You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
588 lines
23 KiB
588 lines
23 KiB
// boost\math\distributions\poisson.hpp |
|
|
|
// Copyright John Maddock 2006. |
|
// Copyright Paul A. Bristow 2007. |
|
|
|
// Use, modification and distribution are subject to the |
|
// Boost Software License, Version 1.0. |
|
// (See accompanying file LICENSE_1_0.txt |
|
// or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
|
|
// Poisson distribution is a discrete probability distribution. |
|
// It expresses the probability of a number (k) of |
|
// events, occurrences, failures or arrivals occurring in a fixed time, |
|
// assuming these events occur with a known average or mean rate (lambda) |
|
// and are independent of the time since the last event. |
|
// The distribution was discovered by Simeon-Denis Poisson (1781-1840). |
|
|
|
// Parameter lambda is the mean number of events in the given time interval. |
|
// The random variate k is the number of events, occurrences or arrivals. |
|
// k argument may be integral, signed, or unsigned, or floating point. |
|
// If necessary, it has already been promoted from an integral type. |
|
|
|
// Note that the Poisson distribution |
|
// (like others including the binomial, negative binomial & Bernoulli) |
|
// is strictly defined as a discrete function: |
|
// only integral values of k are envisaged. |
|
// However because the method of calculation uses a continuous gamma function, |
|
// it is convenient to treat it as if a continous function, |
|
// and permit non-integral values of k. |
|
// To enforce the strict mathematical model, users should use floor or ceil functions |
|
// on k outside this function to ensure that k is integral. |
|
|
|
// See http://en.wikipedia.org/wiki/Poisson_distribution |
|
// http://documents.wolfram.com/v5/Add-onsLinks/StandardPackages/Statistics/DiscreteDistributions.html |
|
|
|
#ifndef BOOST_MATH_SPECIAL_POISSON_HPP |
|
#define BOOST_MATH_SPECIAL_POISSON_HPP |
|
|
|
#include <boost/math/distributions/fwd.hpp> |
|
#include <boost/math/special_functions/gamma.hpp> // for incomplete gamma. gamma_q |
|
#include <boost/math/special_functions/trunc.hpp> // for incomplete gamma. gamma_q |
|
#include <boost/math/distributions/complement.hpp> // complements |
|
#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks |
|
#include <boost/math/special_functions/fpclassify.hpp> // isnan. |
|
#include <boost/math/special_functions/factorials.hpp> // factorials. |
|
#include <boost/math/tools/roots.hpp> // for root finding. |
|
#include <boost/math/distributions/detail/inv_discrete_quantile.hpp> |
|
|
|
#include <utility> |
|
|
|
namespace boost |
|
{ |
|
namespace math |
|
{ |
|
namespace detail{ |
|
template <class Dist> |
|
inline typename Dist::value_type |
|
inverse_discrete_quantile( |
|
const Dist& dist, |
|
const typename Dist::value_type& p, |
|
const typename Dist::value_type& guess, |
|
const typename Dist::value_type& multiplier, |
|
const typename Dist::value_type& adder, |
|
const policies::discrete_quantile<policies::integer_round_nearest>&, |
|
boost::uintmax_t& max_iter); |
|
template <class Dist> |
|
inline typename Dist::value_type |
|
inverse_discrete_quantile( |
|
const Dist& dist, |
|
const typename Dist::value_type& p, |
|
const typename Dist::value_type& guess, |
|
const typename Dist::value_type& multiplier, |
|
const typename Dist::value_type& adder, |
|
const policies::discrete_quantile<policies::integer_round_up>&, |
|
boost::uintmax_t& max_iter); |
|
template <class Dist> |
|
inline typename Dist::value_type |
|
inverse_discrete_quantile( |
|
const Dist& dist, |
|
const typename Dist::value_type& p, |
|
const typename Dist::value_type& guess, |
|
const typename Dist::value_type& multiplier, |
|
const typename Dist::value_type& adder, |
|
const policies::discrete_quantile<policies::integer_round_down>&, |
|
boost::uintmax_t& max_iter); |
|
template <class Dist> |
|
inline typename Dist::value_type |
|
inverse_discrete_quantile( |
|
const Dist& dist, |
|
const typename Dist::value_type& p, |
|
const typename Dist::value_type& guess, |
|
const typename Dist::value_type& multiplier, |
|
const typename Dist::value_type& adder, |
|
const policies::discrete_quantile<policies::integer_round_outwards>&, |
|
boost::uintmax_t& max_iter); |
|
template <class Dist> |
|
inline typename Dist::value_type |
|
inverse_discrete_quantile( |
|
const Dist& dist, |
|
const typename Dist::value_type& p, |
|
const typename Dist::value_type& guess, |
|
const typename Dist::value_type& multiplier, |
|
const typename Dist::value_type& adder, |
|
const policies::discrete_quantile<policies::integer_round_inwards>&, |
|
boost::uintmax_t& max_iter); |
|
template <class Dist> |
|
inline typename Dist::value_type |
|
inverse_discrete_quantile( |
|
const Dist& dist, |
|
const typename Dist::value_type& p, |
|
const typename Dist::value_type& guess, |
|
const typename Dist::value_type& multiplier, |
|
const typename Dist::value_type& adder, |
|
const policies::discrete_quantile<policies::real>&, |
|
boost::uintmax_t& max_iter); |
|
} |
|
namespace poisson_detail |
|
{ |
|
// Common error checking routines for Poisson distribution functions. |
|
// These are convoluted, & apparently redundant, to try to ensure that |
|
// checks are always performed, even if exceptions are not enabled. |
|
|
|
template <class RealType, class Policy> |
|
inline bool check_mean(const char* function, const RealType& mean, RealType* result, const Policy& pol) |
|
{ |
|
if(!(boost::math::isfinite)(mean) || (mean < 0)) |
|
{ |
|
*result = policies::raise_domain_error<RealType>( |
|
function, |
|
"Mean argument is %1%, but must be >= 0 !", mean, pol); |
|
return false; |
|
} |
|
return true; |
|
} // bool check_mean |
|
|
|
template <class RealType, class Policy> |
|
inline bool check_mean_NZ(const char* function, const RealType& mean, RealType* result, const Policy& pol) |
|
{ // mean == 0 is considered an error. |
|
if( !(boost::math::isfinite)(mean) || (mean <= 0)) |
|
{ |
|
*result = policies::raise_domain_error<RealType>( |
|
function, |
|
"Mean argument is %1%, but must be > 0 !", mean, pol); |
|
return false; |
|
} |
|
return true; |
|
} // bool check_mean_NZ |
|
|
|
template <class RealType, class Policy> |
|
inline bool check_dist(const char* function, const RealType& mean, RealType* result, const Policy& pol) |
|
{ // Only one check, so this is redundant really but should be optimized away. |
|
return check_mean_NZ(function, mean, result, pol); |
|
} // bool check_dist |
|
|
|
template <class RealType, class Policy> |
|
inline bool check_k(const char* function, const RealType& k, RealType* result, const Policy& pol) |
|
{ |
|
if((k < 0) || !(boost::math::isfinite)(k)) |
|
{ |
|
*result = policies::raise_domain_error<RealType>( |
|
function, |
|
"Number of events k argument is %1%, but must be >= 0 !", k, pol); |
|
return false; |
|
} |
|
return true; |
|
} // bool check_k |
|
|
|
template <class RealType, class Policy> |
|
inline bool check_dist_and_k(const char* function, RealType mean, RealType k, RealType* result, const Policy& pol) |
|
{ |
|
if((check_dist(function, mean, result, pol) == false) || |
|
(check_k(function, k, result, pol) == false)) |
|
{ |
|
return false; |
|
} |
|
return true; |
|
} // bool check_dist_and_k |
|
|
|
template <class RealType, class Policy> |
|
inline bool check_prob(const char* function, const RealType& p, RealType* result, const Policy& pol) |
|
{ // Check 0 <= p <= 1 |
|
if(!(boost::math::isfinite)(p) || (p < 0) || (p > 1)) |
|
{ |
|
*result = policies::raise_domain_error<RealType>( |
|
function, |
|
"Probability argument is %1%, but must be >= 0 and <= 1 !", p, pol); |
|
return false; |
|
} |
|
return true; |
|
} // bool check_prob |
|
|
|
template <class RealType, class Policy> |
|
inline bool check_dist_and_prob(const char* function, RealType mean, RealType p, RealType* result, const Policy& pol) |
|
{ |
|
if((check_dist(function, mean, result, pol) == false) || |
|
(check_prob(function, p, result, pol) == false)) |
|
{ |
|
return false; |
|
} |
|
return true; |
|
} // bool check_dist_and_prob |
|
|
|
} // namespace poisson_detail |
|
|
|
template <class RealType = double, class Policy = policies::policy<> > |
|
class poisson_distribution |
|
{ |
|
public: |
|
typedef RealType value_type; |
|
typedef Policy policy_type; |
|
|
|
poisson_distribution(RealType mean = 1) : m_l(mean) // mean (lambda). |
|
{ // Expected mean number of events that occur during the given interval. |
|
RealType r; |
|
poisson_detail::check_dist( |
|
"boost::math::poisson_distribution<%1%>::poisson_distribution", |
|
m_l, |
|
&r, Policy()); |
|
} // poisson_distribution constructor. |
|
|
|
RealType mean() const |
|
{ // Private data getter function. |
|
return m_l; |
|
} |
|
private: |
|
// Data member, initialized by constructor. |
|
RealType m_l; // mean number of occurrences. |
|
}; // template <class RealType, class Policy> class poisson_distribution |
|
|
|
typedef poisson_distribution<double> poisson; // Reserved name of type double. |
|
|
|
// Non-member functions to give properties of the distribution. |
|
|
|
template <class RealType, class Policy> |
|
inline const std::pair<RealType, RealType> range(const poisson_distribution<RealType, Policy>& /* dist */) |
|
{ // Range of permissible values for random variable k. |
|
using boost::math::tools::max_value; |
|
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // Max integer? |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline const std::pair<RealType, RealType> support(const poisson_distribution<RealType, Policy>& /* dist */) |
|
{ // Range of supported values for random variable k. |
|
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. |
|
using boost::math::tools::max_value; |
|
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline RealType mean(const poisson_distribution<RealType, Policy>& dist) |
|
{ // Mean of poisson distribution = lambda. |
|
return dist.mean(); |
|
} // mean |
|
|
|
template <class RealType, class Policy> |
|
inline RealType mode(const poisson_distribution<RealType, Policy>& dist) |
|
{ // mode. |
|
BOOST_MATH_STD_USING // ADL of std functions. |
|
return floor(dist.mean()); |
|
} |
|
|
|
//template <class RealType, class Policy> |
|
//inline RealType median(const poisson_distribution<RealType, Policy>& dist) |
|
//{ // median = approximately lambda + 1/3 - 0.2/lambda |
|
// RealType l = dist.mean(); |
|
// return dist.mean() + static_cast<RealType>(0.3333333333333333333333333333333333333333333333) |
|
// - static_cast<RealType>(0.2) / l; |
|
//} // BUT this formula appears to be out-by-one compared to quantile(half) |
|
// Query posted on Wikipedia. |
|
// Now implemented via quantile(half) in derived accessors. |
|
|
|
template <class RealType, class Policy> |
|
inline RealType variance(const poisson_distribution<RealType, Policy>& dist) |
|
{ // variance. |
|
return dist.mean(); |
|
} |
|
|
|
// RealType standard_deviation(const poisson_distribution<RealType, Policy>& dist) |
|
// standard_deviation provided by derived accessors. |
|
|
|
template <class RealType, class Policy> |
|
inline RealType skewness(const poisson_distribution<RealType, Policy>& dist) |
|
{ // skewness = sqrt(l). |
|
BOOST_MATH_STD_USING // ADL of std functions. |
|
return 1 / sqrt(dist.mean()); |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline RealType kurtosis_excess(const poisson_distribution<RealType, Policy>& dist) |
|
{ // skewness = sqrt(l). |
|
return 1 / dist.mean(); // kurtosis_excess 1/mean from Wiki & MathWorld eq 31. |
|
// http://mathworld.wolfram.com/Kurtosis.html explains that the kurtosis excess |
|
// is more convenient because the kurtosis excess of a normal distribution is zero |
|
// whereas the true kurtosis is 3. |
|
} // RealType kurtosis_excess |
|
|
|
template <class RealType, class Policy> |
|
inline RealType kurtosis(const poisson_distribution<RealType, Policy>& dist) |
|
{ // kurtosis is 4th moment about the mean = u4 / sd ^ 4 |
|
// http://en.wikipedia.org/wiki/Curtosis |
|
// kurtosis can range from -2 (flat top) to +infinity (sharp peak & heavy tails). |
|
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm |
|
return 3 + 1 / dist.mean(); // NIST. |
|
// http://mathworld.wolfram.com/Kurtosis.html explains that the kurtosis excess |
|
// is more convenient because the kurtosis excess of a normal distribution is zero |
|
// whereas the true kurtosis is 3. |
|
} // RealType kurtosis |
|
|
|
template <class RealType, class Policy> |
|
RealType pdf(const poisson_distribution<RealType, Policy>& dist, const RealType& k) |
|
{ // Probability Density/Mass Function. |
|
// Probability that there are EXACTLY k occurrences (or arrivals). |
|
BOOST_FPU_EXCEPTION_GUARD |
|
|
|
BOOST_MATH_STD_USING // for ADL of std functions. |
|
|
|
RealType mean = dist.mean(); |
|
// Error check: |
|
RealType result = 0; |
|
if(false == poisson_detail::check_dist_and_k( |
|
"boost::math::pdf(const poisson_distribution<%1%>&, %1%)", |
|
mean, |
|
k, |
|
&result, Policy())) |
|
{ |
|
return result; |
|
} |
|
|
|
// Special case of mean zero, regardless of the number of events k. |
|
if (mean == 0) |
|
{ // Probability for any k is zero. |
|
return 0; |
|
} |
|
if (k == 0) |
|
{ // mean ^ k = 1, and k! = 1, so can simplify. |
|
return exp(-mean); |
|
} |
|
return boost::math::gamma_p_derivative(k+1, mean, Policy()); |
|
} // pdf |
|
|
|
template <class RealType, class Policy> |
|
RealType cdf(const poisson_distribution<RealType, Policy>& dist, const RealType& k) |
|
{ // Cumulative Distribution Function Poisson. |
|
// The random variate k is the number of occurrences(or arrivals) |
|
// k argument may be integral, signed, or unsigned, or floating point. |
|
// If necessary, it has already been promoted from an integral type. |
|
// Returns the sum of the terms 0 through k of the Poisson Probability Density or Mass (pdf). |
|
|
|
// But note that the Poisson distribution |
|
// (like others including the binomial, negative binomial & Bernoulli) |
|
// is strictly defined as a discrete function: only integral values of k are envisaged. |
|
// However because of the method of calculation using a continuous gamma function, |
|
// it is convenient to treat it as if it is a continous function |
|
// and permit non-integral values of k. |
|
// To enforce the strict mathematical model, users should use floor or ceil functions |
|
// outside this function to ensure that k is integral. |
|
|
|
// The terms are not summed directly (at least for larger k) |
|
// instead the incomplete gamma integral is employed, |
|
|
|
BOOST_MATH_STD_USING // for ADL of std function exp. |
|
|
|
RealType mean = dist.mean(); |
|
// Error checks: |
|
RealType result = 0; |
|
if(false == poisson_detail::check_dist_and_k( |
|
"boost::math::cdf(const poisson_distribution<%1%>&, %1%)", |
|
mean, |
|
k, |
|
&result, Policy())) |
|
{ |
|
return result; |
|
} |
|
// Special cases: |
|
if (mean == 0) |
|
{ // Probability for any k is zero. |
|
return 0; |
|
} |
|
if (k == 0) |
|
{ // return pdf(dist, static_cast<RealType>(0)); |
|
// but mean (and k) have already been checked, |
|
// so this avoids unnecessary repeated checks. |
|
return exp(-mean); |
|
} |
|
// For small integral k could use a finite sum - |
|
// it's cheaper than the gamma function. |
|
// BUT this is now done efficiently by gamma_q function. |
|
// Calculate poisson cdf using the gamma_q function. |
|
return gamma_q(k+1, mean, Policy()); |
|
} // binomial cdf |
|
|
|
template <class RealType, class Policy> |
|
RealType cdf(const complemented2_type<poisson_distribution<RealType, Policy>, RealType>& c) |
|
{ // Complemented Cumulative Distribution Function Poisson |
|
// The random variate k is the number of events, occurrences or arrivals. |
|
// k argument may be integral, signed, or unsigned, or floating point. |
|
// If necessary, it has already been promoted from an integral type. |
|
// But note that the Poisson distribution |
|
// (like others including the binomial, negative binomial & Bernoulli) |
|
// is strictly defined as a discrete function: only integral values of k are envisaged. |
|
// However because of the method of calculation using a continuous gamma function, |
|
// it is convenient to treat it as is it is a continous function |
|
// and permit non-integral values of k. |
|
// To enforce the strict mathematical model, users should use floor or ceil functions |
|
// outside this function to ensure that k is integral. |
|
|
|
// Returns the sum of the terms k+1 through inf of the Poisson Probability Density/Mass (pdf). |
|
// The terms are not summed directly (at least for larger k) |
|
// instead the incomplete gamma integral is employed, |
|
|
|
RealType const& k = c.param; |
|
poisson_distribution<RealType, Policy> const& dist = c.dist; |
|
|
|
RealType mean = dist.mean(); |
|
|
|
// Error checks: |
|
RealType result = 0; |
|
if(false == poisson_detail::check_dist_and_k( |
|
"boost::math::cdf(const poisson_distribution<%1%>&, %1%)", |
|
mean, |
|
k, |
|
&result, Policy())) |
|
{ |
|
return result; |
|
} |
|
// Special case of mean, regardless of the number of events k. |
|
if (mean == 0) |
|
{ // Probability for any k is unity, complement of zero. |
|
return 1; |
|
} |
|
if (k == 0) |
|
{ // Avoid repeated checks on k and mean in gamma_p. |
|
return -boost::math::expm1(-mean, Policy()); |
|
} |
|
// Unlike un-complemented cdf (sum from 0 to k), |
|
// can't use finite sum from k+1 to infinity for small integral k, |
|
// anyway it is now done efficiently by gamma_p. |
|
return gamma_p(k + 1, mean, Policy()); // Calculate Poisson cdf using the gamma_p function. |
|
// CCDF = gamma_p(k+1, lambda) |
|
} // poisson ccdf |
|
|
|
template <class RealType, class Policy> |
|
inline RealType quantile(const poisson_distribution<RealType, Policy>& dist, const RealType& p) |
|
{ // Quantile (or Percent Point) Poisson function. |
|
// Return the number of expected events k for a given probability p. |
|
RealType result = 0; // of Argument checks: |
|
if(false == poisson_detail::check_prob( |
|
"boost::math::quantile(const poisson_distribution<%1%>&, %1%)", |
|
p, |
|
&result, Policy())) |
|
{ |
|
return result; |
|
} |
|
// Special case: |
|
if (dist.mean() == 0) |
|
{ // if mean = 0 then p = 0, so k can be anything? |
|
if (false == poisson_detail::check_mean_NZ( |
|
"boost::math::quantile(const poisson_distribution<%1%>&, %1%)", |
|
dist.mean(), |
|
&result, Policy())) |
|
{ |
|
return result; |
|
} |
|
} |
|
/* |
|
BOOST_MATH_STD_USING // ADL of std functions. |
|
// if(p == 0) NOT necessarily zero! |
|
// Not necessarily any special value of k because is unlimited. |
|
if (p <= exp(-dist.mean())) |
|
{ // if p <= cdf for 0 events (== pdf for 0 events), then quantile must be zero. |
|
return 0; |
|
} |
|
return gamma_q_inva(dist.mean(), p, Policy()) - 1; |
|
*/ |
|
typedef typename Policy::discrete_quantile_type discrete_type; |
|
boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); |
|
RealType guess, factor = 8; |
|
RealType z = dist.mean(); |
|
if(z < 1) |
|
guess = z; |
|
else |
|
guess = boost::math::detail::inverse_poisson_cornish_fisher(z, p, RealType(1-p), Policy()); |
|
if(z > 5) |
|
{ |
|
if(z > 1000) |
|
factor = 1.01f; |
|
else if(z > 50) |
|
factor = 1.1f; |
|
else if(guess > 10) |
|
factor = 1.25f; |
|
else |
|
factor = 2; |
|
if(guess < 1.1) |
|
factor = 8; |
|
} |
|
|
|
return detail::inverse_discrete_quantile( |
|
dist, |
|
p, |
|
1-p, |
|
guess, |
|
factor, |
|
RealType(1), |
|
discrete_type(), |
|
max_iter); |
|
} // quantile |
|
|
|
template <class RealType, class Policy> |
|
inline RealType quantile(const complemented2_type<poisson_distribution<RealType, Policy>, RealType>& c) |
|
{ // Quantile (or Percent Point) of Poisson function. |
|
// Return the number of expected events k for a given |
|
// complement of the probability q. |
|
// |
|
// Error checks: |
|
RealType q = c.param; |
|
const poisson_distribution<RealType, Policy>& dist = c.dist; |
|
RealType result = 0; // of argument checks. |
|
if(false == poisson_detail::check_prob( |
|
"boost::math::quantile(const poisson_distribution<%1%>&, %1%)", |
|
q, |
|
&result, Policy())) |
|
{ |
|
return result; |
|
} |
|
// Special case: |
|
if (dist.mean() == 0) |
|
{ // if mean = 0 then p = 0, so k can be anything? |
|
if (false == poisson_detail::check_mean_NZ( |
|
"boost::math::quantile(const poisson_distribution<%1%>&, %1%)", |
|
dist.mean(), |
|
&result, Policy())) |
|
{ |
|
return result; |
|
} |
|
} |
|
/* |
|
if (-q <= boost::math::expm1(-dist.mean())) |
|
{ // if q <= cdf(complement for 0 events, then quantile must be zero. |
|
return 0; |
|
} |
|
return gamma_p_inva(dist.mean(), q, Policy()) -1; |
|
*/ |
|
typedef typename Policy::discrete_quantile_type discrete_type; |
|
boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); |
|
RealType guess, factor = 8; |
|
RealType z = dist.mean(); |
|
if(z < 1) |
|
guess = z; |
|
else |
|
guess = boost::math::detail::inverse_poisson_cornish_fisher(z, RealType(1-q), q, Policy()); |
|
if(z > 5) |
|
{ |
|
if(z > 1000) |
|
factor = 1.01f; |
|
else if(z > 50) |
|
factor = 1.1f; |
|
else if(guess > 10) |
|
factor = 1.25f; |
|
else |
|
factor = 2; |
|
if(guess < 1.1) |
|
factor = 8; |
|
} |
|
|
|
return detail::inverse_discrete_quantile( |
|
dist, |
|
1-q, |
|
q, |
|
guess, |
|
factor, |
|
RealType(1), |
|
discrete_type(), |
|
max_iter); |
|
} // quantile complement. |
|
|
|
} // namespace math |
|
} // namespace boost |
|
|
|
// This include must be at the end, *after* the accessors |
|
// for this distribution have been defined, in order to |
|
// keep compilers that support two-phase lookup happy. |
|
#include <boost/math/distributions/detail/derived_accessors.hpp> |
|
#include <boost/math/distributions/detail/inv_discrete_quantile.hpp> |
|
|
|
#endif // BOOST_MATH_SPECIAL_POISSON_HPP |
|
|
|
|
|
|
|
|