You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
588 lines
25 KiB
588 lines
25 KiB
// boost\math\special_functions\negative_binomial.hpp |
|
|
|
// Copyright Paul A. Bristow 2007. |
|
// Copyright John Maddock 2007. |
|
|
|
// Use, modification and distribution are subject to the |
|
// Boost Software License, Version 1.0. |
|
// (See accompanying file LICENSE_1_0.txt |
|
// or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
|
|
// http://en.wikipedia.org/wiki/negative_binomial_distribution |
|
// http://mathworld.wolfram.com/NegativeBinomialDistribution.html |
|
// http://documents.wolfram.com/teachersedition/Teacher/Statistics/DiscreteDistributions.html |
|
|
|
// The negative binomial distribution NegativeBinomialDistribution[n, p] |
|
// is the distribution of the number (k) of failures that occur in a sequence of trials before |
|
// r successes have occurred, where the probability of success in each trial is p. |
|
|
|
// In a sequence of Bernoulli trials or events |
|
// (independent, yes or no, succeed or fail) with success_fraction probability p, |
|
// negative_binomial is the probability that k or fewer failures |
|
// preceed the r th trial's success. |
|
// random variable k is the number of failures (NOT the probability). |
|
|
|
// Negative_binomial distribution is a discrete probability distribution. |
|
// But note that the negative binomial distribution |
|
// (like others including the binomial, Poisson & Bernoulli) |
|
// is strictly defined as a discrete function: only integral values of k are envisaged. |
|
// However because of the method of calculation using a continuous gamma function, |
|
// it is convenient to treat it as if a continous function, |
|
// and permit non-integral values of k. |
|
|
|
// However, by default the policy is to use discrete_quantile_policy. |
|
|
|
// To enforce the strict mathematical model, users should use conversion |
|
// on k outside this function to ensure that k is integral. |
|
|
|
// MATHCAD cumulative negative binomial pnbinom(k, n, p) |
|
|
|
// Implementation note: much greater speed, and perhaps greater accuracy, |
|
// might be achieved for extreme values by using a normal approximation. |
|
// This is NOT been tested or implemented. |
|
|
|
#ifndef BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP |
|
#define BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP |
|
|
|
#include <boost/math/distributions/fwd.hpp> |
|
#include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x) == Ix(a, b). |
|
#include <boost/math/distributions/complement.hpp> // complement. |
|
#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks domain_error & logic_error. |
|
#include <boost/math/special_functions/fpclassify.hpp> // isnan. |
|
#include <boost/math/tools/roots.hpp> // for root finding. |
|
#include <boost/math/distributions/detail/inv_discrete_quantile.hpp> |
|
|
|
#include <boost/type_traits/is_floating_point.hpp> |
|
#include <boost/type_traits/is_integral.hpp> |
|
#include <boost/type_traits/is_same.hpp> |
|
#include <boost/mpl/if.hpp> |
|
|
|
#include <limits> // using std::numeric_limits; |
|
#include <utility> |
|
|
|
#if defined (BOOST_MSVC) |
|
# pragma warning(push) |
|
// This believed not now necessary, so commented out. |
|
//# pragma warning(disable: 4702) // unreachable code. |
|
// in domain_error_imp in error_handling. |
|
#endif |
|
|
|
namespace boost |
|
{ |
|
namespace math |
|
{ |
|
namespace negative_binomial_detail |
|
{ |
|
// Common error checking routines for negative binomial distribution functions: |
|
template <class RealType, class Policy> |
|
inline bool check_successes(const char* function, const RealType& r, RealType* result, const Policy& pol) |
|
{ |
|
if( !(boost::math::isfinite)(r) || (r <= 0) ) |
|
{ |
|
*result = policies::raise_domain_error<RealType>( |
|
function, |
|
"Number of successes argument is %1%, but must be > 0 !", r, pol); |
|
return false; |
|
} |
|
return true; |
|
} |
|
template <class RealType, class Policy> |
|
inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol) |
|
{ |
|
if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) ) |
|
{ |
|
*result = policies::raise_domain_error<RealType>( |
|
function, |
|
"Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol); |
|
return false; |
|
} |
|
return true; |
|
} |
|
template <class RealType, class Policy> |
|
inline bool check_dist(const char* function, const RealType& r, const RealType& p, RealType* result, const Policy& pol) |
|
{ |
|
return check_success_fraction(function, p, result, pol) |
|
&& check_successes(function, r, result, pol); |
|
} |
|
template <class RealType, class Policy> |
|
inline bool check_dist_and_k(const char* function, const RealType& r, const RealType& p, RealType k, RealType* result, const Policy& pol) |
|
{ |
|
if(check_dist(function, r, p, result, pol) == false) |
|
{ |
|
return false; |
|
} |
|
if( !(boost::math::isfinite)(k) || (k < 0) ) |
|
{ // Check k failures. |
|
*result = policies::raise_domain_error<RealType>( |
|
function, |
|
"Number of failures argument is %1%, but must be >= 0 !", k, pol); |
|
return false; |
|
} |
|
return true; |
|
} // Check_dist_and_k |
|
|
|
template <class RealType, class Policy> |
|
inline bool check_dist_and_prob(const char* function, const RealType& r, RealType p, RealType prob, RealType* result, const Policy& pol) |
|
{ |
|
if(check_dist(function, r, p, result, pol) && detail::check_probability(function, prob, result, pol) == false) |
|
{ |
|
return false; |
|
} |
|
return true; |
|
} // check_dist_and_prob |
|
} // namespace negative_binomial_detail |
|
|
|
template <class RealType = double, class Policy = policies::policy<> > |
|
class negative_binomial_distribution |
|
{ |
|
public: |
|
typedef RealType value_type; |
|
typedef Policy policy_type; |
|
|
|
negative_binomial_distribution(RealType r, RealType p) : m_r(r), m_p(p) |
|
{ // Constructor. |
|
RealType result; |
|
negative_binomial_detail::check_dist( |
|
"negative_binomial_distribution<%1%>::negative_binomial_distribution", |
|
m_r, // Check successes r > 0. |
|
m_p, // Check success_fraction 0 <= p <= 1. |
|
&result, Policy()); |
|
} // negative_binomial_distribution constructor. |
|
|
|
// Private data getter class member functions. |
|
RealType success_fraction() const |
|
{ // Probability of success as fraction in range 0 to 1. |
|
return m_p; |
|
} |
|
RealType successes() const |
|
{ // Total number of successes r. |
|
return m_r; |
|
} |
|
|
|
static RealType find_lower_bound_on_p( |
|
RealType trials, |
|
RealType successes, |
|
RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test. |
|
{ |
|
static const char* function = "boost::math::negative_binomial<%1%>::find_lower_bound_on_p"; |
|
RealType result = 0; // of error checks. |
|
RealType failures = trials - successes; |
|
if(false == detail::check_probability(function, alpha, &result, Policy()) |
|
&& negative_binomial_detail::check_dist_and_k( |
|
function, successes, RealType(0), failures, &result, Policy())) |
|
{ |
|
return result; |
|
} |
|
// Use complement ibeta_inv function for lower bound. |
|
// This is adapted from the corresponding binomial formula |
|
// here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm |
|
// This is a Clopper-Pearson interval, and may be overly conservative, |
|
// see also "A Simple Improved Inferential Method for Some |
|
// Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY |
|
// http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf |
|
// |
|
return ibeta_inv(successes, failures + 1, alpha, static_cast<RealType*>(0), Policy()); |
|
} // find_lower_bound_on_p |
|
|
|
static RealType find_upper_bound_on_p( |
|
RealType trials, |
|
RealType successes, |
|
RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test. |
|
{ |
|
static const char* function = "boost::math::negative_binomial<%1%>::find_upper_bound_on_p"; |
|
RealType result = 0; // of error checks. |
|
RealType failures = trials - successes; |
|
if(false == negative_binomial_detail::check_dist_and_k( |
|
function, successes, RealType(0), failures, &result, Policy()) |
|
&& detail::check_probability(function, alpha, &result, Policy())) |
|
{ |
|
return result; |
|
} |
|
if(failures == 0) |
|
return 1; |
|
// Use complement ibetac_inv function for upper bound. |
|
// Note adjusted failures value: *not* failures+1 as usual. |
|
// This is adapted from the corresponding binomial formula |
|
// here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm |
|
// This is a Clopper-Pearson interval, and may be overly conservative, |
|
// see also "A Simple Improved Inferential Method for Some |
|
// Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY |
|
// http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf |
|
// |
|
return ibetac_inv(successes, failures, alpha, static_cast<RealType*>(0), Policy()); |
|
} // find_upper_bound_on_p |
|
|
|
// Estimate number of trials : |
|
// "How many trials do I need to be P% sure of seeing k or fewer failures?" |
|
|
|
static RealType find_minimum_number_of_trials( |
|
RealType k, // number of failures (k >= 0). |
|
RealType p, // success fraction 0 <= p <= 1. |
|
RealType alpha) // risk level threshold 0 <= alpha <= 1. |
|
{ |
|
static const char* function = "boost::math::negative_binomial<%1%>::find_minimum_number_of_trials"; |
|
// Error checks: |
|
RealType result = 0; |
|
if(false == negative_binomial_detail::check_dist_and_k( |
|
function, RealType(1), p, k, &result, Policy()) |
|
&& detail::check_probability(function, alpha, &result, Policy())) |
|
{ return result; } |
|
|
|
result = ibeta_inva(k + 1, p, alpha, Policy()); // returns n - k |
|
return result + k; |
|
} // RealType find_number_of_failures |
|
|
|
static RealType find_maximum_number_of_trials( |
|
RealType k, // number of failures (k >= 0). |
|
RealType p, // success fraction 0 <= p <= 1. |
|
RealType alpha) // risk level threshold 0 <= alpha <= 1. |
|
{ |
|
static const char* function = "boost::math::negative_binomial<%1%>::find_maximum_number_of_trials"; |
|
// Error checks: |
|
RealType result = 0; |
|
if(false == negative_binomial_detail::check_dist_and_k( |
|
function, RealType(1), p, k, &result, Policy()) |
|
&& detail::check_probability(function, alpha, &result, Policy())) |
|
{ return result; } |
|
|
|
result = ibetac_inva(k + 1, p, alpha, Policy()); // returns n - k |
|
return result + k; |
|
} // RealType find_number_of_trials complemented |
|
|
|
private: |
|
RealType m_r; // successes. |
|
RealType m_p; // success_fraction |
|
}; // template <class RealType, class Policy> class negative_binomial_distribution |
|
|
|
typedef negative_binomial_distribution<double> negative_binomial; // Reserved name of type double. |
|
|
|
template <class RealType, class Policy> |
|
inline const std::pair<RealType, RealType> range(const negative_binomial_distribution<RealType, Policy>& /* dist */) |
|
{ // Range of permissible values for random variable k. |
|
using boost::math::tools::max_value; |
|
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer? |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline const std::pair<RealType, RealType> support(const negative_binomial_distribution<RealType, Policy>& /* dist */) |
|
{ // Range of supported values for random variable k. |
|
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. |
|
using boost::math::tools::max_value; |
|
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer? |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline RealType mean(const negative_binomial_distribution<RealType, Policy>& dist) |
|
{ // Mean of Negative Binomial distribution = r(1-p)/p. |
|
return dist.successes() * (1 - dist.success_fraction() ) / dist.success_fraction(); |
|
} // mean |
|
|
|
//template <class RealType, class Policy> |
|
//inline RealType median(const negative_binomial_distribution<RealType, Policy>& dist) |
|
//{ // Median of negative_binomial_distribution is not defined. |
|
// return policies::raise_domain_error<RealType>(BOOST_CURRENT_FUNCTION, "Median is not implemented, result is %1%!", std::numeric_limits<RealType>::quiet_NaN()); |
|
//} // median |
|
// Now implemented via quantile(half) in derived accessors. |
|
|
|
template <class RealType, class Policy> |
|
inline RealType mode(const negative_binomial_distribution<RealType, Policy>& dist) |
|
{ // Mode of Negative Binomial distribution = floor[(r-1) * (1 - p)/p] |
|
BOOST_MATH_STD_USING // ADL of std functions. |
|
return floor((dist.successes() -1) * (1 - dist.success_fraction()) / dist.success_fraction()); |
|
} // mode |
|
|
|
template <class RealType, class Policy> |
|
inline RealType skewness(const negative_binomial_distribution<RealType, Policy>& dist) |
|
{ // skewness of Negative Binomial distribution = 2-p / (sqrt(r(1-p)) |
|
BOOST_MATH_STD_USING // ADL of std functions. |
|
RealType p = dist.success_fraction(); |
|
RealType r = dist.successes(); |
|
|
|
return (2 - p) / |
|
sqrt(r * (1 - p)); |
|
} // skewness |
|
|
|
template <class RealType, class Policy> |
|
inline RealType kurtosis(const negative_binomial_distribution<RealType, Policy>& dist) |
|
{ // kurtosis of Negative Binomial distribution |
|
// http://en.wikipedia.org/wiki/Negative_binomial is kurtosis_excess so add 3 |
|
RealType p = dist.success_fraction(); |
|
RealType r = dist.successes(); |
|
return 3 + (6 / r) + ((p * p) / (r * (1 - p))); |
|
} // kurtosis |
|
|
|
template <class RealType, class Policy> |
|
inline RealType kurtosis_excess(const negative_binomial_distribution<RealType, Policy>& dist) |
|
{ // kurtosis excess of Negative Binomial distribution |
|
// http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess |
|
RealType p = dist.success_fraction(); |
|
RealType r = dist.successes(); |
|
return (6 - p * (6-p)) / (r * (1-p)); |
|
} // kurtosis_excess |
|
|
|
template <class RealType, class Policy> |
|
inline RealType variance(const negative_binomial_distribution<RealType, Policy>& dist) |
|
{ // Variance of Binomial distribution = r (1-p) / p^2. |
|
return dist.successes() * (1 - dist.success_fraction()) |
|
/ (dist.success_fraction() * dist.success_fraction()); |
|
} // variance |
|
|
|
// RealType standard_deviation(const negative_binomial_distribution<RealType, Policy>& dist) |
|
// standard_deviation provided by derived accessors. |
|
// RealType hazard(const negative_binomial_distribution<RealType, Policy>& dist) |
|
// hazard of Negative Binomial distribution provided by derived accessors. |
|
// RealType chf(const negative_binomial_distribution<RealType, Policy>& dist) |
|
// chf of Negative Binomial distribution provided by derived accessors. |
|
|
|
template <class RealType, class Policy> |
|
inline RealType pdf(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& k) |
|
{ // Probability Density/Mass Function. |
|
BOOST_FPU_EXCEPTION_GUARD |
|
|
|
static const char* function = "boost::math::pdf(const negative_binomial_distribution<%1%>&, %1%)"; |
|
|
|
RealType r = dist.successes(); |
|
RealType p = dist.success_fraction(); |
|
RealType result = 0; |
|
if(false == negative_binomial_detail::check_dist_and_k( |
|
function, |
|
r, |
|
dist.success_fraction(), |
|
k, |
|
&result, Policy())) |
|
{ |
|
return result; |
|
} |
|
|
|
result = (p/(r + k)) * ibeta_derivative(r, static_cast<RealType>(k+1), p, Policy()); |
|
// Equivalent to: |
|
// return exp(lgamma(r + k) - lgamma(r) - lgamma(k+1)) * pow(p, r) * pow((1-p), k); |
|
return result; |
|
} // negative_binomial_pdf |
|
|
|
template <class RealType, class Policy> |
|
inline RealType cdf(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& k) |
|
{ // Cumulative Distribution Function of Negative Binomial. |
|
static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)"; |
|
using boost::math::ibeta; // Regularized incomplete beta function. |
|
// k argument may be integral, signed, or unsigned, or floating point. |
|
// If necessary, it has already been promoted from an integral type. |
|
RealType p = dist.success_fraction(); |
|
RealType r = dist.successes(); |
|
// Error check: |
|
RealType result = 0; |
|
if(false == negative_binomial_detail::check_dist_and_k( |
|
function, |
|
r, |
|
dist.success_fraction(), |
|
k, |
|
&result, Policy())) |
|
{ |
|
return result; |
|
} |
|
|
|
RealType probability = ibeta(r, static_cast<RealType>(k+1), p, Policy()); |
|
// Ip(r, k+1) = ibeta(r, k+1, p) |
|
return probability; |
|
} // cdf Cumulative Distribution Function Negative Binomial. |
|
|
|
template <class RealType, class Policy> |
|
inline RealType cdf(const complemented2_type<negative_binomial_distribution<RealType, Policy>, RealType>& c) |
|
{ // Complemented Cumulative Distribution Function Negative Binomial. |
|
|
|
static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)"; |
|
using boost::math::ibetac; // Regularized incomplete beta function complement. |
|
// k argument may be integral, signed, or unsigned, or floating point. |
|
// If necessary, it has already been promoted from an integral type. |
|
RealType const& k = c.param; |
|
negative_binomial_distribution<RealType, Policy> const& dist = c.dist; |
|
RealType p = dist.success_fraction(); |
|
RealType r = dist.successes(); |
|
// Error check: |
|
RealType result = 0; |
|
if(false == negative_binomial_detail::check_dist_and_k( |
|
function, |
|
r, |
|
p, |
|
k, |
|
&result, Policy())) |
|
{ |
|
return result; |
|
} |
|
// Calculate cdf negative binomial using the incomplete beta function. |
|
// Use of ibeta here prevents cancellation errors in calculating |
|
// 1-p if p is very small, perhaps smaller than machine epsilon. |
|
// Ip(k+1, r) = ibetac(r, k+1, p) |
|
// constrain_probability here? |
|
RealType probability = ibetac(r, static_cast<RealType>(k+1), p, Policy()); |
|
// Numerical errors might cause probability to be slightly outside the range < 0 or > 1. |
|
// This might cause trouble downstream, so warn, possibly throw exception, but constrain to the limits. |
|
return probability; |
|
} // cdf Cumulative Distribution Function Negative Binomial. |
|
|
|
template <class RealType, class Policy> |
|
inline RealType quantile(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& P) |
|
{ // Quantile, percentile/100 or Percent Point Negative Binomial function. |
|
// Return the number of expected failures k for a given probability p. |
|
|
|
// Inverse cumulative Distribution Function or Quantile (percentile / 100) of negative_binomial Probability. |
|
// MAthCAD pnbinom return smallest k such that negative_binomial(k, n, p) >= probability. |
|
// k argument may be integral, signed, or unsigned, or floating point. |
|
// BUT Cephes/CodeCogs says: finds argument p (0 to 1) such that cdf(k, n, p) = y |
|
static const char* function = "boost::math::quantile(const negative_binomial_distribution<%1%>&, %1%)"; |
|
BOOST_MATH_STD_USING // ADL of std functions. |
|
|
|
RealType p = dist.success_fraction(); |
|
RealType r = dist.successes(); |
|
// Check dist and P. |
|
RealType result = 0; |
|
if(false == negative_binomial_detail::check_dist_and_prob |
|
(function, r, p, P, &result, Policy())) |
|
{ |
|
return result; |
|
} |
|
|
|
// Special cases. |
|
if (P == 1) |
|
{ // Would need +infinity failures for total confidence. |
|
result = policies::raise_overflow_error<RealType>( |
|
function, |
|
"Probability argument is 1, which implies infinite failures !", Policy()); |
|
return result; |
|
// usually means return +std::numeric_limits<RealType>::infinity(); |
|
// unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR |
|
} |
|
if (P == 0) |
|
{ // No failures are expected if P = 0. |
|
return 0; // Total trials will be just dist.successes. |
|
} |
|
if (P <= pow(dist.success_fraction(), dist.successes())) |
|
{ // p <= pdf(dist, 0) == cdf(dist, 0) |
|
return 0; |
|
} |
|
/* |
|
// Calculate quantile of negative_binomial using the inverse incomplete beta function. |
|
using boost::math::ibeta_invb; |
|
return ibeta_invb(r, p, P, Policy()) - 1; // |
|
*/ |
|
RealType guess = 0; |
|
RealType factor = 5; |
|
if(r * r * r * P * p > 0.005) |
|
guess = detail::inverse_negative_binomial_cornish_fisher(r, p, RealType(1-p), P, RealType(1-P), Policy()); |
|
|
|
if(guess < 10) |
|
{ |
|
// |
|
// Cornish-Fisher Negative binomial approximation not accurate in this area: |
|
// |
|
guess = (std::min)(RealType(r * 2), RealType(10)); |
|
} |
|
else |
|
factor = (1-P < sqrt(tools::epsilon<RealType>())) ? 2 : (guess < 20 ? 1.2f : 1.1f); |
|
BOOST_MATH_INSTRUMENT_CODE("guess = " << guess); |
|
// |
|
// Max iterations permitted: |
|
// |
|
boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); |
|
typedef typename Policy::discrete_quantile_type discrete_type; |
|
return detail::inverse_discrete_quantile( |
|
dist, |
|
P, |
|
1-P, |
|
guess, |
|
factor, |
|
RealType(1), |
|
discrete_type(), |
|
max_iter); |
|
} // RealType quantile(const negative_binomial_distribution dist, p) |
|
|
|
template <class RealType, class Policy> |
|
inline RealType quantile(const complemented2_type<negative_binomial_distribution<RealType, Policy>, RealType>& c) |
|
{ // Quantile or Percent Point Binomial function. |
|
// Return the number of expected failures k for a given |
|
// complement of the probability Q = 1 - P. |
|
static const char* function = "boost::math::quantile(const negative_binomial_distribution<%1%>&, %1%)"; |
|
BOOST_MATH_STD_USING |
|
|
|
// Error checks: |
|
RealType Q = c.param; |
|
const negative_binomial_distribution<RealType, Policy>& dist = c.dist; |
|
RealType p = dist.success_fraction(); |
|
RealType r = dist.successes(); |
|
RealType result = 0; |
|
if(false == negative_binomial_detail::check_dist_and_prob( |
|
function, |
|
r, |
|
p, |
|
Q, |
|
&result, Policy())) |
|
{ |
|
return result; |
|
} |
|
|
|
// Special cases: |
|
// |
|
if(Q == 1) |
|
{ // There may actually be no answer to this question, |
|
// since the probability of zero failures may be non-zero, |
|
return 0; // but zero is the best we can do: |
|
} |
|
if (-Q <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy())) |
|
{ // q <= cdf(complement(dist, 0)) == pdf(dist, 0) |
|
return 0; // |
|
} |
|
if(Q == 0) |
|
{ // Probability 1 - Q == 1 so infinite failures to achieve certainty. |
|
// Would need +infinity failures for total confidence. |
|
result = policies::raise_overflow_error<RealType>( |
|
function, |
|
"Probability argument complement is 0, which implies infinite failures !", Policy()); |
|
return result; |
|
// usually means return +std::numeric_limits<RealType>::infinity(); |
|
// unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR |
|
} |
|
//return ibetac_invb(r, p, Q, Policy()) -1; |
|
RealType guess = 0; |
|
RealType factor = 5; |
|
if(r * r * r * (1-Q) * p > 0.005) |
|
guess = detail::inverse_negative_binomial_cornish_fisher(r, p, RealType(1-p), RealType(1-Q), Q, Policy()); |
|
|
|
if(guess < 10) |
|
{ |
|
// |
|
// Cornish-Fisher Negative binomial approximation not accurate in this area: |
|
// |
|
guess = (std::min)(RealType(r * 2), RealType(10)); |
|
} |
|
else |
|
factor = (Q < sqrt(tools::epsilon<RealType>())) ? 2 : (guess < 20 ? 1.2f : 1.1f); |
|
BOOST_MATH_INSTRUMENT_CODE("guess = " << guess); |
|
// |
|
// Max iterations permitted: |
|
// |
|
boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); |
|
typedef typename Policy::discrete_quantile_type discrete_type; |
|
return detail::inverse_discrete_quantile( |
|
dist, |
|
1-Q, |
|
Q, |
|
guess, |
|
factor, |
|
RealType(1), |
|
discrete_type(), |
|
max_iter); |
|
} // quantile complement |
|
|
|
} // namespace math |
|
} // namespace boost |
|
|
|
// This include must be at the end, *after* the accessors |
|
// for this distribution have been defined, in order to |
|
// keep compilers that support two-phase lookup happy. |
|
#include <boost/math/distributions/detail/derived_accessors.hpp> |
|
|
|
#if defined (BOOST_MSVC) |
|
# pragma warning(pop) |
|
#endif |
|
|
|
#endif // BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP
|
|
|