You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
963 lines
38 KiB
963 lines
38 KiB
// boost\math\distributions\non_central_chi_squared.hpp |
|
|
|
// Copyright John Maddock 2008. |
|
|
|
// Use, modification and distribution are subject to the |
|
// Boost Software License, Version 1.0. |
|
// (See accompanying file LICENSE_1_0.txt |
|
// or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
|
|
#ifndef BOOST_MATH_SPECIAL_NON_CENTRAL_CHI_SQUARE_HPP |
|
#define BOOST_MATH_SPECIAL_NON_CENTRAL_CHI_SQUARE_HPP |
|
|
|
#include <boost/math/distributions/fwd.hpp> |
|
#include <boost/math/special_functions/gamma.hpp> // for incomplete gamma. gamma_q |
|
#include <boost/math/special_functions/bessel.hpp> // for cyl_bessel_i |
|
#include <boost/math/special_functions/round.hpp> // for iround |
|
#include <boost/math/distributions/complement.hpp> // complements |
|
#include <boost/math/distributions/chi_squared.hpp> // central distribution |
|
#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks |
|
#include <boost/math/special_functions/fpclassify.hpp> // isnan. |
|
#include <boost/math/tools/roots.hpp> // for root finding. |
|
#include <boost/math/distributions/detail/generic_mode.hpp> |
|
#include <boost/math/distributions/detail/generic_quantile.hpp> |
|
|
|
namespace boost |
|
{ |
|
namespace math |
|
{ |
|
|
|
template <class RealType, class Policy> |
|
class non_central_chi_squared_distribution; |
|
|
|
namespace detail{ |
|
|
|
template <class T, class Policy> |
|
T non_central_chi_square_q(T x, T f, T theta, const Policy& pol, T init_sum = 0) |
|
{ |
|
// |
|
// Computes the complement of the Non-Central Chi-Square |
|
// Distribution CDF by summing a weighted sum of complements |
|
// of the central-distributions. The weighting factor is |
|
// a Poisson Distribution. |
|
// |
|
// This is an application of the technique described in: |
|
// |
|
// Computing discrete mixtures of continuous |
|
// distributions: noncentral chisquare, noncentral t |
|
// and the distribution of the square of the sample |
|
// multiple correlation coeficient. |
|
// D. Benton, K. Krishnamoorthy. |
|
// Computational Statistics & Data Analysis 43 (2003) 249 - 267 |
|
// |
|
BOOST_MATH_STD_USING |
|
|
|
// Special case: |
|
if(x == 0) |
|
return 1; |
|
|
|
// |
|
// Initialize the variables we'll be using: |
|
// |
|
T lambda = theta / 2; |
|
T del = f / 2; |
|
T y = x / 2; |
|
boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
|
T errtol = boost::math::policies::get_epsilon<T, Policy>(); |
|
T sum = init_sum; |
|
// |
|
// k is the starting location for iteration, we'll |
|
// move both forwards and backwards from this point. |
|
// k is chosen as the peek of the Poisson weights, which |
|
// will occur *before* the largest term. |
|
// |
|
int k = iround(lambda, pol); |
|
// Forwards and backwards Poisson weights: |
|
T poisf = boost::math::gamma_p_derivative(1 + k, lambda, pol); |
|
T poisb = poisf * k / lambda; |
|
// Initial forwards central chi squared term: |
|
T gamf = boost::math::gamma_q(del + k, y, pol); |
|
// Forwards and backwards recursion terms on the central chi squared: |
|
T xtermf = boost::math::gamma_p_derivative(del + 1 + k, y, pol); |
|
T xtermb = xtermf * (del + k) / y; |
|
// Initial backwards central chi squared term: |
|
T gamb = gamf - xtermb; |
|
|
|
// |
|
// Forwards iteration first, this is the |
|
// stable direction for the gamma function |
|
// recurrences: |
|
// |
|
int i; |
|
for(i = k; static_cast<boost::uintmax_t>(i-k) < max_iter; ++i) |
|
{ |
|
T term = poisf * gamf; |
|
sum += term; |
|
poisf *= lambda / (i + 1); |
|
gamf += xtermf; |
|
xtermf *= y / (del + i + 1); |
|
if(((sum == 0) || (fabs(term / sum) < errtol)) && (term >= poisf * gamf)) |
|
break; |
|
} |
|
//Error check: |
|
if(static_cast<boost::uintmax_t>(i-k) >= max_iter) |
|
policies::raise_evaluation_error( |
|
"cdf(non_central_chi_squared_distribution<%1%>, %1%)", |
|
"Series did not converge, closest value was %1%", sum, pol); |
|
// |
|
// Now backwards iteration: the gamma |
|
// function recurrences are unstable in this |
|
// direction, we rely on the terms deminishing in size |
|
// faster than we introduce cancellation errors. |
|
// For this reason it's very important that we start |
|
// *before* the largest term so that backwards iteration |
|
// is strictly converging. |
|
// |
|
for(i = k - 1; i >= 0; --i) |
|
{ |
|
T term = poisb * gamb; |
|
sum += term; |
|
poisb *= i / lambda; |
|
xtermb *= (del + i) / y; |
|
gamb -= xtermb; |
|
if((sum == 0) || (fabs(term / sum) < errtol)) |
|
break; |
|
} |
|
|
|
return sum; |
|
} |
|
|
|
template <class T, class Policy> |
|
T non_central_chi_square_p_ding(T x, T f, T theta, const Policy& pol, T init_sum = 0) |
|
{ |
|
// |
|
// This is an implementation of: |
|
// |
|
// Algorithm AS 275: |
|
// Computing the Non-Central #2 Distribution Function |
|
// Cherng G. Ding |
|
// Applied Statistics, Vol. 41, No. 2. (1992), pp. 478-482. |
|
// |
|
// This uses a stable forward iteration to sum the |
|
// CDF, unfortunately this can not be used for large |
|
// values of the non-centrality parameter because: |
|
// * The first term may underfow to zero. |
|
// * We may need an extra-ordinary number of terms |
|
// before we reach the first *significant* term. |
|
// |
|
BOOST_MATH_STD_USING |
|
// Special case: |
|
if(x == 0) |
|
return 0; |
|
T tk = boost::math::gamma_p_derivative(f/2 + 1, x/2, pol); |
|
T lambda = theta / 2; |
|
T vk = exp(-lambda); |
|
T uk = vk; |
|
T sum = init_sum + tk * vk; |
|
if(sum == 0) |
|
return sum; |
|
|
|
boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
|
T errtol = boost::math::policies::get_epsilon<T, Policy>(); |
|
|
|
int i; |
|
T lterm(0), term(0); |
|
for(i = 1; static_cast<boost::uintmax_t>(i) < max_iter; ++i) |
|
{ |
|
tk = tk * x / (f + 2 * i); |
|
uk = uk * lambda / i; |
|
vk = vk + uk; |
|
lterm = term; |
|
term = vk * tk; |
|
sum += term; |
|
if((fabs(term / sum) < errtol) && (term <= lterm)) |
|
break; |
|
} |
|
//Error check: |
|
if(static_cast<boost::uintmax_t>(i) >= max_iter) |
|
policies::raise_evaluation_error( |
|
"cdf(non_central_chi_squared_distribution<%1%>, %1%)", |
|
"Series did not converge, closest value was %1%", sum, pol); |
|
return sum; |
|
} |
|
|
|
|
|
template <class T, class Policy> |
|
T non_central_chi_square_p(T y, T n, T lambda, const Policy& pol, T init_sum) |
|
{ |
|
// |
|
// This is taken more or less directly from: |
|
// |
|
// Computing discrete mixtures of continuous |
|
// distributions: noncentral chisquare, noncentral t |
|
// and the distribution of the square of the sample |
|
// multiple correlation coeficient. |
|
// D. Benton, K. Krishnamoorthy. |
|
// Computational Statistics & Data Analysis 43 (2003) 249 - 267 |
|
// |
|
// We're summing a Poisson weighting term multiplied by |
|
// a central chi squared distribution. |
|
// |
|
BOOST_MATH_STD_USING |
|
// Special case: |
|
if(y == 0) |
|
return 0; |
|
boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
|
T errtol = boost::math::policies::get_epsilon<T, Policy>(); |
|
T errorf(0), errorb(0); |
|
|
|
T x = y / 2; |
|
T del = lambda / 2; |
|
// |
|
// Starting location for the iteration, we'll iterate |
|
// both forwards and backwards from this point. The |
|
// location chosen is the maximum of the Poisson weight |
|
// function, which ocurrs *after* the largest term in the |
|
// sum. |
|
// |
|
int k = iround(del, pol); |
|
T a = n / 2 + k; |
|
// Central chi squared term for forward iteration: |
|
T gamkf = boost::math::gamma_p(a, x, pol); |
|
|
|
if(lambda == 0) |
|
return gamkf; |
|
// Central chi squared term for backward iteration: |
|
T gamkb = gamkf; |
|
// Forwards Poisson weight: |
|
T poiskf = gamma_p_derivative(k+1, del, pol); |
|
// Backwards Poisson weight: |
|
T poiskb = poiskf; |
|
// Forwards gamma function recursion term: |
|
T xtermf = boost::math::gamma_p_derivative(a, x, pol); |
|
// Backwards gamma function recursion term: |
|
T xtermb = xtermf * x / a; |
|
T sum = init_sum + poiskf * gamkf; |
|
if(sum == 0) |
|
return sum; |
|
int i = 1; |
|
// |
|
// Backwards recursion first, this is the stable |
|
// direction for gamma function recurrences: |
|
// |
|
while(i <= k) |
|
{ |
|
xtermb *= (a - i + 1) / x; |
|
gamkb += xtermb; |
|
poiskb = poiskb * (k - i + 1) / del; |
|
errorf = errorb; |
|
errorb = gamkb * poiskb; |
|
sum += errorb; |
|
if((fabs(errorb / sum) < errtol) && (errorb <= errorf)) |
|
break; |
|
++i; |
|
} |
|
i = 1; |
|
// |
|
// Now forwards recursion, the gamma function |
|
// recurrence relation is unstable in this direction, |
|
// so we rely on the magnitude of successive terms |
|
// decreasing faster than we introduce cancellation error. |
|
// For this reason it's vital that k is chosen to be *after* |
|
// the largest term, so that successive forward iterations |
|
// are strictly (and rapidly) converging. |
|
// |
|
do |
|
{ |
|
xtermf = xtermf * x / (a + i - 1); |
|
gamkf = gamkf - xtermf; |
|
poiskf = poiskf * del / (k + i); |
|
errorf = poiskf * gamkf; |
|
sum += errorf; |
|
++i; |
|
}while((fabs(errorf / sum) > errtol) && (static_cast<boost::uintmax_t>(i) < max_iter)); |
|
|
|
//Error check: |
|
if(static_cast<boost::uintmax_t>(i) >= max_iter) |
|
policies::raise_evaluation_error( |
|
"cdf(non_central_chi_squared_distribution<%1%>, %1%)", |
|
"Series did not converge, closest value was %1%", sum, pol); |
|
|
|
return sum; |
|
} |
|
|
|
template <class T, class Policy> |
|
T non_central_chi_square_pdf(T x, T n, T lambda, const Policy& pol) |
|
{ |
|
// |
|
// As above but for the PDF: |
|
// |
|
BOOST_MATH_STD_USING |
|
boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
|
T errtol = boost::math::policies::get_epsilon<T, Policy>(); |
|
T x2 = x / 2; |
|
T n2 = n / 2; |
|
T l2 = lambda / 2; |
|
T sum = 0; |
|
int k = itrunc(l2); |
|
T pois = gamma_p_derivative(k + 1, l2, pol) * gamma_p_derivative(n2 + k, x2); |
|
if(pois == 0) |
|
return 0; |
|
T poisb = pois; |
|
for(int i = k; ; ++i) |
|
{ |
|
sum += pois; |
|
if(pois / sum < errtol) |
|
break; |
|
if(static_cast<boost::uintmax_t>(i - k) >= max_iter) |
|
return policies::raise_evaluation_error( |
|
"pdf(non_central_chi_squared_distribution<%1%>, %1%)", |
|
"Series did not converge, closest value was %1%", sum, pol); |
|
pois *= l2 * x2 / ((i + 1) * (n2 + i)); |
|
} |
|
for(int i = k - 1; i >= 0; --i) |
|
{ |
|
poisb *= (i + 1) * (n2 + i) / (l2 * x2); |
|
sum += poisb; |
|
if(poisb / sum < errtol) |
|
break; |
|
} |
|
return sum / 2; |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline RealType non_central_chi_squared_cdf(RealType x, RealType k, RealType l, bool invert, const Policy&) |
|
{ |
|
typedef typename policies::evaluation<RealType, Policy>::type value_type; |
|
typedef typename policies::normalise< |
|
Policy, |
|
policies::promote_float<false>, |
|
policies::promote_double<false>, |
|
policies::discrete_quantile<>, |
|
policies::assert_undefined<> >::type forwarding_policy; |
|
|
|
BOOST_MATH_STD_USING |
|
value_type result; |
|
if(l == 0) |
|
result = cdf(boost::math::chi_squared_distribution<RealType, Policy>(k), x); |
|
else if(x > k + l) |
|
{ |
|
// Complement is the smaller of the two: |
|
result = detail::non_central_chi_square_q( |
|
static_cast<value_type>(x), |
|
static_cast<value_type>(k), |
|
static_cast<value_type>(l), |
|
forwarding_policy(), |
|
static_cast<value_type>(invert ? 0 : -1)); |
|
invert = !invert; |
|
} |
|
else if(l < 200) |
|
{ |
|
// For small values of the non-centrality parameter |
|
// we can use Ding's method: |
|
result = detail::non_central_chi_square_p_ding( |
|
static_cast<value_type>(x), |
|
static_cast<value_type>(k), |
|
static_cast<value_type>(l), |
|
forwarding_policy(), |
|
static_cast<value_type>(invert ? -1 : 0)); |
|
} |
|
else |
|
{ |
|
// For largers values of the non-centrality |
|
// parameter Ding's method will consume an |
|
// extra-ordinary number of terms, and worse |
|
// may return zero when the result is in fact |
|
// finite, use Krishnamoorthy's method instead: |
|
result = detail::non_central_chi_square_p( |
|
static_cast<value_type>(x), |
|
static_cast<value_type>(k), |
|
static_cast<value_type>(l), |
|
forwarding_policy(), |
|
static_cast<value_type>(invert ? -1 : 0)); |
|
} |
|
if(invert) |
|
result = -result; |
|
return policies::checked_narrowing_cast<RealType, forwarding_policy>( |
|
result, |
|
"boost::math::non_central_chi_squared_cdf<%1%>(%1%, %1%, %1%)"); |
|
} |
|
|
|
template <class T, class Policy> |
|
struct nccs_quantile_functor |
|
{ |
|
nccs_quantile_functor(const non_central_chi_squared_distribution<T,Policy>& d, T t, bool c) |
|
: dist(d), target(t), comp(c) {} |
|
|
|
T operator()(const T& x) |
|
{ |
|
return comp ? |
|
target - cdf(complement(dist, x)) |
|
: cdf(dist, x) - target; |
|
} |
|
|
|
private: |
|
non_central_chi_squared_distribution<T,Policy> dist; |
|
T target; |
|
bool comp; |
|
}; |
|
|
|
template <class RealType, class Policy> |
|
RealType nccs_quantile(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& p, bool comp) |
|
{ |
|
static const char* function = "quantile(non_central_chi_squared_distribution<%1%>, %1%)"; |
|
typedef typename policies::evaluation<RealType, Policy>::type value_type; |
|
typedef typename policies::normalise< |
|
Policy, |
|
policies::promote_float<false>, |
|
policies::promote_double<false>, |
|
policies::discrete_quantile<>, |
|
policies::assert_undefined<> >::type forwarding_policy; |
|
|
|
value_type k = dist.degrees_of_freedom(); |
|
value_type l = dist.non_centrality(); |
|
value_type r; |
|
if(!detail::check_df( |
|
function, |
|
k, &r, Policy()) |
|
|| |
|
!detail::check_non_centrality( |
|
function, |
|
l, |
|
&r, |
|
Policy()) |
|
|| |
|
!detail::check_probability( |
|
function, |
|
static_cast<value_type>(p), |
|
&r, |
|
Policy())) |
|
return (RealType)r; |
|
|
|
value_type b = (l * l) / (k + 3 * l); |
|
value_type c = (k + 3 * l) / (k + 2 * l); |
|
value_type ff = (k + 2 * l) / (c * c); |
|
value_type guess; |
|
if(comp) |
|
guess = b + c * quantile(complement(chi_squared_distribution<value_type, forwarding_policy>(ff), p)); |
|
else |
|
guess = b + c * quantile(chi_squared_distribution<value_type, forwarding_policy>(ff), p); |
|
|
|
if(guess < 0) |
|
guess = tools::min_value<value_type>(); |
|
|
|
value_type result = detail::generic_quantile( |
|
non_central_chi_squared_distribution<value_type, forwarding_policy>(k, l), |
|
p, |
|
guess, |
|
comp, |
|
function); |
|
return policies::checked_narrowing_cast<RealType, forwarding_policy>( |
|
result, |
|
function); |
|
} |
|
|
|
template <class RealType, class Policy> |
|
RealType nccs_pdf(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& x) |
|
{ |
|
BOOST_MATH_STD_USING |
|
static const char* function = "pdf(non_central_chi_squared_distribution<%1%>, %1%)"; |
|
typedef typename policies::evaluation<RealType, Policy>::type value_type; |
|
typedef typename policies::normalise< |
|
Policy, |
|
policies::promote_float<false>, |
|
policies::promote_double<false>, |
|
policies::discrete_quantile<>, |
|
policies::assert_undefined<> >::type forwarding_policy; |
|
|
|
value_type k = dist.degrees_of_freedom(); |
|
value_type l = dist.non_centrality(); |
|
value_type r; |
|
if(!detail::check_df( |
|
function, |
|
k, &r, Policy()) |
|
|| |
|
!detail::check_non_centrality( |
|
function, |
|
l, |
|
&r, |
|
Policy()) |
|
|| |
|
!detail::check_positive_x( |
|
function, |
|
(value_type)x, |
|
&r, |
|
Policy())) |
|
return (RealType)r; |
|
|
|
if(l == 0) |
|
return pdf(boost::math::chi_squared_distribution<RealType, forwarding_policy>(dist.degrees_of_freedom()), x); |
|
|
|
// Special case: |
|
if(x == 0) |
|
return 0; |
|
if(l > 50) |
|
{ |
|
r = non_central_chi_square_pdf(static_cast<value_type>(x), k, l, forwarding_policy()); |
|
} |
|
else |
|
{ |
|
r = log(x / l) * (k / 4 - 0.5f) - (x + l) / 2; |
|
if(fabs(r) >= tools::log_max_value<RealType>() / 4) |
|
{ |
|
r = non_central_chi_square_pdf(static_cast<value_type>(x), k, l, forwarding_policy()); |
|
} |
|
else |
|
{ |
|
r = exp(r); |
|
r = 0.5f * r |
|
* boost::math::cyl_bessel_i(k/2 - 1, sqrt(l * x), forwarding_policy()); |
|
} |
|
} |
|
return policies::checked_narrowing_cast<RealType, forwarding_policy>( |
|
r, |
|
function); |
|
} |
|
|
|
template <class RealType, class Policy> |
|
struct degrees_of_freedom_finder |
|
{ |
|
degrees_of_freedom_finder( |
|
RealType lam_, RealType x_, RealType p_, bool c) |
|
: lam(lam_), x(x_), p(p_), comp(c) {} |
|
|
|
RealType operator()(const RealType& v) |
|
{ |
|
non_central_chi_squared_distribution<RealType, Policy> d(v, lam); |
|
return comp ? |
|
RealType(p - cdf(complement(d, x))) |
|
: RealType(cdf(d, x) - p); |
|
} |
|
private: |
|
RealType lam; |
|
RealType x; |
|
RealType p; |
|
bool comp; |
|
}; |
|
|
|
template <class RealType, class Policy> |
|
inline RealType find_degrees_of_freedom( |
|
RealType lam, RealType x, RealType p, RealType q, const Policy& pol) |
|
{ |
|
const char* function = "non_central_chi_squared<%1%>::find_degrees_of_freedom"; |
|
if((p == 0) || (q == 0)) |
|
{ |
|
// |
|
// Can't a thing if one of p and q is zero: |
|
// |
|
return policies::raise_evaluation_error<RealType>(function, |
|
"Can't find degrees of freedom when the probability is 0 or 1, only possible answer is %1%", |
|
RealType(std::numeric_limits<RealType>::quiet_NaN()), Policy()); |
|
} |
|
degrees_of_freedom_finder<RealType, Policy> f(lam, x, p < q ? p : q, p < q ? false : true); |
|
tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>()); |
|
boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); |
|
// |
|
// Pick an initial guess that we know will give us a probability |
|
// right around 0.5. |
|
// |
|
RealType guess = x - lam; |
|
if(guess < 1) |
|
guess = 1; |
|
std::pair<RealType, RealType> ir = tools::bracket_and_solve_root( |
|
f, guess, RealType(2), false, tol, max_iter, pol); |
|
RealType result = ir.first + (ir.second - ir.first) / 2; |
|
if(max_iter >= policies::get_max_root_iterations<Policy>()) |
|
{ |
|
policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:" |
|
" or there is no answer to problem. Current best guess is %1%", result, Policy()); |
|
} |
|
return result; |
|
} |
|
|
|
template <class RealType, class Policy> |
|
struct non_centrality_finder |
|
{ |
|
non_centrality_finder( |
|
RealType v_, RealType x_, RealType p_, bool c) |
|
: v(v_), x(x_), p(p_), comp(c) {} |
|
|
|
RealType operator()(const RealType& lam) |
|
{ |
|
non_central_chi_squared_distribution<RealType, Policy> d(v, lam); |
|
return comp ? |
|
RealType(p - cdf(complement(d, x))) |
|
: RealType(cdf(d, x) - p); |
|
} |
|
private: |
|
RealType v; |
|
RealType x; |
|
RealType p; |
|
bool comp; |
|
}; |
|
|
|
template <class RealType, class Policy> |
|
inline RealType find_non_centrality( |
|
RealType v, RealType x, RealType p, RealType q, const Policy& pol) |
|
{ |
|
const char* function = "non_central_chi_squared<%1%>::find_non_centrality"; |
|
if((p == 0) || (q == 0)) |
|
{ |
|
// |
|
// Can't do a thing if one of p and q is zero: |
|
// |
|
return policies::raise_evaluation_error<RealType>(function, |
|
"Can't find non centrality parameter when the probability is 0 or 1, only possible answer is %1%", |
|
RealType(std::numeric_limits<RealType>::quiet_NaN()), Policy()); |
|
} |
|
non_centrality_finder<RealType, Policy> f(v, x, p < q ? p : q, p < q ? false : true); |
|
tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>()); |
|
boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); |
|
// |
|
// Pick an initial guess that we know will give us a probability |
|
// right around 0.5. |
|
// |
|
RealType guess = x - v; |
|
if(guess < 1) |
|
guess = 1; |
|
std::pair<RealType, RealType> ir = tools::bracket_and_solve_root( |
|
f, guess, RealType(2), false, tol, max_iter, pol); |
|
RealType result = ir.first + (ir.second - ir.first) / 2; |
|
if(max_iter >= policies::get_max_root_iterations<Policy>()) |
|
{ |
|
policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:" |
|
" or there is no answer to problem. Current best guess is %1%", result, Policy()); |
|
} |
|
return result; |
|
} |
|
|
|
} |
|
|
|
template <class RealType = double, class Policy = policies::policy<> > |
|
class non_central_chi_squared_distribution |
|
{ |
|
public: |
|
typedef RealType value_type; |
|
typedef Policy policy_type; |
|
|
|
non_central_chi_squared_distribution(RealType df_, RealType lambda) : df(df_), ncp(lambda) |
|
{ |
|
const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::non_central_chi_squared_distribution(%1%,%1%)"; |
|
RealType r; |
|
detail::check_df( |
|
function, |
|
df, &r, Policy()); |
|
detail::check_non_centrality( |
|
function, |
|
ncp, |
|
&r, |
|
Policy()); |
|
} // non_central_chi_squared_distribution constructor. |
|
|
|
RealType degrees_of_freedom() const |
|
{ // Private data getter function. |
|
return df; |
|
} |
|
RealType non_centrality() const |
|
{ // Private data getter function. |
|
return ncp; |
|
} |
|
static RealType find_degrees_of_freedom(RealType lam, RealType x, RealType p) |
|
{ |
|
const char* function = "non_central_chi_squared<%1%>::find_degrees_of_freedom"; |
|
typedef typename policies::evaluation<RealType, Policy>::type value_type; |
|
typedef typename policies::normalise< |
|
Policy, |
|
policies::promote_float<false>, |
|
policies::promote_double<false>, |
|
policies::discrete_quantile<>, |
|
policies::assert_undefined<> >::type forwarding_policy; |
|
value_type result = detail::find_degrees_of_freedom( |
|
static_cast<value_type>(lam), |
|
static_cast<value_type>(x), |
|
static_cast<value_type>(p), |
|
static_cast<value_type>(1-p), |
|
forwarding_policy()); |
|
return policies::checked_narrowing_cast<RealType, forwarding_policy>( |
|
result, |
|
function); |
|
} |
|
template <class A, class B, class C> |
|
static RealType find_degrees_of_freedom(const complemented3_type<A,B,C>& c) |
|
{ |
|
const char* function = "non_central_chi_squared<%1%>::find_degrees_of_freedom"; |
|
typedef typename policies::evaluation<RealType, Policy>::type value_type; |
|
typedef typename policies::normalise< |
|
Policy, |
|
policies::promote_float<false>, |
|
policies::promote_double<false>, |
|
policies::discrete_quantile<>, |
|
policies::assert_undefined<> >::type forwarding_policy; |
|
value_type result = detail::find_degrees_of_freedom( |
|
static_cast<value_type>(c.dist), |
|
static_cast<value_type>(c.param1), |
|
static_cast<value_type>(1-c.param2), |
|
static_cast<value_type>(c.param2), |
|
forwarding_policy()); |
|
return policies::checked_narrowing_cast<RealType, forwarding_policy>( |
|
result, |
|
function); |
|
} |
|
static RealType find_non_centrality(RealType v, RealType x, RealType p) |
|
{ |
|
const char* function = "non_central_chi_squared<%1%>::find_non_centrality"; |
|
typedef typename policies::evaluation<RealType, Policy>::type value_type; |
|
typedef typename policies::normalise< |
|
Policy, |
|
policies::promote_float<false>, |
|
policies::promote_double<false>, |
|
policies::discrete_quantile<>, |
|
policies::assert_undefined<> >::type forwarding_policy; |
|
value_type result = detail::find_non_centrality( |
|
static_cast<value_type>(v), |
|
static_cast<value_type>(x), |
|
static_cast<value_type>(p), |
|
static_cast<value_type>(1-p), |
|
forwarding_policy()); |
|
return policies::checked_narrowing_cast<RealType, forwarding_policy>( |
|
result, |
|
function); |
|
} |
|
template <class A, class B, class C> |
|
static RealType find_non_centrality(const complemented3_type<A,B,C>& c) |
|
{ |
|
const char* function = "non_central_chi_squared<%1%>::find_non_centrality"; |
|
typedef typename policies::evaluation<RealType, Policy>::type value_type; |
|
typedef typename policies::normalise< |
|
Policy, |
|
policies::promote_float<false>, |
|
policies::promote_double<false>, |
|
policies::discrete_quantile<>, |
|
policies::assert_undefined<> >::type forwarding_policy; |
|
value_type result = detail::find_non_centrality( |
|
static_cast<value_type>(c.dist), |
|
static_cast<value_type>(c.param1), |
|
static_cast<value_type>(1-c.param2), |
|
static_cast<value_type>(c.param2), |
|
forwarding_policy()); |
|
return policies::checked_narrowing_cast<RealType, forwarding_policy>( |
|
result, |
|
function); |
|
} |
|
private: |
|
// Data member, initialized by constructor. |
|
RealType df; // degrees of freedom. |
|
RealType ncp; // non-centrality parameter |
|
}; // template <class RealType, class Policy> class non_central_chi_squared_distribution |
|
|
|
typedef non_central_chi_squared_distribution<double> non_central_chi_squared; // Reserved name of type double. |
|
|
|
// Non-member functions to give properties of the distribution. |
|
|
|
template <class RealType, class Policy> |
|
inline const std::pair<RealType, RealType> range(const non_central_chi_squared_distribution<RealType, Policy>& /* dist */) |
|
{ // Range of permissible values for random variable k. |
|
using boost::math::tools::max_value; |
|
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // Max integer? |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline const std::pair<RealType, RealType> support(const non_central_chi_squared_distribution<RealType, Policy>& /* dist */) |
|
{ // Range of supported values for random variable k. |
|
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. |
|
using boost::math::tools::max_value; |
|
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline RealType mean(const non_central_chi_squared_distribution<RealType, Policy>& dist) |
|
{ // Mean of poisson distribution = lambda. |
|
const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::mean()"; |
|
RealType k = dist.degrees_of_freedom(); |
|
RealType l = dist.non_centrality(); |
|
RealType r; |
|
if(!detail::check_df( |
|
function, |
|
k, &r, Policy()) |
|
|| |
|
!detail::check_non_centrality( |
|
function, |
|
l, |
|
&r, |
|
Policy())) |
|
return r; |
|
return k + l; |
|
} // mean |
|
|
|
template <class RealType, class Policy> |
|
inline RealType mode(const non_central_chi_squared_distribution<RealType, Policy>& dist) |
|
{ // mode. |
|
static const char* function = "mode(non_central_chi_squared_distribution<%1%> const&)"; |
|
|
|
RealType k = dist.degrees_of_freedom(); |
|
RealType l = dist.non_centrality(); |
|
RealType r; |
|
if(!detail::check_df( |
|
function, |
|
k, &r, Policy()) |
|
|| |
|
!detail::check_non_centrality( |
|
function, |
|
l, |
|
&r, |
|
Policy())) |
|
return (RealType)r; |
|
return detail::generic_find_mode(dist, 1 + k, function); |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline RealType variance(const non_central_chi_squared_distribution<RealType, Policy>& dist) |
|
{ // variance. |
|
const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::variance()"; |
|
RealType k = dist.degrees_of_freedom(); |
|
RealType l = dist.non_centrality(); |
|
RealType r; |
|
if(!detail::check_df( |
|
function, |
|
k, &r, Policy()) |
|
|| |
|
!detail::check_non_centrality( |
|
function, |
|
l, |
|
&r, |
|
Policy())) |
|
return r; |
|
return 2 * (2 * l + k); |
|
} |
|
|
|
// RealType standard_deviation(const non_central_chi_squared_distribution<RealType, Policy>& dist) |
|
// standard_deviation provided by derived accessors. |
|
|
|
template <class RealType, class Policy> |
|
inline RealType skewness(const non_central_chi_squared_distribution<RealType, Policy>& dist) |
|
{ // skewness = sqrt(l). |
|
const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::skewness()"; |
|
RealType k = dist.degrees_of_freedom(); |
|
RealType l = dist.non_centrality(); |
|
RealType r; |
|
if(!detail::check_df( |
|
function, |
|
k, &r, Policy()) |
|
|| |
|
!detail::check_non_centrality( |
|
function, |
|
l, |
|
&r, |
|
Policy())) |
|
return r; |
|
BOOST_MATH_STD_USING |
|
return pow(2 / (k + 2 * l), RealType(3)/2) * (k + 3 * l); |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline RealType kurtosis_excess(const non_central_chi_squared_distribution<RealType, Policy>& dist) |
|
{ |
|
const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::kurtosis_excess()"; |
|
RealType k = dist.degrees_of_freedom(); |
|
RealType l = dist.non_centrality(); |
|
RealType r; |
|
if(!detail::check_df( |
|
function, |
|
k, &r, Policy()) |
|
|| |
|
!detail::check_non_centrality( |
|
function, |
|
l, |
|
&r, |
|
Policy())) |
|
return r; |
|
return 12 * (k + 4 * l) / ((k + 2 * l) * (k + 2 * l)); |
|
} // kurtosis_excess |
|
|
|
template <class RealType, class Policy> |
|
inline RealType kurtosis(const non_central_chi_squared_distribution<RealType, Policy>& dist) |
|
{ |
|
return kurtosis_excess(dist) + 3; |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline RealType pdf(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& x) |
|
{ // Probability Density/Mass Function. |
|
return detail::nccs_pdf(dist, x); |
|
} // pdf |
|
|
|
template <class RealType, class Policy> |
|
RealType cdf(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& x) |
|
{ |
|
const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::cdf(%1%)"; |
|
RealType k = dist.degrees_of_freedom(); |
|
RealType l = dist.non_centrality(); |
|
RealType r; |
|
if(!detail::check_df( |
|
function, |
|
k, &r, Policy()) |
|
|| |
|
!detail::check_non_centrality( |
|
function, |
|
l, |
|
&r, |
|
Policy()) |
|
|| |
|
!detail::check_positive_x( |
|
function, |
|
x, |
|
&r, |
|
Policy())) |
|
return r; |
|
|
|
return detail::non_central_chi_squared_cdf(x, k, l, false, Policy()); |
|
} // cdf |
|
|
|
template <class RealType, class Policy> |
|
RealType cdf(const complemented2_type<non_central_chi_squared_distribution<RealType, Policy>, RealType>& c) |
|
{ // Complemented Cumulative Distribution Function |
|
const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::cdf(%1%)"; |
|
non_central_chi_squared_distribution<RealType, Policy> const& dist = c.dist; |
|
RealType x = c.param; |
|
RealType k = dist.degrees_of_freedom(); |
|
RealType l = dist.non_centrality(); |
|
RealType r; |
|
if(!detail::check_df( |
|
function, |
|
k, &r, Policy()) |
|
|| |
|
!detail::check_non_centrality( |
|
function, |
|
l, |
|
&r, |
|
Policy()) |
|
|| |
|
!detail::check_positive_x( |
|
function, |
|
x, |
|
&r, |
|
Policy())) |
|
return r; |
|
|
|
return detail::non_central_chi_squared_cdf(x, k, l, true, Policy()); |
|
} // ccdf |
|
|
|
template <class RealType, class Policy> |
|
inline RealType quantile(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& p) |
|
{ // Quantile (or Percent Point) function. |
|
return detail::nccs_quantile(dist, p, false); |
|
} // quantile |
|
|
|
template <class RealType, class Policy> |
|
inline RealType quantile(const complemented2_type<non_central_chi_squared_distribution<RealType, Policy>, RealType>& c) |
|
{ // Quantile (or Percent Point) function. |
|
return detail::nccs_quantile(c.dist, c.param, true); |
|
} // quantile complement. |
|
|
|
} // namespace math |
|
} // namespace boost |
|
|
|
// This include must be at the end, *after* the accessors |
|
// for this distribution have been defined, in order to |
|
// keep compilers that support two-phase lookup happy. |
|
#include <boost/math/distributions/detail/derived_accessors.hpp> |
|
|
|
#endif // BOOST_MATH_SPECIAL_NON_CENTRAL_CHI_SQUARE_HPP |
|
|
|
|
|
|
|
|