You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
516 lines
21 KiB
516 lines
21 KiB
// boost\math\distributions\geometric.hpp |
|
|
|
// Copyright John Maddock 2010. |
|
// Copyright Paul A. Bristow 2010. |
|
|
|
// Use, modification and distribution are subject to the |
|
// Boost Software License, Version 1.0. |
|
// (See accompanying file LICENSE_1_0.txt |
|
// or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
|
|
// geometric distribution is a discrete probability distribution. |
|
// It expresses the probability distribution of the number (k) of |
|
// events, occurrences, failures or arrivals before the first success. |
|
// supported on the set {0, 1, 2, 3...} |
|
|
|
// Note that the set includes zero (unlike some definitions that start at one). |
|
|
|
// The random variate k is the number of events, occurrences or arrivals. |
|
// k argument may be integral, signed, or unsigned, or floating point. |
|
// If necessary, it has already been promoted from an integral type. |
|
|
|
// Note that the geometric distribution |
|
// (like others including the binomial, geometric & Bernoulli) |
|
// is strictly defined as a discrete function: |
|
// only integral values of k are envisaged. |
|
// However because the method of calculation uses a continuous gamma function, |
|
// it is convenient to treat it as if a continous function, |
|
// and permit non-integral values of k. |
|
// To enforce the strict mathematical model, users should use floor or ceil functions |
|
// on k outside this function to ensure that k is integral. |
|
|
|
// See http://en.wikipedia.org/wiki/geometric_distribution |
|
// http://documents.wolfram.com/v5/Add-onsLinks/StandardPackages/Statistics/DiscreteDistributions.html |
|
// http://mathworld.wolfram.com/GeometricDistribution.html |
|
|
|
#ifndef BOOST_MATH_SPECIAL_GEOMETRIC_HPP |
|
#define BOOST_MATH_SPECIAL_GEOMETRIC_HPP |
|
|
|
#include <boost/math/distributions/fwd.hpp> |
|
#include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x) == Ix(a, b). |
|
#include <boost/math/distributions/complement.hpp> // complement. |
|
#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks domain_error & logic_error. |
|
#include <boost/math/special_functions/fpclassify.hpp> // isnan. |
|
#include <boost/math/tools/roots.hpp> // for root finding. |
|
#include <boost/math/distributions/detail/inv_discrete_quantile.hpp> |
|
|
|
#include <boost/type_traits/is_floating_point.hpp> |
|
#include <boost/type_traits/is_integral.hpp> |
|
#include <boost/type_traits/is_same.hpp> |
|
#include <boost/mpl/if.hpp> |
|
|
|
#include <limits> // using std::numeric_limits; |
|
#include <utility> |
|
|
|
#if defined (BOOST_MSVC) |
|
# pragma warning(push) |
|
// This believed not now necessary, so commented out. |
|
//# pragma warning(disable: 4702) // unreachable code. |
|
// in domain_error_imp in error_handling. |
|
#endif |
|
|
|
namespace boost |
|
{ |
|
namespace math |
|
{ |
|
namespace geometric_detail |
|
{ |
|
// Common error checking routines for geometric distribution function: |
|
template <class RealType, class Policy> |
|
inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol) |
|
{ |
|
if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) ) |
|
{ |
|
*result = policies::raise_domain_error<RealType>( |
|
function, |
|
"Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline bool check_dist(const char* function, const RealType& p, RealType* result, const Policy& pol) |
|
{ |
|
return check_success_fraction(function, p, result, pol); |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline bool check_dist_and_k(const char* function, const RealType& p, RealType k, RealType* result, const Policy& pol) |
|
{ |
|
if(check_dist(function, p, result, pol) == false) |
|
{ |
|
return false; |
|
} |
|
if( !(boost::math::isfinite)(k) || (k < 0) ) |
|
{ // Check k failures. |
|
*result = policies::raise_domain_error<RealType>( |
|
function, |
|
"Number of failures argument is %1%, but must be >= 0 !", k, pol); |
|
return false; |
|
} |
|
return true; |
|
} // Check_dist_and_k |
|
|
|
template <class RealType, class Policy> |
|
inline bool check_dist_and_prob(const char* function, RealType p, RealType prob, RealType* result, const Policy& pol) |
|
{ |
|
if(check_dist(function, p, result, pol) && detail::check_probability(function, prob, result, pol) == false) |
|
{ |
|
return false; |
|
} |
|
return true; |
|
} // check_dist_and_prob |
|
} // namespace geometric_detail |
|
|
|
template <class RealType = double, class Policy = policies::policy<> > |
|
class geometric_distribution |
|
{ |
|
public: |
|
typedef RealType value_type; |
|
typedef Policy policy_type; |
|
|
|
geometric_distribution(RealType p) : m_p(p) |
|
{ // Constructor stores success_fraction p. |
|
RealType result; |
|
geometric_detail::check_dist( |
|
"geometric_distribution<%1%>::geometric_distribution", |
|
m_p, // Check success_fraction 0 <= p <= 1. |
|
&result, Policy()); |
|
} // geometric_distribution constructor. |
|
|
|
// Private data getter class member functions. |
|
RealType success_fraction() const |
|
{ // Probability of success as fraction in range 0 to 1. |
|
return m_p; |
|
} |
|
RealType successes() const |
|
{ // Total number of successes r = 1 (for compatibility with negative binomial?). |
|
return 1; |
|
} |
|
|
|
// Parameter estimation. |
|
// (These are copies of negative_binomial distribution with successes = 1). |
|
static RealType find_lower_bound_on_p( |
|
RealType trials, |
|
RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test. |
|
{ |
|
static const char* function = "boost::math::geometric<%1%>::find_lower_bound_on_p"; |
|
RealType result = 0; // of error checks. |
|
RealType successes = 1; |
|
RealType failures = trials - successes; |
|
if(false == detail::check_probability(function, alpha, &result, Policy()) |
|
&& geometric_detail::check_dist_and_k( |
|
function, RealType(0), failures, &result, Policy())) |
|
{ |
|
return result; |
|
} |
|
// Use complement ibeta_inv function for lower bound. |
|
// This is adapted from the corresponding binomial formula |
|
// here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm |
|
// This is a Clopper-Pearson interval, and may be overly conservative, |
|
// see also "A Simple Improved Inferential Method for Some |
|
// Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY |
|
// http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf |
|
// |
|
return ibeta_inv(successes, failures + 1, alpha, static_cast<RealType*>(0), Policy()); |
|
} // find_lower_bound_on_p |
|
|
|
static RealType find_upper_bound_on_p( |
|
RealType trials, |
|
RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test. |
|
{ |
|
static const char* function = "boost::math::geometric<%1%>::find_upper_bound_on_p"; |
|
RealType result = 0; // of error checks. |
|
RealType successes = 1; |
|
RealType failures = trials - successes; |
|
if(false == geometric_detail::check_dist_and_k( |
|
function, RealType(0), failures, &result, Policy()) |
|
&& detail::check_probability(function, alpha, &result, Policy())) |
|
{ |
|
return result; |
|
} |
|
if(failures == 0) |
|
{ |
|
return 1; |
|
}// Use complement ibetac_inv function for upper bound. |
|
// Note adjusted failures value: *not* failures+1 as usual. |
|
// This is adapted from the corresponding binomial formula |
|
// here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm |
|
// This is a Clopper-Pearson interval, and may be overly conservative, |
|
// see also "A Simple Improved Inferential Method for Some |
|
// Discrete Distributions" Yong CAI and K. Krishnamoorthy |
|
// http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf |
|
// |
|
return ibetac_inv(successes, failures, alpha, static_cast<RealType*>(0), Policy()); |
|
} // find_upper_bound_on_p |
|
|
|
// Estimate number of trials : |
|
// "How many trials do I need to be P% sure of seeing k or fewer failures?" |
|
|
|
static RealType find_minimum_number_of_trials( |
|
RealType k, // number of failures (k >= 0). |
|
RealType p, // success fraction 0 <= p <= 1. |
|
RealType alpha) // risk level threshold 0 <= alpha <= 1. |
|
{ |
|
static const char* function = "boost::math::geometric<%1%>::find_minimum_number_of_trials"; |
|
// Error checks: |
|
RealType result = 0; |
|
if(false == geometric_detail::check_dist_and_k( |
|
function, p, k, &result, Policy()) |
|
&& detail::check_probability(function, alpha, &result, Policy())) |
|
{ |
|
return result; |
|
} |
|
result = ibeta_inva(k + 1, p, alpha, Policy()); // returns n - k |
|
return result + k; |
|
} // RealType find_number_of_failures |
|
|
|
static RealType find_maximum_number_of_trials( |
|
RealType k, // number of failures (k >= 0). |
|
RealType p, // success fraction 0 <= p <= 1. |
|
RealType alpha) // risk level threshold 0 <= alpha <= 1. |
|
{ |
|
static const char* function = "boost::math::geometric<%1%>::find_maximum_number_of_trials"; |
|
// Error checks: |
|
RealType result = 0; |
|
if(false == geometric_detail::check_dist_and_k( |
|
function, p, k, &result, Policy()) |
|
&& detail::check_probability(function, alpha, &result, Policy())) |
|
{ |
|
return result; |
|
} |
|
result = ibetac_inva(k + 1, p, alpha, Policy()); // returns n - k |
|
return result + k; |
|
} // RealType find_number_of_trials complemented |
|
|
|
private: |
|
//RealType m_r; // successes fixed at unity. |
|
RealType m_p; // success_fraction |
|
}; // template <class RealType, class Policy> class geometric_distribution |
|
|
|
typedef geometric_distribution<double> geometric; // Reserved name of type double. |
|
|
|
template <class RealType, class Policy> |
|
inline const std::pair<RealType, RealType> range(const geometric_distribution<RealType, Policy>& /* dist */) |
|
{ // Range of permissible values for random variable k. |
|
using boost::math::tools::max_value; |
|
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer? |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline const std::pair<RealType, RealType> support(const geometric_distribution<RealType, Policy>& /* dist */) |
|
{ // Range of supported values for random variable k. |
|
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. |
|
using boost::math::tools::max_value; |
|
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer? |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline RealType mean(const geometric_distribution<RealType, Policy>& dist) |
|
{ // Mean of geometric distribution = (1-p)/p. |
|
return (1 - dist.success_fraction() ) / dist.success_fraction(); |
|
} // mean |
|
|
|
// median implemented via quantile(half) in derived accessors. |
|
|
|
template <class RealType, class Policy> |
|
inline RealType mode(const geometric_distribution<RealType, Policy>&) |
|
{ // Mode of geometric distribution = zero. |
|
BOOST_MATH_STD_USING // ADL of std functions. |
|
return 0; |
|
} // mode |
|
|
|
template <class RealType, class Policy> |
|
inline RealType variance(const geometric_distribution<RealType, Policy>& dist) |
|
{ // Variance of Binomial distribution = (1-p) / p^2. |
|
return (1 - dist.success_fraction()) |
|
/ (dist.success_fraction() * dist.success_fraction()); |
|
} // variance |
|
|
|
template <class RealType, class Policy> |
|
inline RealType skewness(const geometric_distribution<RealType, Policy>& dist) |
|
{ // skewness of geometric distribution = 2-p / (sqrt(r(1-p)) |
|
BOOST_MATH_STD_USING // ADL of std functions. |
|
RealType p = dist.success_fraction(); |
|
return (2 - p) / sqrt(1 - p); |
|
} // skewness |
|
|
|
template <class RealType, class Policy> |
|
inline RealType kurtosis(const geometric_distribution<RealType, Policy>& dist) |
|
{ // kurtosis of geometric distribution |
|
// http://en.wikipedia.org/wiki/geometric is kurtosis_excess so add 3 |
|
RealType p = dist.success_fraction(); |
|
return 3 + (p*p - 6*p + 6) / (1 - p); |
|
} // kurtosis |
|
|
|
template <class RealType, class Policy> |
|
inline RealType kurtosis_excess(const geometric_distribution<RealType, Policy>& dist) |
|
{ // kurtosis excess of geometric distribution |
|
// http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess |
|
RealType p = dist.success_fraction(); |
|
return (p*p - 6*p + 6) / (1 - p); |
|
} // kurtosis_excess |
|
|
|
// RealType standard_deviation(const geometric_distribution<RealType, Policy>& dist) |
|
// standard_deviation provided by derived accessors. |
|
// RealType hazard(const geometric_distribution<RealType, Policy>& dist) |
|
// hazard of geometric distribution provided by derived accessors. |
|
// RealType chf(const geometric_distribution<RealType, Policy>& dist) |
|
// chf of geometric distribution provided by derived accessors. |
|
|
|
template <class RealType, class Policy> |
|
inline RealType pdf(const geometric_distribution<RealType, Policy>& dist, const RealType& k) |
|
{ // Probability Density/Mass Function. |
|
BOOST_FPU_EXCEPTION_GUARD |
|
BOOST_MATH_STD_USING // For ADL of math functions. |
|
static const char* function = "boost::math::pdf(const geometric_distribution<%1%>&, %1%)"; |
|
|
|
RealType p = dist.success_fraction(); |
|
RealType result = 0; |
|
if(false == geometric_detail::check_dist_and_k( |
|
function, |
|
p, |
|
k, |
|
&result, Policy())) |
|
{ |
|
return result; |
|
} |
|
if (k == 0) |
|
{ |
|
return p; // success_fraction |
|
} |
|
RealType q = 1 - p; // Inaccurate for small p? |
|
// So try to avoid inaccuracy for large or small p. |
|
// but has little effect > last significant bit. |
|
//cout << "p * pow(q, k) " << result << endl; // seems best whatever p |
|
//cout << "exp(p * k * log1p(-p)) " << p * exp(k * log1p(-p)) << endl; |
|
//if (p < 0.5) |
|
//{ |
|
// result = p * pow(q, k); |
|
//} |
|
//else |
|
//{ |
|
// result = p * exp(k * log1p(-p)); |
|
//} |
|
result = p * pow(q, k); |
|
return result; |
|
} // geometric_pdf |
|
|
|
template <class RealType, class Policy> |
|
inline RealType cdf(const geometric_distribution<RealType, Policy>& dist, const RealType& k) |
|
{ // Cumulative Distribution Function of geometric. |
|
static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)"; |
|
|
|
// k argument may be integral, signed, or unsigned, or floating point. |
|
// If necessary, it has already been promoted from an integral type. |
|
RealType p = dist.success_fraction(); |
|
// Error check: |
|
RealType result = 0; |
|
if(false == geometric_detail::check_dist_and_k( |
|
function, |
|
p, |
|
k, |
|
&result, Policy())) |
|
{ |
|
return result; |
|
} |
|
if(k == 0) |
|
{ |
|
return p; // success_fraction |
|
} |
|
//RealType q = 1 - p; // Bad for small p |
|
//RealType probability = 1 - std::pow(q, k+1); |
|
|
|
RealType z = boost::math::log1p(-p) * (k+1); |
|
RealType probability = -boost::math::expm1(z); |
|
|
|
return probability; |
|
} // cdf Cumulative Distribution Function geometric. |
|
|
|
template <class RealType, class Policy> |
|
inline RealType cdf(const complemented2_type<geometric_distribution<RealType, Policy>, RealType>& c) |
|
{ // Complemented Cumulative Distribution Function geometric. |
|
BOOST_MATH_STD_USING |
|
static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)"; |
|
// k argument may be integral, signed, or unsigned, or floating point. |
|
// If necessary, it has already been promoted from an integral type. |
|
RealType const& k = c.param; |
|
geometric_distribution<RealType, Policy> const& dist = c.dist; |
|
RealType p = dist.success_fraction(); |
|
// Error check: |
|
RealType result = 0; |
|
if(false == geometric_detail::check_dist_and_k( |
|
function, |
|
p, |
|
k, |
|
&result, Policy())) |
|
{ |
|
return result; |
|
} |
|
RealType z = boost::math::log1p(-p) * (k+1); |
|
RealType probability = exp(z); |
|
return probability; |
|
} // cdf Complemented Cumulative Distribution Function geometric. |
|
|
|
template <class RealType, class Policy> |
|
inline RealType quantile(const geometric_distribution<RealType, Policy>& dist, const RealType& x) |
|
{ // Quantile, percentile/100 or Percent Point geometric function. |
|
// Return the number of expected failures k for a given probability p. |
|
|
|
// Inverse cumulative Distribution Function or Quantile (percentile / 100) of geometric Probability. |
|
// k argument may be integral, signed, or unsigned, or floating point. |
|
|
|
static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)"; |
|
BOOST_MATH_STD_USING // ADL of std functions. |
|
|
|
RealType success_fraction = dist.success_fraction(); |
|
// Check dist and x. |
|
RealType result = 0; |
|
if(false == geometric_detail::check_dist_and_prob |
|
(function, success_fraction, x, &result, Policy())) |
|
{ |
|
return result; |
|
} |
|
|
|
// Special cases. |
|
if (x == 1) |
|
{ // Would need +infinity failures for total confidence. |
|
result = policies::raise_overflow_error<RealType>( |
|
function, |
|
"Probability argument is 1, which implies infinite failures !", Policy()); |
|
return result; |
|
// usually means return +std::numeric_limits<RealType>::infinity(); |
|
// unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR |
|
} |
|
if (x == 0) |
|
{ // No failures are expected if P = 0. |
|
return 0; // Total trials will be just dist.successes. |
|
} |
|
// if (P <= pow(dist.success_fraction(), 1)) |
|
if (x <= success_fraction) |
|
{ // p <= pdf(dist, 0) == cdf(dist, 0) |
|
return 0; |
|
} |
|
if (x == 1) |
|
{ |
|
return 0; |
|
} |
|
|
|
// log(1-x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small |
|
result = boost::math::log1p(-x) / boost::math::log1p(-success_fraction) -1; |
|
// Subtract a few epsilons here too? |
|
// to make sure it doesn't slip over, so ceil would be one too many. |
|
return result; |
|
} // RealType quantile(const geometric_distribution dist, p) |
|
|
|
template <class RealType, class Policy> |
|
inline RealType quantile(const complemented2_type<geometric_distribution<RealType, Policy>, RealType>& c) |
|
{ // Quantile or Percent Point Binomial function. |
|
// Return the number of expected failures k for a given |
|
// complement of the probability Q = 1 - P. |
|
static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)"; |
|
BOOST_MATH_STD_USING |
|
// Error checks: |
|
RealType x = c.param; |
|
const geometric_distribution<RealType, Policy>& dist = c.dist; |
|
RealType success_fraction = dist.success_fraction(); |
|
RealType result = 0; |
|
if(false == geometric_detail::check_dist_and_prob( |
|
function, |
|
success_fraction, |
|
x, |
|
&result, Policy())) |
|
{ |
|
return result; |
|
} |
|
|
|
// Special cases: |
|
if(x == 1) |
|
{ // There may actually be no answer to this question, |
|
// since the probability of zero failures may be non-zero, |
|
return 0; // but zero is the best we can do: |
|
} |
|
if (-x <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy())) |
|
{ // q <= cdf(complement(dist, 0)) == pdf(dist, 0) |
|
return 0; // |
|
} |
|
if(x == 0) |
|
{ // Probability 1 - Q == 1 so infinite failures to achieve certainty. |
|
// Would need +infinity failures for total confidence. |
|
result = policies::raise_overflow_error<RealType>( |
|
function, |
|
"Probability argument complement is 0, which implies infinite failures !", Policy()); |
|
return result; |
|
// usually means return +std::numeric_limits<RealType>::infinity(); |
|
// unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR |
|
} |
|
// log(x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small |
|
result = log(x) / boost::math::log1p(-success_fraction) -1; |
|
return result; |
|
|
|
} // quantile complement |
|
|
|
} // namespace math |
|
} // namespace boost |
|
|
|
// This include must be at the end, *after* the accessors |
|
// for this distribution have been defined, in order to |
|
// keep compilers that support two-phase lookup happy. |
|
#include <boost/math/distributions/detail/derived_accessors.hpp> |
|
|
|
#if defined (BOOST_MSVC) |
|
# pragma warning(pop) |
|
#endif |
|
|
|
#endif // BOOST_MATH_SPECIAL_GEOMETRIC_HPP
|
|
|