You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
235 lines
7.2 KiB
235 lines
7.2 KiB
// (C) Copyright John Maddock 2005. |
|
// Distributed under the Boost Software License, Version 1.0. (See accompanying |
|
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
|
|
#ifndef BOOST_MATH_COMPLEX_ACOS_INCLUDED |
|
#define BOOST_MATH_COMPLEX_ACOS_INCLUDED |
|
|
|
#ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED |
|
# include <boost/math/complex/details.hpp> |
|
#endif |
|
#ifndef BOOST_MATH_LOG1P_INCLUDED |
|
# include <boost/math/special_functions/log1p.hpp> |
|
#endif |
|
#include <boost/assert.hpp> |
|
|
|
#ifdef BOOST_NO_STDC_NAMESPACE |
|
namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; } |
|
#endif |
|
|
|
namespace boost{ namespace math{ |
|
|
|
template<class T> |
|
std::complex<T> acos(const std::complex<T>& z) |
|
{ |
|
// |
|
// This implementation is a transcription of the pseudo-code in: |
|
// |
|
// "Implementing the Complex Arcsine and Arccosine Functions using Exception Handling." |
|
// T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang. |
|
// ACM Transactions on Mathematical Software, Vol 23, No 3, Sept 1997. |
|
// |
|
|
|
// |
|
// These static constants should really be in a maths constants library: |
|
// |
|
static const T one = static_cast<T>(1); |
|
//static const T two = static_cast<T>(2); |
|
static const T half = static_cast<T>(0.5L); |
|
static const T a_crossover = static_cast<T>(1.5L); |
|
static const T b_crossover = static_cast<T>(0.6417L); |
|
static const T s_pi = static_cast<T>(3.141592653589793238462643383279502884197L); |
|
static const T half_pi = static_cast<T>(1.57079632679489661923132169163975144L); |
|
static const T log_two = static_cast<T>(0.69314718055994530941723212145817657L); |
|
static const T quarter_pi = static_cast<T>(0.78539816339744830961566084581987572L); |
|
|
|
// |
|
// Get real and imaginary parts, discard the signs as we can |
|
// figure out the sign of the result later: |
|
// |
|
T x = std::fabs(z.real()); |
|
T y = std::fabs(z.imag()); |
|
|
|
T real, imag; // these hold our result |
|
|
|
// |
|
// Handle special cases specified by the C99 standard, |
|
// many of these special cases aren't really needed here, |
|
// but doing it this way prevents overflow/underflow arithmetic |
|
// in the main body of the logic, which may trip up some machines: |
|
// |
|
if(std::numeric_limits<T>::has_infinity && (x == std::numeric_limits<T>::infinity())) |
|
{ |
|
if(y == std::numeric_limits<T>::infinity()) |
|
{ |
|
real = quarter_pi; |
|
imag = std::numeric_limits<T>::infinity(); |
|
} |
|
else if(detail::test_is_nan(y)) |
|
{ |
|
return std::complex<T>(y, -std::numeric_limits<T>::infinity()); |
|
} |
|
else |
|
{ |
|
// y is not infinity or nan: |
|
real = 0; |
|
imag = std::numeric_limits<T>::infinity(); |
|
} |
|
} |
|
else if(detail::test_is_nan(x)) |
|
{ |
|
if(y == std::numeric_limits<T>::infinity()) |
|
return std::complex<T>(x, (z.imag() < 0) ? std::numeric_limits<T>::infinity() : -std::numeric_limits<T>::infinity()); |
|
return std::complex<T>(x, x); |
|
} |
|
else if(std::numeric_limits<T>::has_infinity && (y == std::numeric_limits<T>::infinity())) |
|
{ |
|
real = half_pi; |
|
imag = std::numeric_limits<T>::infinity(); |
|
} |
|
else if(detail::test_is_nan(y)) |
|
{ |
|
return std::complex<T>((x == 0) ? half_pi : y, y); |
|
} |
|
else |
|
{ |
|
// |
|
// What follows is the regular Hull et al code, |
|
// begin with the special case for real numbers: |
|
// |
|
if((y == 0) && (x <= one)) |
|
return std::complex<T>((x == 0) ? half_pi : std::acos(z.real())); |
|
// |
|
// Figure out if our input is within the "safe area" identified by Hull et al. |
|
// This would be more efficient with portable floating point exception handling; |
|
// fortunately the quantities M and u identified by Hull et al (figure 3), |
|
// match with the max and min methods of numeric_limits<T>. |
|
// |
|
T safe_max = detail::safe_max(static_cast<T>(8)); |
|
T safe_min = detail::safe_min(static_cast<T>(4)); |
|
|
|
T xp1 = one + x; |
|
T xm1 = x - one; |
|
|
|
if((x < safe_max) && (x > safe_min) && (y < safe_max) && (y > safe_min)) |
|
{ |
|
T yy = y * y; |
|
T r = std::sqrt(xp1*xp1 + yy); |
|
T s = std::sqrt(xm1*xm1 + yy); |
|
T a = half * (r + s); |
|
T b = x / a; |
|
|
|
if(b <= b_crossover) |
|
{ |
|
real = std::acos(b); |
|
} |
|
else |
|
{ |
|
T apx = a + x; |
|
if(x <= one) |
|
{ |
|
real = std::atan(std::sqrt(half * apx * (yy /(r + xp1) + (s-xm1)))/x); |
|
} |
|
else |
|
{ |
|
real = std::atan((y * std::sqrt(half * (apx/(r + xp1) + apx/(s+xm1))))/x); |
|
} |
|
} |
|
|
|
if(a <= a_crossover) |
|
{ |
|
T am1; |
|
if(x < one) |
|
{ |
|
am1 = half * (yy/(r + xp1) + yy/(s - xm1)); |
|
} |
|
else |
|
{ |
|
am1 = half * (yy/(r + xp1) + (s + xm1)); |
|
} |
|
imag = boost::math::log1p(am1 + std::sqrt(am1 * (a + one))); |
|
} |
|
else |
|
{ |
|
imag = std::log(a + std::sqrt(a*a - one)); |
|
} |
|
} |
|
else |
|
{ |
|
// |
|
// This is the Hull et al exception handling code from Fig 6 of their paper: |
|
// |
|
if(y <= (std::numeric_limits<T>::epsilon() * std::fabs(xm1))) |
|
{ |
|
if(x < one) |
|
{ |
|
real = std::acos(x); |
|
imag = y / std::sqrt(xp1*(one-x)); |
|
} |
|
else |
|
{ |
|
real = 0; |
|
if(((std::numeric_limits<T>::max)() / xp1) > xm1) |
|
{ |
|
// xp1 * xm1 won't overflow: |
|
imag = boost::math::log1p(xm1 + std::sqrt(xp1*xm1)); |
|
} |
|
else |
|
{ |
|
imag = log_two + std::log(x); |
|
} |
|
} |
|
} |
|
else if(y <= safe_min) |
|
{ |
|
// There is an assumption in Hull et al's analysis that |
|
// if we get here then x == 1. This is true for all "good" |
|
// machines where : |
|
// |
|
// E^2 > 8*sqrt(u); with: |
|
// |
|
// E = std::numeric_limits<T>::epsilon() |
|
// u = (std::numeric_limits<T>::min)() |
|
// |
|
// Hull et al provide alternative code for "bad" machines |
|
// but we have no way to test that here, so for now just assert |
|
// on the assumption: |
|
// |
|
BOOST_ASSERT(x == 1); |
|
real = std::sqrt(y); |
|
imag = std::sqrt(y); |
|
} |
|
else if(std::numeric_limits<T>::epsilon() * y - one >= x) |
|
{ |
|
real = half_pi; |
|
imag = log_two + std::log(y); |
|
} |
|
else if(x > one) |
|
{ |
|
real = std::atan(y/x); |
|
T xoy = x/y; |
|
imag = log_two + std::log(y) + half * boost::math::log1p(xoy*xoy); |
|
} |
|
else |
|
{ |
|
real = half_pi; |
|
T a = std::sqrt(one + y*y); |
|
imag = half * boost::math::log1p(static_cast<T>(2)*y*(y+a)); |
|
} |
|
} |
|
} |
|
|
|
// |
|
// Finish off by working out the sign of the result: |
|
// |
|
if(z.real() < 0) |
|
real = s_pi - real; |
|
if(z.imag() > 0) |
|
imag = -imag; |
|
|
|
return std::complex<T>(real, imag); |
|
} |
|
|
|
} } // namespaces |
|
|
|
#endif // BOOST_MATH_COMPLEX_ACOS_INCLUDED
|
|
|