You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
578 lines
15 KiB
578 lines
15 KiB
// - lambda_traits.hpp --- Boost Lambda Library ---------------------------- |
|
// |
|
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi) |
|
// |
|
// Distributed under the Boost Software License, Version 1.0. (See |
|
// accompanying file LICENSE_1_0.txt or copy at |
|
// http://www.boost.org/LICENSE_1_0.txt) |
|
// |
|
// For more information, see www.boost.org |
|
// ------------------------------------------------------------------------- |
|
|
|
#ifndef BOOST_LAMBDA_LAMBDA_TRAITS_HPP |
|
#define BOOST_LAMBDA_LAMBDA_TRAITS_HPP |
|
|
|
#include "boost/type_traits/transform_traits.hpp" |
|
#include "boost/type_traits/cv_traits.hpp" |
|
#include "boost/type_traits/function_traits.hpp" |
|
#include "boost/type_traits/object_traits.hpp" |
|
#include "boost/tuple/tuple.hpp" |
|
|
|
namespace boost { |
|
namespace lambda { |
|
|
|
// -- if construct ------------------------------------------------ |
|
// Proposed by Krzysztof Czarnecki and Ulrich Eisenecker |
|
|
|
namespace detail { |
|
|
|
template <bool If, class Then, class Else> struct IF { typedef Then RET; }; |
|
|
|
template <class Then, class Else> struct IF<false, Then, Else> { |
|
typedef Else RET; |
|
}; |
|
|
|
|
|
// An if construct that doesn't instantiate the non-matching template: |
|
|
|
// Called as: |
|
// IF_type<condition, A, B>::type |
|
// The matching template must define the typeded 'type' |
|
// I.e. A::type if condition is true, B::type if condition is false |
|
// Idea from Vesa Karvonen (from C&E as well I guess) |
|
template<class T> |
|
struct IF_type_ |
|
{ |
|
typedef typename T::type type; |
|
}; |
|
|
|
|
|
template<bool C, class T, class E> |
|
struct IF_type |
|
{ |
|
typedef typename |
|
IF_type_<typename IF<C, T, E>::RET >::type type; |
|
}; |
|
|
|
// helper that can be used to give typedef T to some type |
|
template <class T> struct identity_mapping { typedef T type; }; |
|
|
|
// An if construct for finding an integral constant 'value' |
|
// Does not instantiate the non-matching branch |
|
// Called as IF_value<condition, A, B>::value |
|
// If condition is true A::value must be defined, otherwise B::value |
|
|
|
template<class T> |
|
struct IF_value_ |
|
{ |
|
BOOST_STATIC_CONSTANT(int, value = T::value); |
|
}; |
|
|
|
|
|
template<bool C, class T, class E> |
|
struct IF_value |
|
{ |
|
BOOST_STATIC_CONSTANT(int, value = (IF_value_<typename IF<C, T, E>::RET>::value)); |
|
}; |
|
|
|
|
|
// -------------------------------------------------------------- |
|
|
|
// removes reference from other than function types: |
|
template<class T> class remove_reference_if_valid |
|
{ |
|
|
|
typedef typename boost::remove_reference<T>::type plainT; |
|
public: |
|
typedef typename IF< |
|
boost::is_function<plainT>::value, |
|
T, |
|
plainT |
|
>::RET type; |
|
|
|
}; |
|
|
|
|
|
template<class T> struct remove_reference_and_cv { |
|
typedef typename boost::remove_cv< |
|
typename boost::remove_reference<T>::type |
|
>::type type; |
|
}; |
|
|
|
|
|
|
|
// returns a reference to the element of tuple T |
|
template<int N, class T> struct tuple_element_as_reference { |
|
typedef typename |
|
boost::tuples::access_traits< |
|
typename boost::tuples::element<N, T>::type |
|
>::non_const_type type; |
|
}; |
|
|
|
// returns the cv and reverence stripped type of a tuple element |
|
template<int N, class T> struct tuple_element_stripped { |
|
typedef typename |
|
remove_reference_and_cv< |
|
typename boost::tuples::element<N, T>::type |
|
>::type type; |
|
}; |
|
|
|
// is_lambda_functor ------------------------------------------------- |
|
|
|
template <class T> struct is_lambda_functor_ { |
|
BOOST_STATIC_CONSTANT(bool, value = false); |
|
}; |
|
|
|
template <class Arg> struct is_lambda_functor_<lambda_functor<Arg> > { |
|
BOOST_STATIC_CONSTANT(bool, value = true); |
|
}; |
|
|
|
} // end detail |
|
|
|
|
|
template <class T> struct is_lambda_functor { |
|
BOOST_STATIC_CONSTANT(bool, |
|
value = |
|
detail::is_lambda_functor_< |
|
typename detail::remove_reference_and_cv<T>::type |
|
>::value); |
|
}; |
|
|
|
|
|
namespace detail { |
|
|
|
// -- parameter_traits_ --------------------------------------------- |
|
|
|
// An internal parameter type traits class that respects |
|
// the reference_wrapper class. |
|
|
|
// The conversions performed are: |
|
// references -> compile_time_error |
|
// T1 -> T2, |
|
// reference_wrapper<T> -> T& |
|
// const array -> ref to const array |
|
// array -> ref to array |
|
// function -> ref to function |
|
|
|
// ------------------------------------------------------------------------ |
|
|
|
template<class T1, class T2> |
|
struct parameter_traits_ { |
|
typedef T2 type; |
|
}; |
|
|
|
// Do not instantiate with reference types |
|
template<class T, class Any> struct parameter_traits_<T&, Any> { |
|
typedef typename |
|
generate_error<T&>:: |
|
parameter_traits_class_instantiated_with_reference_type type; |
|
}; |
|
|
|
// Arrays can't be stored as plain types; convert them to references |
|
template<class T, int n, class Any> struct parameter_traits_<T[n], Any> { |
|
typedef T (&type)[n]; |
|
}; |
|
|
|
template<class T, int n, class Any> |
|
struct parameter_traits_<const T[n], Any> { |
|
typedef const T (&type)[n]; |
|
}; |
|
|
|
template<class T, int n, class Any> |
|
struct parameter_traits_<volatile T[n], Any> { |
|
typedef volatile T (&type)[n]; |
|
}; |
|
template<class T, int n, class Any> |
|
struct parameter_traits_<const volatile T[n], Any> { |
|
typedef const volatile T (&type)[n]; |
|
}; |
|
|
|
|
|
template<class T, class Any> |
|
struct parameter_traits_<boost::reference_wrapper<T>, Any >{ |
|
typedef T& type; |
|
}; |
|
|
|
template<class T, class Any> |
|
struct parameter_traits_<const boost::reference_wrapper<T>, Any >{ |
|
typedef T& type; |
|
}; |
|
|
|
template<class T, class Any> |
|
struct parameter_traits_<volatile boost::reference_wrapper<T>, Any >{ |
|
typedef T& type; |
|
}; |
|
|
|
template<class T, class Any> |
|
struct parameter_traits_<const volatile boost::reference_wrapper<T>, Any >{ |
|
typedef T& type; |
|
}; |
|
|
|
template<class Any> |
|
struct parameter_traits_<void, Any> { |
|
typedef void type; |
|
}; |
|
|
|
template<class Arg, class Any> |
|
struct parameter_traits_<lambda_functor<Arg>, Any > { |
|
typedef lambda_functor<Arg> type; |
|
}; |
|
|
|
template<class Arg, class Any> |
|
struct parameter_traits_<const lambda_functor<Arg>, Any > { |
|
typedef lambda_functor<Arg> type; |
|
}; |
|
|
|
// Are the volatile versions needed? |
|
template<class Arg, class Any> |
|
struct parameter_traits_<volatile lambda_functor<Arg>, Any > { |
|
typedef lambda_functor<Arg> type; |
|
}; |
|
|
|
template<class Arg, class Any> |
|
struct parameter_traits_<const volatile lambda_functor<Arg>, Any > { |
|
typedef lambda_functor<Arg> type; |
|
}; |
|
|
|
} // end namespace detail |
|
|
|
|
|
// ------------------------------------------------------------------------ |
|
// traits classes for lambda expressions (bind functions, operators ...) |
|
|
|
// must be instantiated with non-reference types |
|
|
|
// The default is const plain type ------------------------- |
|
// const T -> const T, |
|
// T -> const T, |
|
// references -> compile_time_error |
|
// reference_wrapper<T> -> T& |
|
// array -> const ref array |
|
template<class T> |
|
struct const_copy_argument { |
|
typedef typename |
|
detail::parameter_traits_< |
|
T, |
|
typename detail::IF<boost::is_function<T>::value, T&, const T>::RET |
|
>::type type; |
|
}; |
|
|
|
// T may be a function type. Without the IF test, const would be added |
|
// to a function type, which is illegal. |
|
|
|
// all arrays are converted to const. |
|
// This traits template is used for 'const T&' parameter passing |
|
// and thus the knowledge of the potential |
|
// non-constness of an actual argument is lost. |
|
template<class T, int n> struct const_copy_argument <T[n]> { |
|
typedef const T (&type)[n]; |
|
}; |
|
template<class T, int n> struct const_copy_argument <volatile T[n]> { |
|
typedef const volatile T (&type)[n]; |
|
}; |
|
|
|
template<class T> |
|
struct const_copy_argument<T&> {}; |
|
// do not instantiate with references |
|
// typedef typename detail::generate_error<T&>::references_not_allowed type; |
|
|
|
|
|
template<> |
|
struct const_copy_argument<void> { |
|
typedef void type; |
|
}; |
|
|
|
|
|
// Does the same as const_copy_argument, but passes references through as such |
|
template<class T> |
|
struct bound_argument_conversion { |
|
typedef typename const_copy_argument<T>::type type; |
|
}; |
|
|
|
template<class T> |
|
struct bound_argument_conversion<T&> { |
|
typedef T& type; |
|
}; |
|
|
|
// The default is non-const reference ------------------------- |
|
// const T -> const T&, |
|
// T -> T&, |
|
// references -> compile_time_error |
|
// reference_wrapper<T> -> T& |
|
template<class T> |
|
struct reference_argument { |
|
typedef typename detail::parameter_traits_<T, T&>::type type; |
|
}; |
|
|
|
template<class T> |
|
struct reference_argument<T&> { |
|
typedef typename detail::generate_error<T&>::references_not_allowed type; |
|
}; |
|
|
|
template<class Arg> |
|
struct reference_argument<lambda_functor<Arg> > { |
|
typedef lambda_functor<Arg> type; |
|
}; |
|
|
|
template<class Arg> |
|
struct reference_argument<const lambda_functor<Arg> > { |
|
typedef lambda_functor<Arg> type; |
|
}; |
|
|
|
// Are the volatile versions needed? |
|
template<class Arg> |
|
struct reference_argument<volatile lambda_functor<Arg> > { |
|
typedef lambda_functor<Arg> type; |
|
}; |
|
|
|
template<class Arg> |
|
struct reference_argument<const volatile lambda_functor<Arg> > { |
|
typedef lambda_functor<Arg> type; |
|
}; |
|
|
|
template<> |
|
struct reference_argument<void> { |
|
typedef void type; |
|
}; |
|
|
|
namespace detail { |
|
|
|
// Array to pointer conversion |
|
template <class T> |
|
struct array_to_pointer { |
|
typedef T type; |
|
}; |
|
|
|
template <class T, int N> |
|
struct array_to_pointer <const T[N]> { |
|
typedef const T* type; |
|
}; |
|
template <class T, int N> |
|
struct array_to_pointer <T[N]> { |
|
typedef T* type; |
|
}; |
|
|
|
template <class T, int N> |
|
struct array_to_pointer <const T (&) [N]> { |
|
typedef const T* type; |
|
}; |
|
template <class T, int N> |
|
struct array_to_pointer <T (&) [N]> { |
|
typedef T* type; |
|
}; |
|
|
|
|
|
// --------------------------------------------------------------------------- |
|
// The call_traits for bind |
|
// Respects the reference_wrapper class. |
|
|
|
// These templates are used outside of bind functions as well. |
|
// the bind_tuple_mapper provides a shorter notation for default |
|
// bound argument storing semantics, if all arguments are treated |
|
// uniformly. |
|
|
|
// from template<class T> foo(const T& t) : bind_traits<const T>::type |
|
// from template<class T> foo(T& t) : bind_traits<T>::type |
|
|
|
// Conversions: |
|
// T -> const T, |
|
// cv T -> cv T, |
|
// T& -> T& |
|
// reference_wrapper<T> -> T& |
|
// const reference_wrapper<T> -> T& |
|
// array -> const ref array |
|
|
|
// make bound arguments const, this is a deliberate design choice, the |
|
// purpose is to prevent side effects to bound arguments that are stored |
|
// as copies |
|
template<class T> |
|
struct bind_traits { |
|
typedef const T type; |
|
}; |
|
|
|
template<class T> |
|
struct bind_traits<T&> { |
|
typedef T& type; |
|
}; |
|
|
|
// null_types are an exception, we always want to store them as non const |
|
// so that other templates can assume that null_type is always without const |
|
template<> |
|
struct bind_traits<null_type> { |
|
typedef null_type type; |
|
}; |
|
|
|
// the bind_tuple_mapper, bind_type_generators may |
|
// introduce const to null_type |
|
template<> |
|
struct bind_traits<const null_type> { |
|
typedef null_type type; |
|
}; |
|
|
|
// Arrays can't be stored as plain types; convert them to references. |
|
// All arrays are converted to const. This is because bind takes its |
|
// parameters as const T& and thus the knowledge of the potential |
|
// non-constness of actual argument is lost. |
|
template<class T, int n> struct bind_traits <T[n]> { |
|
typedef const T (&type)[n]; |
|
}; |
|
|
|
template<class T, int n> |
|
struct bind_traits<const T[n]> { |
|
typedef const T (&type)[n]; |
|
}; |
|
|
|
template<class T, int n> struct bind_traits<volatile T[n]> { |
|
typedef const volatile T (&type)[n]; |
|
}; |
|
|
|
template<class T, int n> |
|
struct bind_traits<const volatile T[n]> { |
|
typedef const volatile T (&type)[n]; |
|
}; |
|
|
|
template<class R> |
|
struct bind_traits<R()> { |
|
typedef R(&type)(); |
|
}; |
|
|
|
template<class R, class Arg1> |
|
struct bind_traits<R(Arg1)> { |
|
typedef R(&type)(Arg1); |
|
}; |
|
|
|
template<class R, class Arg1, class Arg2> |
|
struct bind_traits<R(Arg1, Arg2)> { |
|
typedef R(&type)(Arg1, Arg2); |
|
}; |
|
|
|
template<class R, class Arg1, class Arg2, class Arg3> |
|
struct bind_traits<R(Arg1, Arg2, Arg3)> { |
|
typedef R(&type)(Arg1, Arg2, Arg3); |
|
}; |
|
|
|
template<class R, class Arg1, class Arg2, class Arg3, class Arg4> |
|
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4)> { |
|
typedef R(&type)(Arg1, Arg2, Arg3, Arg4); |
|
}; |
|
|
|
template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5> |
|
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5)> { |
|
typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5); |
|
}; |
|
|
|
template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6> |
|
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6)> { |
|
typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6); |
|
}; |
|
|
|
template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7> |
|
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7)> { |
|
typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7); |
|
}; |
|
|
|
template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8> |
|
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8)> { |
|
typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8); |
|
}; |
|
|
|
template<class R, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5, class Arg6, class Arg7, class Arg8, class Arg9> |
|
struct bind_traits<R(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9)> { |
|
typedef R(&type)(Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, Arg9); |
|
}; |
|
|
|
template<class T> |
|
struct bind_traits<reference_wrapper<T> >{ |
|
typedef T& type; |
|
}; |
|
|
|
template<class T> |
|
struct bind_traits<const reference_wrapper<T> >{ |
|
typedef T& type; |
|
}; |
|
|
|
template<> |
|
struct bind_traits<void> { |
|
typedef void type; |
|
}; |
|
|
|
|
|
|
|
template < |
|
class T0 = null_type, class T1 = null_type, class T2 = null_type, |
|
class T3 = null_type, class T4 = null_type, class T5 = null_type, |
|
class T6 = null_type, class T7 = null_type, class T8 = null_type, |
|
class T9 = null_type |
|
> |
|
struct bind_tuple_mapper { |
|
typedef |
|
tuple<typename bind_traits<T0>::type, |
|
typename bind_traits<T1>::type, |
|
typename bind_traits<T2>::type, |
|
typename bind_traits<T3>::type, |
|
typename bind_traits<T4>::type, |
|
typename bind_traits<T5>::type, |
|
typename bind_traits<T6>::type, |
|
typename bind_traits<T7>::type, |
|
typename bind_traits<T8>::type, |
|
typename bind_traits<T9>::type> type; |
|
}; |
|
|
|
// bind_traits, except map const T& -> const T |
|
// this is needed e.g. in currying. Const reference arguments can |
|
// refer to temporaries, so it is not safe to store them as references. |
|
template <class T> struct remove_const_reference { |
|
typedef typename bind_traits<T>::type type; |
|
}; |
|
|
|
template <class T> struct remove_const_reference<const T&> { |
|
typedef const T type; |
|
}; |
|
|
|
|
|
// maps the bind argument types to the resulting lambda functor type |
|
template < |
|
class T0 = null_type, class T1 = null_type, class T2 = null_type, |
|
class T3 = null_type, class T4 = null_type, class T5 = null_type, |
|
class T6 = null_type, class T7 = null_type, class T8 = null_type, |
|
class T9 = null_type |
|
> |
|
class bind_type_generator { |
|
|
|
typedef typename |
|
detail::bind_tuple_mapper< |
|
T0, T1, T2, T3, T4, T5, T6, T7, T8, T9 |
|
>::type args_t; |
|
|
|
BOOST_STATIC_CONSTANT(int, nof_elems = boost::tuples::length<args_t>::value); |
|
|
|
typedef |
|
action< |
|
nof_elems, |
|
function_action<nof_elems> |
|
> action_type; |
|
|
|
public: |
|
typedef |
|
lambda_functor< |
|
lambda_functor_base< |
|
action_type, |
|
args_t |
|
> |
|
> type; |
|
|
|
}; |
|
|
|
|
|
|
|
} // detail |
|
|
|
template <class T> inline const T& make_const(const T& t) { return t; } |
|
|
|
|
|
} // end of namespace lambda |
|
} // end of namespace boost |
|
|
|
|
|
|
|
#endif // BOOST_LAMBDA_TRAITS_HPP
|
|
|