderivative = e * pow(x, a) / boost::math::unchecked_factorial<T>(itrunc(T(a - 1), pol)); |
|
} |
|
return sum; |
|
} |
|
// |
|
// Upper gamma fraction for half integer a: |
|
// |
|
template <class T, class Policy> |
|
T finite_half_gamma_q(T a, T x, T* p_derivative, const Policy& pol) |
|
{ |
|
// |
|
// Calculates normalised Q when a is a half-integer: |
|
// |
|
BOOST_MATH_STD_USING |
|
T e = boost::math::erfc(sqrt(x), pol); |
|
if((e != 0) && (a > 1)) |
|
{ |
|
T term = exp(-x) / sqrt(constants::pi<T>() * x); |
|
term *= x; |
|
static const T half = T(1) / 2; |
|
term /= half; |
|
T sum = term; |
|
for(unsigned n = 2; n < a; ++n) |
|
{ |
|
term /= n - half; |
|
term *= x; |
|
sum += term; |
|
} |
|
e += sum; |
|
if(p_derivative) |
|
{ |
|
*p_derivative = 0; |
|
} |
|
} |
|
else if(p_derivative) |
|
{ |
|
// We'll be dividing by x later, so calculate derivative * x: |
|
*p_derivative = sqrt(x) * exp(-x) / constants::root_pi<T>(); |
|
} |
|
return e; |
|
} |
|
// |
|
// Main incomplete gamma entry point, handles all four incomplete gamma's: |
|
// |
|
template <class T, class Policy> |
|
T gamma_incomplete_imp(T a, T x, bool normalised, bool invert, |
|
const Policy& pol, T* p_derivative) |
|
{ |
|
static const char* function = "boost::math::gamma_p<%1%>(%1%, %1%)"; |
|
if(a <= 0) |
|
policies::raise_domain_error<T>(function, "Argument a to the incomplete gamma function must be greater than zero (got a=%1%).", a, pol); |
|
if(x < 0) |
|
policies::raise_domain_error<T>(function, "Argument x to the incomplete gamma function must be >= 0 (got x=%1%).", x, pol); |
|
|
|
BOOST_MATH_STD_USING |
|
|
|
typedef typename lanczos::lanczos<T, Policy>::type lanczos_type; |
|
|
|
T result = 0; // Just to avoid warning C4701: potentially uninitialized local variable 'result' used |
|
|
|
BOOST_ASSERT((p_derivative == 0) || (normalised == true)); |
|
|
|
bool is_int, is_half_int; |
|
bool is_small_a = (a < 30) && (a <= x + 1); |
|
if(is_small_a) |
|
{ |
|
T fa = floor(a); |
|
is_int = (fa == a); |
|
is_half_int = is_int ? false : (fabs(fa - a) == 0.5f); |
|
} |
|
else |
|
{ |
|
is_int = is_half_int = false; |
|
} |
|
|
|
int eval_method; |
|
|
|
if(is_int && (x > 0.6)) |
|
{ |
|
// calculate Q via finite sum: |
|
invert = !invert; |
|
eval_method = 0; |
|
} |
|
else if(is_half_int && (x > 0.2)) |
|
{ |
|
// calculate Q via finite sum for half integer a: |
|
invert = !invert; |
|
eval_method = 1; |
|
} |
|
else if(x < 0.5) |
|
{ |
|
// |
|
// Changeover criterion chosen to give a changeover at Q ~ 0.33 |
|
// |
|
if(-0.4 / log(x) < a) |
|
{ |
|
eval_method = 2; |
|
} |
|
else |
|
{ |
|
eval_method = 3; |
|
} |
|
} |
|
else if(x < 1.1) |
|
{ |
|
// |
|
// Changover here occurs when P ~ 0.75 or Q ~ 0.25: |
|
// |
|
if(x * 0.75f < a) |
|
{ |
|
eval_method = 2; |
|
} |
|
else |
|
{ |
|
eval_method = 3; |
|
} |
|
} |
|
else |
|
{ |
|
// |
|
// Begin by testing whether we're in the "bad" zone |
|
// where the result will be near 0.5 and the usual |
|
// series and continued fractions are slow to converge: |
|
// |
|
bool use_temme = false; |
|
if(normalised && std::numeric_limits<T>::is_specialized && (a > 20)) |
|
{ |
|
T sigma = fabs((x-a)/a); |
|
if((a > 200) && (policies::digits<T, Policy>() <= 113)) |
|
{ |
|
// |
|
// This limit is chosen so that we use Temme's expansion |
|
// only if the result would be larger than about 10^-6. |
|
// Below that the regular series and continued fractions |
|
// converge OK, and if we use Temme's method we get increasing |
|
// errors from the dominant erfc term as it's (inexact) argument |
|
// increases in magnitude. |
|
// |
|
if(20 / a > sigma * sigma) |
|
use_temme = true; |
|
} |
|
else if(policies::digits<T, Policy>() <= 64) |
|
{ |
|
// Note in this zone we can't use Temme's expansion for |
|
// types longer than an 80-bit real: |
|
// it would require too many terms in the polynomials. |
|
if(sigma < 0.4) |
|
use_temme = true; |
|
} |
|
} |
|
if(use_temme) |
|
{ |
|
eval_method = 5; |
|
} |
|
else |
|
{ |
|
// |
|
// Regular case where the result will not be too close to 0.5. |
|
// |
|
// Changeover here occurs at P ~ Q ~ 0.5 |
|
// Note that series computation of P is about x2 faster than continued fraction |
|
// calculation of Q, so try and use the CF only when really necessary, especially |
|
// for small x. |
|
// |
|
if(x - (1 / (3 * x)) < a) |
|
{ |
|
eval_method = 2; |
|
} |
|
else |
|
{ |
|
eval_method = 4; |
|
invert = !invert; |
|
} |
|
} |
|
} |
|
|
|
switch(eval_method) |
|
{ |
|
case 0: |
|
{ |
|
result = finite_gamma_q(a, x, pol, p_derivative); |
|
if(normalised == false) |
|
result *= boost::math::tgamma(a, pol); |
|
break; |
|
} |
|
case 1: |
|
{ |
|
result = finite_half_gamma_q(a, x, p_derivative, pol); |
|
if(normalised == false) |
|
result *= boost::math::tgamma(a, pol); |
|
if(p_derivative && (*p_derivative == 0)) |
|
*p_derivative = regularised_gamma_prefix(a, x, pol, lanczos_type()); |
|
break; |
|
} |
|
case 2: |
|
{ |
|
// Compute P: |
|
result = normalised ? regularised_gamma_prefix(a, x, pol, lanczos_type()) : full_igamma_prefix(a, x, pol); |
|
if(p_derivative) |
|
*p_derivative = result; |
|
if(result != 0) |
|
{ |
|
T init_value = 0; |
|
if(invert) |
|
{ |
|
init_value = -a * (normalised ? 1 : boost::math::tgamma(a, pol)) / result; |
|
} |
|
result *= detail::lower_gamma_series(a, x, pol, init_value) / a; |
|
if(invert) |
|
{ |
|
invert = false; |
|
result = -result; |
|
} |
|
} |
|
break; |
|
} |
|
case 3: |
|
{ |
|
// Compute Q: |
|
invert = !invert; |
|
T g; |
|
result = tgamma_small_upper_part(a, x, pol, &g, invert, p_derivative); |
|
invert = false; |
|
if(normalised) |
|
result /= g; |
|
break; |
|
} |
|
case 4: |
|
{ |
|
// Compute Q: |
|
result = normalised ? regularised_gamma_prefix(a, x, pol, lanczos_type()) : full_igamma_prefix(a, x, pol); |
|
if(p_derivative) |
|
*p_derivative = result; |
|
if(result != 0) |
|
result *= upper_gamma_fraction(a, x, policies::get_epsilon<T, Policy>()); |
|
break; |
|
} |
|
case 5: |
|
{ |
|
// |
|
// Use compile time dispatch to the appropriate |
|
// Temme asymptotic expansion. This may be dead code |
|
// if T does not have numeric limits support, or has |
|
// too many digits for the most precise version of |
|
// these expansions, in that case we'll be calling |
|
// an empty function. |
|
// |
|
typedef typename policies::precision<T, Policy>::type precision_type; |
|
|
|
typedef typename mpl::if_< |
|
mpl::or_<mpl::equal_to<precision_type, mpl::int_<0> >, |
|
mpl::greater<precision_type, mpl::int_<113> > >, |
|
mpl::int_<0>, |
|
typename mpl::if_< |
|
mpl::less_equal<precision_type, mpl::int_<53> >, |
|
mpl::int_<53>, |
|
typename mpl::if_< |
|
mpl::less_equal<precision_type, mpl::int_<64> >, |
|
mpl::int_<64>, |
|
mpl::int_<113> |
|
>::type |
|
>::type |
|
>::type tag_type; |
|
|
|
result = igamma_temme_large(a, x, pol, static_cast<tag_type const*>(0)); |
|
if(x >= a) |
|
invert = !invert; |
|
if(p_derivative) |
|
*p_derivative = regularised_gamma_prefix(a, x, pol, lanczos_type()); |
|
break; |
|
} |
|
} |
|
|
|
if(normalised && (result > 1)) |
|
result = 1; |
|
if(invert) |
|
{ |
|
T gam = normalised ? 1 : boost::math::tgamma(a, pol); |
|
result = gam - result; |
|
} |
|
if(p_derivative) |
|
{ |
|
// |
|
// Need to convert prefix term to derivative: |
|
// |
|
if((x < 1) && (tools::max_value<T>() * x < *p_derivative)) |
|
{ |
|
// overflow, just return an arbitrarily large value: |
|
*p_derivative = tools::max_value<T>() / 2; |
|
} |
|
|
|
*p_derivative /= x; |
|
} |
|
|
|
return result; |
|
} |
|
|
|
// |
|
// Ratios of two gamma functions: |
|
// |
|
template <class T, class Policy, class L> |
|
T tgamma_delta_ratio_imp_lanczos(T z, T delta, const Policy& pol, const L&) |
|
{ |
|
BOOST_MATH_STD_USING |
|
T zgh = z + L::g() - constants::half<T>(); |
|
T result; |
|
if(fabs(delta) < 10) |
|
{ |
|
result = exp((constants::half<T>() - z) * boost::math::log1p(delta / zgh, pol)); |
|
} |
|
else |
|
{ |
|
result = pow(zgh / (zgh + delta), z - constants::half<T>()); |
|
} |
|
result *= pow(constants::e<T>() / (zgh + delta), delta); |
|
result *= L::lanczos_sum(z) / L::lanczos_sum(T(z + delta)); |
|
return result; |
|
} |
|
// |
|
// And again without Lanczos support this time: |
|
// |
|
template <class T, class Policy> |
|
T tgamma_delta_ratio_imp_lanczos(T z, T delta, const Policy& pol, const lanczos::undefined_lanczos&) |
|
{ |
|
BOOST_MATH_STD_USING |
|
// |
|
// The upper gamma fraction is *very* slow for z < 6, actually it's very |
|
// slow to converge everywhere but recursing until z > 6 gets rid of the |
|
// worst of it's behaviour. |
|
// |
|
T prefix = 1; |
|
T zd = z + delta; |
|
while((zd < 6) && (z < 6)) |
|
{ |
|
prefix /= z; |
|
prefix *= zd; |
|
z += 1; |
|
zd += 1; |
|
} |
|
if(delta < 10) |
|
{ |
|
prefix *= exp(-z * boost::math::log1p(delta / z, pol)); |
|
} |
|
else |
|
{ |
|
prefix *= pow(z / zd, z); |
|
} |
|
prefix *= pow(constants::e<T>() / zd, delta); |
|
T sum = detail::lower_gamma_series(z, z, pol) / z; |
|
sum += detail::upper_gamma_fraction(z, z, ::boost::math::policies::get_epsilon<T, Policy>()); |
|
T sumd = detail::lower_gamma_series(zd, zd, pol) / zd; |
|
sumd += detail::upper_gamma_fraction(zd, zd, ::boost::math::policies::get_epsilon<T, Policy>()); |
|
sum /= sumd; |
|
if(fabs(tools::max_value<T>() / prefix) < fabs(sum)) |
|
return policies::raise_overflow_error<T>("boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)", "Result of tgamma is too large to represent.", pol); |
|
return sum * prefix; |
|
} |
|
|
|
template <class T, class Policy> |
|
T tgamma_delta_ratio_imp(T z, T delta, const Policy& pol) |
|
{ |
|
BOOST_MATH_STD_USING |
|
|
|
if(z <= 0) |
|
policies::raise_domain_error<T>("boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)", "Gamma function ratios only implemented for positive arguments (got a=%1%).", z, pol); |
|
if(z+delta <= 0) |
|
policies::raise_domain_error<T>("boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)", "Gamma function ratios only implemented for positive arguments (got b=%1%).", z+delta, pol); |
|
|
|
if(floor(delta) == delta) |
|
{ |
|
if(floor(z) == z) |
|
{ |
|
// |
|
// Both z and delta are integers, see if we can just use table lookup |
|
// of the factorials to get the result: |
|
// |
|
if((z <= max_factorial<T>::value) && (z + delta <= max_factorial<T>::value)) |
|
{ |
|
return unchecked_factorial<T>((unsigned)itrunc(z, pol) - 1) / unchecked_factorial<T>((unsigned)itrunc(T(z + delta), pol) - 1); |
|
} |
|
} |
|
if(fabs(delta) < 20) |
|
{ |
|
// |
|
// delta is a small integer, we can use a finite product: |
|
// |
|
if(delta == 0) |
|
return 1; |
|
if(delta < 0) |
|
{ |
|
z -= 1; |
|
T result = z; |
|
while(0 != (delta += 1)) |
|
{ |
|
z -= 1; |
|
result *= z; |
|
} |
|
return result; |
|
} |
|
else |
|
{ |
|
T result = 1 / z; |
|
while(0 != (delta -= 1)) |
|
{ |
|
z += 1; |
|
result /= z; |
|
} |
|
return result; |
|
} |
|
} |
|
} |
|
typedef typename lanczos::lanczos<T, Policy>::type lanczos_type; |
|
return tgamma_delta_ratio_imp_lanczos(z, delta, pol, lanczos_type()); |
|
} |
|
|
|
template <class T, class Policy> |
|
T gamma_p_derivative_imp(T a, T x, const Policy& pol) |
|
{ |
|
// |
|
// Usual error checks first: |
|
// |
|
if(a <= 0) |
|
policies::raise_domain_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", "Argument a to the incomplete gamma function must be greater than zero (got a=%1%).", a, pol); |
|
if(x < 0) |
|
policies::raise_domain_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", "Argument x to the incomplete gamma function must be >= 0 (got x=%1%).", x, pol); |
|
// |
|
// Now special cases: |
|
// |
|
if(x == 0) |
|
{ |
|
return (a > 1) ? 0 : |
|
(a == 1) ? 1 : policies::raise_overflow_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", 0, pol); |
|
} |
|
// |
|
// Normal case: |
|
// |
|
typedef typename lanczos::lanczos<T, Policy>::type lanczos_type; |
|
T f1 = detail::regularised_gamma_prefix(a, x, pol, lanczos_type()); |
|
if((x < 1) && (tools::max_value<T>() * x < f1)) |
|
{ |
|
// overflow: |
|
return policies::raise_overflow_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", 0, pol); |
|
} |
|
|
|
f1 /= x; |
|
|
|
return f1; |
|
} |
|
|
|
template <class T, class Policy> |
|
inline typename tools::promote_args<T>::type |
|
tgamma(T z, const Policy& /* pol */, const mpl::true_) |
|
{ |
|
BOOST_FPU_EXCEPTION_GUARD |
|
typedef typename tools::promote_args<T>::type result_type; |
|
typedef typename policies::evaluation<result_type, Policy>::type value_type; |
|
typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type; |
|
typedef typename policies::normalise< |
|
Policy, |
|
policies::promote_float<false>, |
|
policies::promote_double<false>, |
|
policies::discrete_quantile<>, |
|
policies::assert_undefined<> >::type forwarding_policy; |
|
return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::gamma_imp(static_cast<value_type>(z), forwarding_policy(), evaluation_type()), "boost::math::tgamma<%1%>(%1%)"); |
|
} |
|
|
|
template <class T1, class T2, class Policy> |
|
inline typename tools::promote_args<T1, T2>::type |
|
tgamma(T1 a, T2 z, const Policy&, const mpl::false_) |
|
{ |
|
BOOST_FPU_EXCEPTION_GUARD |
|
typedef typename tools::promote_args<T1, T2>::type result_type; |
|
typedef typename policies::evaluation<result_type, Policy>::type value_type; |
|
typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type; |
|
typedef typename policies::normalise< |
|
Policy, |
|
policies::promote_float<false>, |
|
policies::promote_double<false>, |
|
policies::discrete_quantile<>, |
|
policies::assert_undefined<> >::type forwarding_policy; |
|
return policies::checked_narrowing_cast<result_type, forwarding_policy>( |
|
detail::gamma_incomplete_imp(static_cast<value_type>(a), |
|
static_cast<value_type>(z), false, true, |
|
forwarding_policy(), static_cast<value_type*>(0)), "boost::math::tgamma<%1%>(%1%, %1%)"); |
|
} |
|
|
|
template <class T1, class T2> |
|
inline typename tools::promote_args<T1, T2>::type |
|
tgamma(T1 a, T2 z, const mpl::false_ tag) |
|
{ |
|
return tgamma(a, z, policies::policy<>(), tag); |
|
} |
|
|
|
} // namespace detail |
|
|
|
template <class T> |
|
inline typename tools::promote_args<T>::type |
|
tgamma(T z) |
|
{ |
|
return tgamma(z, policies::policy<>()); |
|
} |
|
|
|
template <class T, class Policy> |
|
inline typename tools::promote_args<T>::type |
|
lgamma(T z, int* sign, const Policy&) |
|
{ |
|
BOOST_FPU_EXCEPTION_GUARD |
|
typedef typename tools::promote_args<T>::type result_type; |
|
typedef typename policies::evaluation<result_type, Policy>::type value_type; |
|
typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type; |
|
typedef typename policies::normalise< |
|
Policy, |
|
policies::promote_float<false>, |
|
policies::promote_double<false>, |
|
policies::discrete_quantile<>, |
|
policies::assert_undefined<> >::type forwarding_policy; |
|
return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::lgamma_imp(static_cast<value_type>(z), forwarding_policy(), evaluation_type(), sign), "boost::math::lgamma<%1%>(%1%)"); |
|
} |
|
|
|
template <class T> |
|
inline typename tools::promote_args<T>::type |
|
lgamma(T z, int* sign) |
|
{ |
|
return lgamma(z, sign, policies::policy<>()); |
|
} |
|
|
|
template <class T, class Policy> |
|
inline typename tools::promote_args<T>::type |
|
lgamma(T x, const Policy& pol) |
|
{ |
|
return ::boost::math::lgamma(x, 0, pol); |
|
} |
|
|
|
template <class T> |
|
inline typename tools::promote_args<T>::type |
|
lgamma(T x) |
|
{ |
|
return ::boost::math::lgamma(x, 0, policies::policy<>()); |
|
} |
|
|
|
template <class T, class Policy> |
|
inline typename tools::promote_args<T>::type |
|
tgamma1pm1(T z, const Policy& /* pol */) |
|
{ |
|
BOOST_FPU_EXCEPTION_GUARD |
|
typedef typename tools::promote_args<T>::type result_type; |
|
typedef typename policies::evaluation<result_type, Policy>::type value_type; |
|
typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type; |
|
typedef typename policies::normalise< |
|
Policy, |
|
policies::promote_float<false>, |
|
policies::promote_double<false>, |
|
policies::discrete_quantile<>, |
|
policies::assert_undefined<> >::type forwarding_policy; |
|
|
|
return policies::checked_narrowing_cast<typename remove_cv<result_type>::type, forwarding_policy>(detail::tgammap1m1_imp(static_cast<value_type>(z), forwarding_policy(), evaluation_type()), "boost::math::tgamma1pm1<%!%>(%1%)"); |
|
} |
|
|
|
template <class T> |
|
inline typename tools::promote_args<T>::type |
|
tgamma1pm1(T z) |
|
{ |
|
return tgamma1pm1(z, policies::policy<>()); |
|
} |
|
|
|
// |
|
// Full upper incomplete gamma: |
|
// |
|
template <class T1, class T2> |
|
inline typename tools::promote_args<T1, T2>::type |
|
tgamma(T1 a, T2 z) |
|
{ |
|
// |
|
// Type T2 could be a policy object, or a value, select the |
|
// right overload based on T2: |
|
// |
|
typedef typename policies::is_policy<T2>::type maybe_policy; |
|
return detail::tgamma(a, z, maybe_policy()); |
|
} |
|
template <class T1, class T2, class Policy> |
|
inline typename tools::promote_args<T1, T2>::type |
|
tgamma(T1 a, T2 z, const Policy& pol) |
|
{ |
|
return detail::tgamma(a, z, pol, mpl::false_()); |
|
} |
|
// |
|
// Full lower incomplete gamma: |
|
// |
|
template <class T1, class T2, class Policy> |
|
inline typename tools::promote_args<T1, T2>::type |
|
tgamma_lower(T1 a, T2 z, const Policy&) |
|
{ |
|
BOOST_FPU_EXCEPTION_GUARD |
|
typedef typename tools::promote_args<T1, T2>::type result_type; |
|
typedef typename policies::evaluation<result_type, Policy>::type value_type; |
|
typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type; |
|
typedef typename policies::normalise< |
|
Policy, |
|
policies::promote_float<false>, |
|
policies::promote_double<false>, |
|
policies::discrete_quantile<>, |
|
policies::assert_undefined<> >::type forwarding_policy; |
|
|
|
return policies::checked_narrowing_cast<result_type, forwarding_policy>( |
|
detail::gamma_incomplete_imp(static_cast<value_type>(a), |
|
static_cast<value_type>(z), false, false, |
|
forwarding_policy(), static_cast<value_type*>(0)), "tgamma_lower<%1%>(%1%, %1%)"); |
|
} |
|
template <class T1, class T2> |
|
inline typename tools::promote_args<T1, T2>::type |
|
tgamma_lower(T1 a, T2 z) |
|
{ |
|
return tgamma_lower(a, z, policies::policy<>()); |
|
} |
|
// |
|
// Regularised upper incomplete gamma: |
|
// |
|
template <class T1, class T2, class Policy> |
|
inline typename tools::promote_args<T1, T2>::type |
|
gamma_q(T1 a, T2 z, const Policy& /* pol */) |
|
{ |
|
BOOST_FPU_EXCEPTION_GUARD |
|
typedef typename tools::promote_args<T1, T2>::type result_type; |
|
typedef typename policies::evaluation<result_type, Policy>::type value_type; |
|
typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type; |
|
typedef typename policies::normalise< |
|
Policy, |
|
policies::promote_float<false>, |
|
policies::promote_double<false>, |
|
policies::discrete_quantile<>, |
|
policies::assert_undefined<> >::type forwarding_policy; |
|
|
|
return policies::checked_narrowing_cast<result_type, forwarding_policy>( |
|
detail::gamma_incomplete_imp(static_cast<value_type>(a), |
|
static_cast<value_type>(z), true, true, |
|
forwarding_policy(), static_cast<value_type*>(0)), "gamma_q<%1%>(%1%, %1%)"); |
|
} |
|
template <class T1, class T2> |
|
inline typename tools::promote_args<T1, T2>::type |
|
gamma_q(T1 a, T2 z) |
|
{ |
|
return gamma_q(a, z, policies::policy<>()); |
|
} |
|
// |
|
// Regularised lower incomplete gamma: |
|
// |
|
template <class T1, class T2, class Policy> |
|
inline typename tools::promote_args<T1, T2>::type |
|
gamma_p(T1 a, T2 z, const Policy&) |
|
{ |
|
BOOST_FPU_EXCEPTION_GUARD |
|
typedef typename tools::promote_args<T1, T2>::type result_type; |
|
typedef typename policies::evaluation<result_type, Policy>::type value_type; |
|
typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type; |
|
typedef typename policies::normalise< |
|
Policy, |
|
policies::promote_float<false>, |
|
policies::promote_double<false>, |
|
policies::discrete_quantile<>, |
|
policies::assert_undefined<> >::type forwarding_policy; |
|
|
|
return policies::checked_narrowing_cast<result_type, forwarding_policy>( |
|
detail::gamma_incomplete_imp(static_cast<value_type>(a), |
|
static_cast<value_type>(z), true, false, |
|
forwarding_policy(), static_cast<value_type*>(0)), "gamma_p<%1%>(%1%, %1%)"); |
|
} |
|
template <class T1, class T2> |
|
inline typename tools::promote_args<T1, T2>::type |
|
gamma_p(T1 a, T2 z) |
|
{ |
|
return gamma_p(a, z, policies::policy<>()); |
|
} |
|
|
|
// ratios of gamma functions: |
|
template <class T1, class T2, class Policy> |
|
inline typename tools::promote_args<T1, T2>::type |
|
tgamma_delta_ratio(T1 z, T2 delta, const Policy& /* pol */) |
|
{ |
|
BOOST_FPU_EXCEPTION_GUARD |
|
typedef typename tools::promote_args<T1, T2>::type result_type; |
|
typedef typename policies::evaluation<result_type, Policy>::type value_type; |
|
typedef typename policies::normalise< |
|
Policy, |
|
policies::promote_float<false>, |
|
policies::promote_double<false>, |
|
policies::discrete_quantile<>, |
|
policies::assert_undefined<> >::type forwarding_policy; |
|
|
|
return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::tgamma_delta_ratio_imp(static_cast<value_type>(z), static_cast<value_type>(delta), forwarding_policy()), "boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)"); |
|
} |
|
template <class T1, class T2> |
|
inline typename tools::promote_args<T1, T2>::type |
|
tgamma_delta_ratio(T1 z, T2 delta) |
|
{ |
|
return tgamma_delta_ratio(z, delta, policies::policy<>()); |
|
} |
|
template <class T1, class T2, class Policy> |
|
inline typename tools::promote_args<T1, T2>::type |
|
tgamma_ratio(T1 a, T2 b, const Policy&) |
|
{ |
|
typedef typename tools::promote_args<T1, T2>::type result_type; |
|
typedef typename policies::evaluation<result_type, Policy>::type value_type; |
|
typedef typename policies::normalise< |
|
Policy, |
|
policies::promote_float<false>, |
|
policies::promote_double<false>, |
|
policies::discrete_quantile<>, |
|
policies::assert_undefined<> >::type forwarding_policy; |
|
|
|
return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::tgamma_delta_ratio_imp(static_cast<value_type>(a), static_cast<value_type>(static_cast<value_type>(b) - static_cast<value_type>(a)), forwarding_policy()), "boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)"); |
|
} |
|
template <class T1, class T2> |
|
inline typename tools::promote_args<T1, T2>::type |
|
tgamma_ratio(T1 a, T2 b) |
|
{ |
|
return tgamma_ratio(a, b, policies::policy<>()); |
|
} |
|
|
|
template <class T1, class T2, class Policy> |
|
inline typename tools::promote_args<T1, T2>::type |
|
gamma_p_derivative(T1 a, T2 x, const Policy&) |
|
{ |
|
BOOST_FPU_EXCEPTION_GUARD |
|
typedef typename tools::promote_args<T1, T2>::type result_type; |
|
typedef typename policies::evaluation<result_type, Policy>::type value_type; |
|
typedef typename policies::normalise< |
|
Policy, |
|
policies::promote_float<false>, |
|
policies::promote_double<false>, |
|
policies::discrete_quantile<>, |
|
policies::assert_undefined<> >::type forwarding_policy; |
|
|
|
return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::gamma_p_derivative_imp(static_cast<value_type>(a), static_cast<value_type>(x), forwarding_policy()), "boost::math::gamma_p_derivative<%1%>(%1%, %1%)"); |
|
} |
|
template <class T1, class T2> |
|
inline typename tools::promote_args<T1, T2>::type |
|
gamma_p_derivative(T1 a, T2 x) |
|
{ |
|
return gamma_p_derivative(a, x, policies::policy<>()); |
|
} |
|
|
|
} // namespace math |
|
} // namespace boost |
|
|
|
#ifdef BOOST_MSVC |
|
# pragma warning(pop) |
|
#endif |
|
|
|
#include <boost/math/special_functions/detail/igamma_inverse.hpp> |
|
#include <boost/math/special_functions/detail/gamma_inva.hpp> |
|
#include <boost/math/special_functions/erf.hpp> |
|
|
|
#endif // BOOST_MATH_SF_GAMMA_HPP |
|
|
|
|
|
|
|
|
|
|