You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
488 lines
15 KiB
488 lines
15 KiB
// Copyright 2008 Gautam Sewani |
|
// Copyright 2008 John Maddock |
|
// |
|
// Use, modification and distribution are subject to the |
|
// Boost Software License, Version 1.0. |
|
// (See accompanying file LICENSE_1_0.txt |
|
// or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
|
|
#ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_PDF_HPP |
|
#define BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_PDF_HPP |
|
|
|
#include <boost/math/constants/constants.hpp> |
|
#include <boost/math/special_functions/lanczos.hpp> |
|
#include <boost/math/special_functions/gamma.hpp> |
|
#include <boost/math/special_functions/pow.hpp> |
|
#include <boost/math/special_functions/prime.hpp> |
|
#include <boost/math/policies/error_handling.hpp> |
|
|
|
#ifdef BOOST_MATH_INSTRUMENT |
|
#include <typeinfo> |
|
#endif |
|
|
|
namespace boost{ namespace math{ namespace detail{ |
|
|
|
template <class T, class Func> |
|
void bubble_down_one(T* first, T* last, Func f) |
|
{ |
|
using std::swap; |
|
T* next = first; |
|
++next; |
|
while((next != last) && (!f(*first, *next))) |
|
{ |
|
swap(*first, *next); |
|
++first; |
|
++next; |
|
} |
|
} |
|
|
|
template <class T> |
|
struct sort_functor |
|
{ |
|
sort_functor(const T* exponents) : m_exponents(exponents){} |
|
bool operator()(int i, int j) |
|
{ |
|
return m_exponents[i] > m_exponents[j]; |
|
} |
|
private: |
|
const T* m_exponents; |
|
}; |
|
|
|
template <class T, class Lanczos, class Policy> |
|
T hypergeometric_pdf_lanczos_imp(T /*dummy*/, unsigned x, unsigned r, unsigned n, unsigned N, const Lanczos&, const Policy&) |
|
{ |
|
BOOST_MATH_STD_USING |
|
|
|
BOOST_MATH_INSTRUMENT_FPU |
|
BOOST_MATH_INSTRUMENT_VARIABLE(x); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(r); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(n); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(N); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(typeid(Lanczos).name()); |
|
|
|
T bases[9] = { |
|
T(n) + Lanczos::g() + 0.5f, |
|
T(r) + Lanczos::g() + 0.5f, |
|
T(N - n) + Lanczos::g() + 0.5f, |
|
T(N - r) + Lanczos::g() + 0.5f, |
|
1 / (T(N) + Lanczos::g() + 0.5f), |
|
1 / (T(x) + Lanczos::g() + 0.5f), |
|
1 / (T(n - x) + Lanczos::g() + 0.5f), |
|
1 / (T(r - x) + Lanczos::g() + 0.5f), |
|
1 / (T(N - n - r + x) + Lanczos::g() + 0.5f) |
|
}; |
|
T exponents[9] = { |
|
n + T(0.5f), |
|
r + T(0.5f), |
|
N - n + T(0.5f), |
|
N - r + T(0.5f), |
|
N + T(0.5f), |
|
x + T(0.5f), |
|
n - x + T(0.5f), |
|
r - x + T(0.5f), |
|
N - n - r + x + T(0.5f) |
|
}; |
|
int base_e_factors[9] = { |
|
-1, -1, -1, -1, 1, 1, 1, 1, 1 |
|
}; |
|
int sorted_indexes[9] = { |
|
0, 1, 2, 3, 4, 5, 6, 7, 8 |
|
}; |
|
#ifdef BOOST_MATH_INSTRUMENT |
|
BOOST_MATH_INSTRUMENT_FPU |
|
for(unsigned i = 0; i < 9; ++i) |
|
{ |
|
BOOST_MATH_INSTRUMENT_VARIABLE(i); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]); |
|
} |
|
#endif |
|
std::sort(sorted_indexes, sorted_indexes + 9, sort_functor<T>(exponents)); |
|
#ifdef BOOST_MATH_INSTRUMENT |
|
BOOST_MATH_INSTRUMENT_FPU |
|
for(unsigned i = 0; i < 9; ++i) |
|
{ |
|
BOOST_MATH_INSTRUMENT_VARIABLE(i); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]); |
|
} |
|
#endif |
|
|
|
do{ |
|
exponents[sorted_indexes[0]] -= exponents[sorted_indexes[1]]; |
|
bases[sorted_indexes[1]] *= bases[sorted_indexes[0]]; |
|
if((bases[sorted_indexes[1]] < tools::min_value<T>()) && (exponents[sorted_indexes[1]] != 0)) |
|
{ |
|
return 0; |
|
} |
|
base_e_factors[sorted_indexes[1]] += base_e_factors[sorted_indexes[0]]; |
|
bubble_down_one(sorted_indexes, sorted_indexes + 9, sort_functor<T>(exponents)); |
|
|
|
#ifdef BOOST_MATH_INSTRUMENT |
|
for(unsigned i = 0; i < 9; ++i) |
|
{ |
|
BOOST_MATH_INSTRUMENT_VARIABLE(i); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]); |
|
} |
|
#endif |
|
}while(exponents[sorted_indexes[1]] > 1); |
|
|
|
// |
|
// Combine equal powers: |
|
// |
|
int j = 8; |
|
while(exponents[sorted_indexes[j]] == 0) --j; |
|
while(j) |
|
{ |
|
while(j && (exponents[sorted_indexes[j-1]] == exponents[sorted_indexes[j]])) |
|
{ |
|
bases[sorted_indexes[j-1]] *= bases[sorted_indexes[j]]; |
|
exponents[sorted_indexes[j]] = 0; |
|
base_e_factors[sorted_indexes[j-1]] += base_e_factors[sorted_indexes[j]]; |
|
bubble_down_one(sorted_indexes + j, sorted_indexes + 9, sort_functor<T>(exponents)); |
|
--j; |
|
} |
|
--j; |
|
|
|
#ifdef BOOST_MATH_INSTRUMENT |
|
BOOST_MATH_INSTRUMENT_VARIABLE(j); |
|
for(unsigned i = 0; i < 9; ++i) |
|
{ |
|
BOOST_MATH_INSTRUMENT_VARIABLE(i); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]); |
|
} |
|
#endif |
|
} |
|
|
|
#ifdef BOOST_MATH_INSTRUMENT |
|
BOOST_MATH_INSTRUMENT_FPU |
|
for(unsigned i = 0; i < 9; ++i) |
|
{ |
|
BOOST_MATH_INSTRUMENT_VARIABLE(i); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]); |
|
} |
|
#endif |
|
|
|
T result; |
|
BOOST_MATH_INSTRUMENT_VARIABLE(bases[sorted_indexes[0]] * exp(static_cast<T>(base_e_factors[sorted_indexes[0]]))); |
|
BOOST_MATH_INSTRUMENT_VARIABLE(exponents[sorted_indexes[0]]); |
|
{ |
|
BOOST_FPU_EXCEPTION_GUARD |
|
result = pow(bases[sorted_indexes[0]] * exp(static_cast<T>(base_e_factors[sorted_indexes[0]])), exponents[sorted_indexes[0]]); |
|
} |
|
BOOST_MATH_INSTRUMENT_VARIABLE(result); |
|
for(unsigned i = 1; (i < 9) && (exponents[sorted_indexes[i]] > 0); ++i) |
|
{ |
|
BOOST_FPU_EXCEPTION_GUARD |
|
if(result < tools::min_value<T>()) |
|
return 0; // short circuit further evaluation |
|
if(exponents[sorted_indexes[i]] == 1) |
|
result *= bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]])); |
|
else if(exponents[sorted_indexes[i]] == 0.5f) |
|
result *= sqrt(bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]]))); |
|
else |
|
result *= pow(bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]])), exponents[sorted_indexes[i]]); |
|
|
|
BOOST_MATH_INSTRUMENT_VARIABLE(result); |
|
} |
|
|
|
result *= Lanczos::lanczos_sum_expG_scaled(static_cast<T>(n + 1)) |
|
* Lanczos::lanczos_sum_expG_scaled(static_cast<T>(r + 1)) |
|
* Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - n + 1)) |
|
* Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - r + 1)) |
|
/ |
|
( Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N + 1)) |
|
* Lanczos::lanczos_sum_expG_scaled(static_cast<T>(x + 1)) |
|
* Lanczos::lanczos_sum_expG_scaled(static_cast<T>(n - x + 1)) |
|
* Lanczos::lanczos_sum_expG_scaled(static_cast<T>(r - x + 1)) |
|
* Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - n - r + x + 1))); |
|
|
|
BOOST_MATH_INSTRUMENT_VARIABLE(result); |
|
return result; |
|
} |
|
|
|
template <class T, class Policy> |
|
T hypergeometric_pdf_lanczos_imp(T /*dummy*/, unsigned x, unsigned r, unsigned n, unsigned N, const boost::math::lanczos::undefined_lanczos&, const Policy& pol) |
|
{ |
|
BOOST_MATH_STD_USING |
|
return exp( |
|
boost::math::lgamma(T(n + 1), pol) |
|
+ boost::math::lgamma(T(r + 1), pol) |
|
+ boost::math::lgamma(T(N - n + 1), pol) |
|
+ boost::math::lgamma(T(N - r + 1), pol) |
|
- boost::math::lgamma(T(N + 1), pol) |
|
- boost::math::lgamma(T(x + 1), pol) |
|
- boost::math::lgamma(T(n - x + 1), pol) |
|
- boost::math::lgamma(T(r - x + 1), pol) |
|
- boost::math::lgamma(T(N - n - r + x + 1), pol)); |
|
} |
|
|
|
template <class T> |
|
inline T integer_power(const T& x, int ex) |
|
{ |
|
if(ex < 0) |
|
return 1 / integer_power(x, -ex); |
|
switch(ex) |
|
{ |
|
case 0: |
|
return 1; |
|
case 1: |
|
return x; |
|
case 2: |
|
return x * x; |
|
case 3: |
|
return x * x * x; |
|
case 4: |
|
return boost::math::pow<4>(x); |
|
case 5: |
|
return boost::math::pow<5>(x); |
|
case 6: |
|
return boost::math::pow<6>(x); |
|
case 7: |
|
return boost::math::pow<7>(x); |
|
case 8: |
|
return boost::math::pow<8>(x); |
|
} |
|
BOOST_MATH_STD_USING |
|
#ifdef __SUNPRO_CC |
|
return pow(x, T(ex)); |
|
#else |
|
return pow(x, ex); |
|
#endif |
|
} |
|
template <class T> |
|
struct hypergeometric_pdf_prime_loop_result_entry |
|
{ |
|
T value; |
|
const hypergeometric_pdf_prime_loop_result_entry* next; |
|
}; |
|
|
|
#ifdef BOOST_MSVC |
|
#pragma warning(push) |
|
#pragma warning(disable:4510 4512 4610) |
|
#endif |
|
|
|
struct hypergeometric_pdf_prime_loop_data |
|
{ |
|
const unsigned x; |
|
const unsigned r; |
|
const unsigned n; |
|
const unsigned N; |
|
unsigned prime_index; |
|
unsigned current_prime; |
|
}; |
|
|
|
#ifdef BOOST_MSVC |
|
#pragma warning(pop) |
|
#endif |
|
|
|
template <class T> |
|
T hypergeometric_pdf_prime_loop_imp(hypergeometric_pdf_prime_loop_data& data, hypergeometric_pdf_prime_loop_result_entry<T>& result) |
|
{ |
|
while(data.current_prime <= data.N) |
|
{ |
|
unsigned base = data.current_prime; |
|
int prime_powers = 0; |
|
while(base <= data.N) |
|
{ |
|
prime_powers += data.n / base; |
|
prime_powers += data.r / base; |
|
prime_powers += (data.N - data.n) / base; |
|
prime_powers += (data.N - data.r) / base; |
|
prime_powers -= data.N / base; |
|
prime_powers -= data.x / base; |
|
prime_powers -= (data.n - data.x) / base; |
|
prime_powers -= (data.r - data.x) / base; |
|
prime_powers -= (data.N - data.n - data.r + data.x) / base; |
|
base *= data.current_prime; |
|
} |
|
if(prime_powers) |
|
{ |
|
T p = integer_power<T>(data.current_prime, prime_powers); |
|
if((p > 1) && (tools::max_value<T>() / p < result.value)) |
|
{ |
|
// |
|
// The next calculation would overflow, use recursion |
|
// to sidestep the issue: |
|
// |
|
hypergeometric_pdf_prime_loop_result_entry<T> t = { p, &result }; |
|
data.current_prime = prime(++data.prime_index); |
|
return hypergeometric_pdf_prime_loop_imp<T>(data, t); |
|
} |
|
if((p < 1) && (tools::min_value<T>() / p > result.value)) |
|
{ |
|
// |
|
// The next calculation would underflow, use recursion |
|
// to sidestep the issue: |
|
// |
|
hypergeometric_pdf_prime_loop_result_entry<T> t = { p, &result }; |
|
data.current_prime = prime(++data.prime_index); |
|
return hypergeometric_pdf_prime_loop_imp<T>(data, t); |
|
} |
|
result.value *= p; |
|
} |
|
data.current_prime = prime(++data.prime_index); |
|
} |
|
// |
|
// When we get to here we have run out of prime factors, |
|
// the overall result is the product of all the partial |
|
// results we have accumulated on the stack so far, these |
|
// are in a linked list starting with "data.head" and ending |
|
// with "result". |
|
// |
|
// All that remains is to multiply them together, taking |
|
// care not to overflow or underflow. |
|
// |
|
// Enumerate partial results >= 1 in variable i |
|
// and partial results < 1 in variable j: |
|
// |
|
hypergeometric_pdf_prime_loop_result_entry<T> const *i, *j; |
|
i = &result; |
|
while(i && i->value < 1) |
|
i = i->next; |
|
j = &result; |
|
while(j && j->value >= 1) |
|
j = j->next; |
|
|
|
T prod = 1; |
|
|
|
while(i || j) |
|
{ |
|
while(i && ((prod <= 1) || (j == 0))) |
|
{ |
|
prod *= i->value; |
|
i = i->next; |
|
while(i && i->value < 1) |
|
i = i->next; |
|
} |
|
while(j && ((prod >= 1) || (i == 0))) |
|
{ |
|
prod *= j->value; |
|
j = j->next; |
|
while(j && j->value >= 1) |
|
j = j->next; |
|
} |
|
} |
|
|
|
return prod; |
|
} |
|
|
|
template <class T, class Policy> |
|
inline T hypergeometric_pdf_prime_imp(unsigned x, unsigned r, unsigned n, unsigned N, const Policy&) |
|
{ |
|
hypergeometric_pdf_prime_loop_result_entry<T> result = { 1, 0 }; |
|
hypergeometric_pdf_prime_loop_data data = { x, r, n, N, 0, prime(0) }; |
|
return hypergeometric_pdf_prime_loop_imp<T>(data, result); |
|
} |
|
|
|
template <class T, class Policy> |
|
T hypergeometric_pdf_factorial_imp(unsigned x, unsigned r, unsigned n, unsigned N, const Policy&) |
|
{ |
|
BOOST_MATH_STD_USING |
|
BOOST_ASSERT(N < boost::math::max_factorial<T>::value); |
|
T result = boost::math::unchecked_factorial<T>(n); |
|
T num[3] = { |
|
boost::math::unchecked_factorial<T>(r), |
|
boost::math::unchecked_factorial<T>(N - n), |
|
boost::math::unchecked_factorial<T>(N - r) |
|
}; |
|
T denom[5] = { |
|
boost::math::unchecked_factorial<T>(N), |
|
boost::math::unchecked_factorial<T>(x), |
|
boost::math::unchecked_factorial<T>(n - x), |
|
boost::math::unchecked_factorial<T>(r - x), |
|
boost::math::unchecked_factorial<T>(N - n - r + x) |
|
}; |
|
int i = 0; |
|
int j = 0; |
|
while((i < 3) || (j < 5)) |
|
{ |
|
while((j < 5) && ((result >= 1) || (i >= 3))) |
|
{ |
|
result /= denom[j]; |
|
++j; |
|
} |
|
while((i < 3) && ((result <= 1) || (j >= 5))) |
|
{ |
|
result *= num[i]; |
|
++i; |
|
} |
|
} |
|
return result; |
|
} |
|
|
|
|
|
template <class T, class Policy> |
|
inline typename tools::promote_args<T>::type |
|
hypergeometric_pdf(unsigned x, unsigned r, unsigned n, unsigned N, const Policy&) |
|
{ |
|
BOOST_FPU_EXCEPTION_GUARD |
|
typedef typename tools::promote_args<T>::type result_type; |
|
typedef typename policies::evaluation<result_type, Policy>::type value_type; |
|
typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type; |
|
typedef typename policies::normalise< |
|
Policy, |
|
policies::promote_float<false>, |
|
policies::promote_double<false>, |
|
policies::discrete_quantile<>, |
|
policies::assert_undefined<> >::type forwarding_policy; |
|
|
|
value_type result; |
|
if(N <= boost::math::max_factorial<value_type>::value) |
|
{ |
|
// |
|
// If N is small enough then we can evaluate the PDF via the factorials |
|
// directly: table lookup of the factorials gives the best performance |
|
// of the methods available: |
|
// |
|
result = detail::hypergeometric_pdf_factorial_imp<value_type>(x, r, n, N, forwarding_policy()); |
|
} |
|
else if(N <= boost::math::prime(boost::math::max_prime - 1)) |
|
{ |
|
// |
|
// If N is no larger than the largest prime number in our lookup table |
|
// (104729) then we can use prime factorisation to evaluate the PDF, |
|
// this is slow but accurate: |
|
// |
|
result = detail::hypergeometric_pdf_prime_imp<value_type>(x, r, n, N, forwarding_policy()); |
|
} |
|
else |
|
{ |
|
// |
|
// Catch all case - use the lanczos approximation - where available - |
|
// to evaluate the ratio of factorials. This is reasonably fast |
|
// (almost as quick as using logarithmic evaluation in terms of lgamma) |
|
// but only a few digits better in accuracy than using lgamma: |
|
// |
|
result = detail::hypergeometric_pdf_lanczos_imp(value_type(), x, r, n, N, evaluation_type(), forwarding_policy()); |
|
} |
|
|
|
if(result > 1) |
|
{ |
|
result = 1; |
|
} |
|
if(result < 0) |
|
{ |
|
result = 0; |
|
} |
|
|
|
return policies::checked_narrowing_cast<result_type, forwarding_policy>(result, "boost::math::hypergeometric_pdf<%1%>(%1%,%1%,%1%,%1%)"); |
|
} |
|
|
|
}}} // namespaces |
|
|
|
#endif |
|
|
|
|