You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
347 lines
12 KiB
347 lines
12 KiB
// Copyright John Maddock 2006, 2007. |
|
// Copyright Paul A. Bristow 2008, 2010. |
|
|
|
// Use, modification and distribution are subject to the |
|
// Boost Software License, Version 1.0. |
|
// (See accompanying file LICENSE_1_0.txt |
|
// or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
|
|
#ifndef BOOST_MATH_DISTRIBUTIONS_CHI_SQUARED_HPP |
|
#define BOOST_MATH_DISTRIBUTIONS_CHI_SQUARED_HPP |
|
|
|
#include <boost/math/distributions/fwd.hpp> |
|
#include <boost/math/special_functions/gamma.hpp> // for incomplete beta. |
|
#include <boost/math/distributions/complement.hpp> // complements |
|
#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks |
|
#include <boost/math/special_functions/fpclassify.hpp> |
|
|
|
#include <utility> |
|
|
|
namespace boost{ namespace math{ |
|
|
|
template <class RealType = double, class Policy = policies::policy<> > |
|
class chi_squared_distribution |
|
{ |
|
public: |
|
typedef RealType value_type; |
|
typedef Policy policy_type; |
|
|
|
chi_squared_distribution(RealType i) : m_df(i) |
|
{ |
|
RealType result; |
|
detail::check_df( |
|
"boost::math::chi_squared_distribution<%1%>::chi_squared_distribution", m_df, &result, Policy()); |
|
} // chi_squared_distribution |
|
|
|
RealType degrees_of_freedom()const |
|
{ |
|
return m_df; |
|
} |
|
|
|
// Parameter estimation: |
|
static RealType find_degrees_of_freedom( |
|
RealType difference_from_variance, |
|
RealType alpha, |
|
RealType beta, |
|
RealType variance, |
|
RealType hint = 100); |
|
|
|
private: |
|
// |
|
// Data member: |
|
// |
|
RealType m_df; // degrees of freedom are a real number. |
|
}; // class chi_squared_distribution |
|
|
|
typedef chi_squared_distribution<double> chi_squared; |
|
|
|
template <class RealType, class Policy> |
|
inline const std::pair<RealType, RealType> range(const chi_squared_distribution<RealType, Policy>& /*dist*/) |
|
{ // Range of permissible values for random variable x. |
|
using boost::math::tools::max_value; |
|
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // 0 to + infinity. |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline const std::pair<RealType, RealType> support(const chi_squared_distribution<RealType, Policy>& /*dist*/) |
|
{ // Range of supported values for random variable x. |
|
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. |
|
return std::pair<RealType, RealType>(static_cast<RealType>(0), tools::max_value<RealType>()); // 0 to + infinity. |
|
} |
|
|
|
template <class RealType, class Policy> |
|
RealType pdf(const chi_squared_distribution<RealType, Policy>& dist, const RealType& chi_square) |
|
{ |
|
BOOST_MATH_STD_USING // for ADL of std functions |
|
RealType degrees_of_freedom = dist.degrees_of_freedom(); |
|
// Error check: |
|
RealType error_result; |
|
|
|
static const char* function = "boost::math::pdf(const chi_squared_distribution<%1%>&, %1%)"; |
|
|
|
if(false == detail::check_df( |
|
function, degrees_of_freedom, &error_result, Policy())) |
|
return error_result; |
|
|
|
if((chi_square < 0) || !(boost::math::isfinite)(chi_square)) |
|
{ |
|
return policies::raise_domain_error<RealType>( |
|
function, "Chi Square parameter was %1%, but must be > 0 !", chi_square, Policy()); |
|
} |
|
|
|
if(chi_square == 0) |
|
{ |
|
// Handle special cases: |
|
if(degrees_of_freedom < 2) |
|
{ |
|
return policies::raise_overflow_error<RealType>( |
|
function, 0, Policy()); |
|
} |
|
else if(degrees_of_freedom == 2) |
|
{ |
|
return 0.5f; |
|
} |
|
else |
|
{ |
|
return 0; |
|
} |
|
} |
|
|
|
return gamma_p_derivative(degrees_of_freedom / 2, chi_square / 2, Policy()) / 2; |
|
} // pdf |
|
|
|
template <class RealType, class Policy> |
|
inline RealType cdf(const chi_squared_distribution<RealType, Policy>& dist, const RealType& chi_square) |
|
{ |
|
RealType degrees_of_freedom = dist.degrees_of_freedom(); |
|
// Error check: |
|
RealType error_result; |
|
static const char* function = "boost::math::cdf(const chi_squared_distribution<%1%>&, %1%)"; |
|
|
|
if(false == detail::check_df( |
|
function, degrees_of_freedom, &error_result, Policy())) |
|
return error_result; |
|
|
|
if((chi_square < 0) || !(boost::math::isfinite)(chi_square)) |
|
{ |
|
return policies::raise_domain_error<RealType>( |
|
function, "Chi Square parameter was %1%, but must be > 0 !", chi_square, Policy()); |
|
} |
|
|
|
return boost::math::gamma_p(degrees_of_freedom / 2, chi_square / 2, Policy()); |
|
} // cdf |
|
|
|
template <class RealType, class Policy> |
|
inline RealType quantile(const chi_squared_distribution<RealType, Policy>& dist, const RealType& p) |
|
{ |
|
RealType degrees_of_freedom = dist.degrees_of_freedom(); |
|
static const char* function = "boost::math::quantile(const chi_squared_distribution<%1%>&, %1%)"; |
|
// Error check: |
|
RealType error_result; |
|
if(false == detail::check_df( |
|
function, degrees_of_freedom, &error_result, Policy()) |
|
&& detail::check_probability( |
|
function, p, &error_result, Policy())) |
|
return error_result; |
|
|
|
return 2 * boost::math::gamma_p_inv(degrees_of_freedom / 2, p, Policy()); |
|
} // quantile |
|
|
|
template <class RealType, class Policy> |
|
inline RealType cdf(const complemented2_type<chi_squared_distribution<RealType, Policy>, RealType>& c) |
|
{ |
|
RealType const& degrees_of_freedom = c.dist.degrees_of_freedom(); |
|
RealType const& chi_square = c.param; |
|
static const char* function = "boost::math::cdf(const chi_squared_distribution<%1%>&, %1%)"; |
|
// Error check: |
|
RealType error_result; |
|
if(false == detail::check_df( |
|
function, degrees_of_freedom, &error_result, Policy())) |
|
return error_result; |
|
|
|
if((chi_square < 0) || !(boost::math::isfinite)(chi_square)) |
|
{ |
|
return policies::raise_domain_error<RealType>( |
|
function, "Chi Square parameter was %1%, but must be > 0 !", chi_square, Policy()); |
|
} |
|
|
|
return boost::math::gamma_q(degrees_of_freedom / 2, chi_square / 2, Policy()); |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline RealType quantile(const complemented2_type<chi_squared_distribution<RealType, Policy>, RealType>& c) |
|
{ |
|
RealType const& degrees_of_freedom = c.dist.degrees_of_freedom(); |
|
RealType const& q = c.param; |
|
static const char* function = "boost::math::quantile(const chi_squared_distribution<%1%>&, %1%)"; |
|
// Error check: |
|
RealType error_result; |
|
if(false == detail::check_df( |
|
function, degrees_of_freedom, &error_result, Policy()) |
|
&& detail::check_probability( |
|
function, q, &error_result, Policy())) |
|
return error_result; |
|
|
|
return 2 * boost::math::gamma_q_inv(degrees_of_freedom / 2, q, Policy()); |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline RealType mean(const chi_squared_distribution<RealType, Policy>& dist) |
|
{ // Mean of Chi-Squared distribution = v. |
|
return dist.degrees_of_freedom(); |
|
} // mean |
|
|
|
template <class RealType, class Policy> |
|
inline RealType variance(const chi_squared_distribution<RealType, Policy>& dist) |
|
{ // Variance of Chi-Squared distribution = 2v. |
|
return 2 * dist.degrees_of_freedom(); |
|
} // variance |
|
|
|
template <class RealType, class Policy> |
|
inline RealType mode(const chi_squared_distribution<RealType, Policy>& dist) |
|
{ |
|
RealType df = dist.degrees_of_freedom(); |
|
static const char* function = "boost::math::mode(const chi_squared_distribution<%1%>&)"; |
|
// Most sources only define mode for df >= 2, |
|
// but for 0 <= df <= 2, the pdf maximum actually occurs at random variate = 0; |
|
// So one could extend the definition of mode thus: |
|
//if(df < 0) |
|
//{ |
|
// return policies::raise_domain_error<RealType>( |
|
// function, |
|
// "Chi-Squared distribution only has a mode for degrees of freedom >= 0, but got degrees of freedom = %1%.", |
|
// df, Policy()); |
|
//} |
|
//return (df <= 2) ? 0 : df - 2; |
|
|
|
if(df < 2) |
|
return policies::raise_domain_error<RealType>( |
|
function, |
|
"Chi-Squared distribution only has a mode for degrees of freedom >= 2, but got degrees of freedom = %1%.", |
|
df, Policy()); |
|
return df - 2; |
|
} |
|
|
|
//template <class RealType, class Policy> |
|
//inline RealType median(const chi_squared_distribution<RealType, Policy>& dist) |
|
//{ // Median is given by Quantile[dist, 1/2] |
|
// RealType df = dist.degrees_of_freedom(); |
|
// if(df <= 1) |
|
// return tools::domain_error<RealType>( |
|
// BOOST_CURRENT_FUNCTION, |
|
// "The Chi-Squared distribution only has a mode for degrees of freedom >= 2, but got degrees of freedom = %1%.", |
|
// df); |
|
// return df - RealType(2)/3; |
|
//} |
|
// Now implemented via quantile(half) in derived accessors. |
|
|
|
template <class RealType, class Policy> |
|
inline RealType skewness(const chi_squared_distribution<RealType, Policy>& dist) |
|
{ |
|
BOOST_MATH_STD_USING // For ADL |
|
RealType df = dist.degrees_of_freedom(); |
|
return sqrt (8 / df); // == 2 * sqrt(2 / df); |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline RealType kurtosis(const chi_squared_distribution<RealType, Policy>& dist) |
|
{ |
|
RealType df = dist.degrees_of_freedom(); |
|
return 3 + 12 / df; |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline RealType kurtosis_excess(const chi_squared_distribution<RealType, Policy>& dist) |
|
{ |
|
RealType df = dist.degrees_of_freedom(); |
|
return 12 / df; |
|
} |
|
|
|
// |
|
// Parameter estimation comes last: |
|
// |
|
namespace detail |
|
{ |
|
|
|
template <class RealType, class Policy> |
|
struct df_estimator |
|
{ |
|
df_estimator(RealType a, RealType b, RealType variance, RealType delta) |
|
: alpha(a), beta(b), ratio(delta/variance) |
|
{ // Constructor |
|
} |
|
|
|
RealType operator()(const RealType& df) |
|
{ |
|
if(df <= tools::min_value<RealType>()) |
|
return 1; |
|
chi_squared_distribution<RealType, Policy> cs(df); |
|
|
|
RealType result; |
|
if(ratio > 0) |
|
{ |
|
RealType r = 1 + ratio; |
|
result = cdf(cs, quantile(complement(cs, alpha)) / r) - beta; |
|
} |
|
else |
|
{ // ratio <= 0 |
|
RealType r = 1 + ratio; |
|
result = cdf(complement(cs, quantile(cs, alpha) / r)) - beta; |
|
} |
|
return result; |
|
} |
|
private: |
|
RealType alpha; |
|
RealType beta; |
|
RealType ratio; // Difference from variance / variance, so fractional. |
|
}; |
|
|
|
} // namespace detail |
|
|
|
template <class RealType, class Policy> |
|
RealType chi_squared_distribution<RealType, Policy>::find_degrees_of_freedom( |
|
RealType difference_from_variance, |
|
RealType alpha, |
|
RealType beta, |
|
RealType variance, |
|
RealType hint) |
|
{ |
|
static const char* function = "boost::math::chi_squared_distribution<%1%>::find_degrees_of_freedom(%1%,%1%,%1%,%1%,%1%)"; |
|
// Check for domain errors: |
|
RealType error_result; |
|
if(false == |
|
detail::check_probability(function, alpha, &error_result, Policy()) |
|
&& detail::check_probability(function, beta, &error_result, Policy())) |
|
{ // Either probability is outside 0 to 1. |
|
return error_result; |
|
} |
|
|
|
if(hint <= 0) |
|
{ // No hint given, so guess df = 1. |
|
hint = 1; |
|
} |
|
|
|
detail::df_estimator<RealType, Policy> f(alpha, beta, variance, difference_from_variance); |
|
tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>()); |
|
boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); |
|
std::pair<RealType, RealType> r = |
|
tools::bracket_and_solve_root(f, hint, RealType(2), false, tol, max_iter, Policy()); |
|
RealType result = r.first + (r.second - r.first) / 2; |
|
if(max_iter >= policies::get_max_root_iterations<Policy>()) |
|
{ |
|
policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:" |
|
" either there is no answer to how many degrees of freedom are required" |
|
" or the answer is infinite. Current best guess is %1%", result, Policy()); |
|
} |
|
return result; |
|
} |
|
|
|
} // namespace math |
|
} // namespace boost |
|
|
|
// This include must be at the end, *after* the accessors |
|
// for this distribution have been defined, in order to |
|
// keep compilers that support two-phase lookup happy. |
|
#include <boost/math/distributions/detail/derived_accessors.hpp> |
|
|
|
#endif // BOOST_MATH_DISTRIBUTIONS_CHI_SQUARED_HPP
|
|
|