You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
245 lines
7.2 KiB
245 lines
7.2 KiB
// (C) Copyright John Maddock 2005. |
|
// Use, modification and distribution are subject to the |
|
// Boost Software License, Version 1.0. (See accompanying file |
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
|
|
#ifndef BOOST_MATH_COMPLEX_ATANH_INCLUDED |
|
#define BOOST_MATH_COMPLEX_ATANH_INCLUDED |
|
|
|
#ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED |
|
# include <boost/math/complex/details.hpp> |
|
#endif |
|
#ifndef BOOST_MATH_LOG1P_INCLUDED |
|
# include <boost/math/special_functions/log1p.hpp> |
|
#endif |
|
#include <boost/assert.hpp> |
|
|
|
#ifdef BOOST_NO_STDC_NAMESPACE |
|
namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; } |
|
#endif |
|
|
|
namespace boost{ namespace math{ |
|
|
|
template<class T> |
|
std::complex<T> atanh(const std::complex<T>& z) |
|
{ |
|
// |
|
// References: |
|
// |
|
// Eric W. Weisstein. "Inverse Hyperbolic Tangent." |
|
// From MathWorld--A Wolfram Web Resource. |
|
// http://mathworld.wolfram.com/InverseHyperbolicTangent.html |
|
// |
|
// Also: The Wolfram Functions Site, |
|
// http://functions.wolfram.com/ElementaryFunctions/ArcTanh/ |
|
// |
|
// Also "Abramowitz and Stegun. Handbook of Mathematical Functions." |
|
// at : http://jove.prohosting.com/~skripty/toc.htm |
|
// |
|
|
|
static const T half_pi = static_cast<T>(1.57079632679489661923132169163975144L); |
|
static const T pi = static_cast<T>(3.141592653589793238462643383279502884197L); |
|
static const T one = static_cast<T>(1.0L); |
|
static const T two = static_cast<T>(2.0L); |
|
static const T four = static_cast<T>(4.0L); |
|
static const T zero = static_cast<T>(0); |
|
static const T a_crossover = static_cast<T>(0.3L); |
|
|
|
T x = std::fabs(z.real()); |
|
T y = std::fabs(z.imag()); |
|
|
|
T real, imag; // our results |
|
|
|
T safe_upper = detail::safe_max(two); |
|
T safe_lower = detail::safe_min(static_cast<T>(2)); |
|
|
|
// |
|
// Begin by handling the special cases specified in C99: |
|
// |
|
if(detail::test_is_nan(x)) |
|
{ |
|
if(detail::test_is_nan(y)) |
|
return std::complex<T>(x, x); |
|
else if(std::numeric_limits<T>::has_infinity && (y == std::numeric_limits<T>::infinity())) |
|
return std::complex<T>(0, ((z.imag() < 0) ? -half_pi : half_pi)); |
|
else |
|
return std::complex<T>(x, x); |
|
} |
|
else if(detail::test_is_nan(y)) |
|
{ |
|
if(x == 0) |
|
return std::complex<T>(x, y); |
|
if(std::numeric_limits<T>::has_infinity && (x == std::numeric_limits<T>::infinity())) |
|
return std::complex<T>(0, y); |
|
else |
|
return std::complex<T>(y, y); |
|
} |
|
else if((x > safe_lower) && (x < safe_upper) && (y > safe_lower) && (y < safe_upper)) |
|
{ |
|
|
|
T xx = x*x; |
|
T yy = y*y; |
|
T x2 = x * two; |
|
|
|
/// |
|
// The real part is given by: |
|
// |
|
// real(atanh(z)) == log((1 + x^2 + y^2 + 2x) / (1 + x^2 + y^2 - 2x)) |
|
// |
|
// However, when x is either large (x > 1/E) or very small |
|
// (x < E) then this effectively simplifies |
|
// to log(1), leading to wildly inaccurate results. |
|
// By dividing the above (top and bottom) by (1 + x^2 + y^2) we get: |
|
// |
|
// real(atanh(z)) == log((1 + (2x / (1 + x^2 + y^2))) / (1 - (-2x / (1 + x^2 + y^2)))) |
|
// |
|
// which is much more sensitive to the value of x, when x is not near 1 |
|
// (remember we can compute log(1+x) for small x very accurately). |
|
// |
|
// The cross-over from one method to the other has to be determined |
|
// experimentally, the value used below appears correct to within a |
|
// factor of 2 (and there are larger errors from other parts |
|
// of the input domain anyway). |
|
// |
|
T alpha = two*x / (one + xx + yy); |
|
if(alpha < a_crossover) |
|
{ |
|
real = boost::math::log1p(alpha) - boost::math::log1p(-alpha); |
|
} |
|
else |
|
{ |
|
T xm1 = x - one; |
|
real = boost::math::log1p(x2 + xx + yy) - std::log(xm1*xm1 + yy); |
|
} |
|
real /= four; |
|
if(z.real() < 0) |
|
real = -real; |
|
|
|
imag = std::atan2((y * two), (one - xx - yy)); |
|
imag /= two; |
|
if(z.imag() < 0) |
|
imag = -imag; |
|
} |
|
else |
|
{ |
|
// |
|
// This section handles exception cases that would normally cause |
|
// underflow or overflow in the main formulas. |
|
// |
|
// Begin by working out the real part, we need to approximate |
|
// alpha = 2x / (1 + x^2 + y^2) |
|
// without either overflow or underflow in the squared terms. |
|
// |
|
T alpha = 0; |
|
if(x >= safe_upper) |
|
{ |
|
// this is really a test for infinity, |
|
// but we may not have the necessary numeric_limits support: |
|
if((x > (std::numeric_limits<T>::max)()) || (y > (std::numeric_limits<T>::max)())) |
|
{ |
|
alpha = 0; |
|
} |
|
else if(y >= safe_upper) |
|
{ |
|
// Big x and y: divide alpha through by x*y: |
|
alpha = (two/y) / (x/y + y/x); |
|
} |
|
else if(y > one) |
|
{ |
|
// Big x: divide through by x: |
|
alpha = two / (x + y*y/x); |
|
} |
|
else |
|
{ |
|
// Big x small y, as above but neglect y^2/x: |
|
alpha = two/x; |
|
} |
|
} |
|
else if(y >= safe_upper) |
|
{ |
|
if(x > one) |
|
{ |
|
// Big y, medium x, divide through by y: |
|
alpha = (two*x/y) / (y + x*x/y); |
|
} |
|
else |
|
{ |
|
// Small x and y, whatever alpha is, it's too small to calculate: |
|
alpha = 0; |
|
} |
|
} |
|
else |
|
{ |
|
// one or both of x and y are small, calculate divisor carefully: |
|
T div = one; |
|
if(x > safe_lower) |
|
div += x*x; |
|
if(y > safe_lower) |
|
div += y*y; |
|
alpha = two*x/div; |
|
} |
|
if(alpha < a_crossover) |
|
{ |
|
real = boost::math::log1p(alpha) - boost::math::log1p(-alpha); |
|
} |
|
else |
|
{ |
|
// We can only get here as a result of small y and medium sized x, |
|
// we can simply neglect the y^2 terms: |
|
BOOST_ASSERT(x >= safe_lower); |
|
BOOST_ASSERT(x <= safe_upper); |
|
//BOOST_ASSERT(y <= safe_lower); |
|
T xm1 = x - one; |
|
real = std::log(1 + two*x + x*x) - std::log(xm1*xm1); |
|
} |
|
|
|
real /= four; |
|
if(z.real() < 0) |
|
real = -real; |
|
|
|
// |
|
// Now handle imaginary part, this is much easier, |
|
// if x or y are large, then the formula: |
|
// atan2(2y, 1 - x^2 - y^2) |
|
// evaluates to +-(PI - theta) where theta is negligible compared to PI. |
|
// |
|
if((x >= safe_upper) || (y >= safe_upper)) |
|
{ |
|
imag = pi; |
|
} |
|
else if(x <= safe_lower) |
|
{ |
|
// |
|
// If both x and y are small then atan(2y), |
|
// otherwise just x^2 is negligible in the divisor: |
|
// |
|
if(y <= safe_lower) |
|
imag = std::atan2(two*y, one); |
|
else |
|
{ |
|
if((y == zero) && (x == zero)) |
|
imag = 0; |
|
else |
|
imag = std::atan2(two*y, one - y*y); |
|
} |
|
} |
|
else |
|
{ |
|
// |
|
// y^2 is negligible: |
|
// |
|
if((y == zero) && (x == one)) |
|
imag = 0; |
|
else |
|
imag = std::atan2(two*y, 1 - x*x); |
|
} |
|
imag /= two; |
|
if(z.imag() < 0) |
|
imag = -imag; |
|
} |
|
return std::complex<T>(real, imag); |
|
} |
|
|
|
} } // namespaces |
|
|
|
#endif // BOOST_MATH_COMPLEX_ATANH_INCLUDED
|
|
|