You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
180 lines
5.4 KiB
180 lines
5.4 KiB
// Copyright (c) 2006 Xiaogang Zhang |
|
// Use, modification and distribution are subject to the |
|
// Boost Software License, Version 1.0. (See accompanying file |
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
// |
|
// History: |
|
// XZ wrote the original of this file as part of the Google |
|
// Summer of Code 2006. JM modified it to fit into the |
|
// Boost.Math conceptual framework better, and to correctly |
|
// handle the p < 0 case. |
|
// |
|
|
|
#ifndef BOOST_MATH_ELLINT_RJ_HPP |
|
#define BOOST_MATH_ELLINT_RJ_HPP |
|
|
|
#ifdef _MSC_VER |
|
#pragma once |
|
#endif |
|
|
|
#include <boost/math/special_functions/math_fwd.hpp> |
|
#include <boost/math/tools/config.hpp> |
|
#include <boost/math/policies/error_handling.hpp> |
|
#include <boost/math/special_functions/ellint_rc.hpp> |
|
#include <boost/math/special_functions/ellint_rf.hpp> |
|
|
|
// Carlson's elliptic integral of the third kind |
|
// R_J(x, y, z, p) = 1.5 * \int_{0}^{\infty} (t+p)^{-1} [(t+x)(t+y)(t+z)]^{-1/2} dt |
|
// Carlson, Numerische Mathematik, vol 33, 1 (1979) |
|
|
|
namespace boost { namespace math { namespace detail{ |
|
|
|
template <typename T, typename Policy> |
|
T ellint_rj_imp(T x, T y, T z, T p, const Policy& pol) |
|
{ |
|
T value, u, lambda, alpha, beta, sigma, factor, tolerance; |
|
T X, Y, Z, P, EA, EB, EC, E2, E3, S1, S2, S3; |
|
unsigned long k; |
|
|
|
BOOST_MATH_STD_USING |
|
using namespace boost::math::tools; |
|
|
|
static const char* function = "boost::math::ellint_rj<%1%>(%1%,%1%,%1%)"; |
|
|
|
if (x < 0) |
|
{ |
|
return policies::raise_domain_error<T>(function, |
|
"Argument x must be non-negative, but got x = %1%", x, pol); |
|
} |
|
if(y < 0) |
|
{ |
|
return policies::raise_domain_error<T>(function, |
|
"Argument y must be non-negative, but got y = %1%", y, pol); |
|
} |
|
if(z < 0) |
|
{ |
|
return policies::raise_domain_error<T>(function, |
|
"Argument z must be non-negative, but got z = %1%", z, pol); |
|
} |
|
if(p == 0) |
|
{ |
|
return policies::raise_domain_error<T>(function, |
|
"Argument p must not be zero, but got p = %1%", p, pol); |
|
} |
|
if (x + y == 0 || y + z == 0 || z + x == 0) |
|
{ |
|
return policies::raise_domain_error<T>(function, |
|
"At most one argument can be zero, " |
|
"only possible result is %1%.", std::numeric_limits<T>::quiet_NaN(), pol); |
|
} |
|
|
|
// error scales as the 6th power of tolerance |
|
tolerance = pow(T(1) * tools::epsilon<T>() / 3, T(1) / 6); |
|
|
|
// for p < 0, the integral is singular, return Cauchy principal value |
|
if (p < 0) |
|
{ |
|
// |
|
// We must ensure that (z - y) * (y - x) is positive. |
|
// Since the integral is symmetrical in x, y and z |
|
// we can just permute the values: |
|
// |
|
if(x > y) |
|
std::swap(x, y); |
|
if(y > z) |
|
std::swap(y, z); |
|
if(x > y) |
|
std::swap(x, y); |
|
|
|
T q = -p; |
|
T pmy = (z - y) * (y - x) / (y + q); // p - y |
|
|
|
BOOST_ASSERT(pmy >= 0); |
|
|
|
T p = pmy + y; |
|
value = boost::math::ellint_rj(x, y, z, p, pol); |
|
value *= pmy; |
|
value -= 3 * boost::math::ellint_rf(x, y, z, pol); |
|
value += 3 * sqrt((x * y * z) / (x * z + p * q)) * boost::math::ellint_rc(x * z + p * q, p * q, pol); |
|
value /= (y + q); |
|
return value; |
|
} |
|
|
|
// duplication |
|
sigma = 0; |
|
factor = 1; |
|
k = 1; |
|
do |
|
{ |
|
u = (x + y + z + p + p) / 5; |
|
X = (u - x) / u; |
|
Y = (u - y) / u; |
|
Z = (u - z) / u; |
|
P = (u - p) / u; |
|
|
|
if ((tools::max)(abs(X), abs(Y), abs(Z), abs(P)) < tolerance) |
|
break; |
|
|
|
T sx = sqrt(x); |
|
T sy = sqrt(y); |
|
T sz = sqrt(z); |
|
|
|
lambda = sy * (sx + sz) + sz * sx; |
|
alpha = p * (sx + sy + sz) + sx * sy * sz; |
|
alpha *= alpha; |
|
beta = p * (p + lambda) * (p + lambda); |
|
sigma += factor * boost::math::ellint_rc(alpha, beta, pol); |
|
factor /= 4; |
|
x = (x + lambda) / 4; |
|
y = (y + lambda) / 4; |
|
z = (z + lambda) / 4; |
|
p = (p + lambda) / 4; |
|
++k; |
|
} |
|
while(k < policies::get_max_series_iterations<Policy>()); |
|
|
|
// Check to see if we gave up too soon: |
|
policies::check_series_iterations<T>(function, k, pol); |
|
|
|
// Taylor series expansion to the 5th order |
|
EA = X * Y + Y * Z + Z * X; |
|
EB = X * Y * Z; |
|
EC = P * P; |
|
E2 = EA - 3 * EC; |
|
E3 = EB + 2 * P * (EA - EC); |
|
S1 = 1 + E2 * (E2 * T(9) / 88 - E3 * T(9) / 52 - T(3) / 14); |
|
S2 = EB * (T(1) / 6 + P * (T(-6) / 22 + P * T(3) / 26)); |
|
S3 = P * ((EA - EC) / 3 - P * EA * T(3) / 22); |
|
value = 3 * sigma + factor * (S1 + S2 + S3) / (u * sqrt(u)); |
|
|
|
return value; |
|
} |
|
|
|
} // namespace detail |
|
|
|
template <class T1, class T2, class T3, class T4, class Policy> |
|
inline typename tools::promote_args<T1, T2, T3, T4>::type |
|
ellint_rj(T1 x, T2 y, T3 z, T4 p, const Policy& pol) |
|
{ |
|
typedef typename tools::promote_args<T1, T2, T3, T4>::type result_type; |
|
typedef typename policies::evaluation<result_type, Policy>::type value_type; |
|
return policies::checked_narrowing_cast<result_type, Policy>( |
|
detail::ellint_rj_imp( |
|
static_cast<value_type>(x), |
|
static_cast<value_type>(y), |
|
static_cast<value_type>(z), |
|
static_cast<value_type>(p), |
|
pol), "boost::math::ellint_rj<%1%>(%1%,%1%,%1%,%1%)"); |
|
} |
|
|
|
template <class T1, class T2, class T3, class T4> |
|
inline typename tools::promote_args<T1, T2, T3, T4>::type |
|
ellint_rj(T1 x, T2 y, T3 z, T4 p) |
|
{ |
|
return ellint_rj(x, y, z, p, policies::policy<>()); |
|
} |
|
|
|
}} // namespaces |
|
|
|
#endif // BOOST_MATH_ELLINT_RJ_HPP |
|
|
|
|