You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
976 lines
36 KiB
976 lines
36 KiB
///////////////////////////////////////////////////////////////////////////// |
|
// |
|
// (C) Copyright Ion Gaztanaga 2007. |
|
// |
|
// Distributed under the Boost Software License, Version 1.0. |
|
// (See accompanying file LICENSE_1_0.txt or copy at |
|
// http://www.boost.org/LICENSE_1_0.txt) |
|
// |
|
// See http://www.boost.org/libs/intrusive for documentation. |
|
// |
|
///////////////////////////////////////////////////////////////////////////// |
|
// The implementation of splay trees is based on the article and code published |
|
// in C++ Users Journal "Implementing Splay Trees in C++" (September 1, 2005). |
|
// |
|
// The code has been modified and (supposely) improved by Ion Gaztanaga. |
|
// Here is the header of the file used as base code: |
|
// |
|
// splay_tree.h -- implementation of a STL complatible splay tree. |
|
// |
|
// Copyright (c) 2004 Ralf Mattethat |
|
// |
|
// Permission to copy, use, modify, sell and distribute this software |
|
// is granted provided this copyright notice appears in all copies. |
|
// This software is provided "as is" without express or implied |
|
// warranty, and with no claim as to its suitability for any purpose. |
|
// |
|
// Please send questions, comments, complaints, performance data, etc to |
|
// ralf.mattethat@teknologisk.dk |
|
// |
|
// Requirements for element type |
|
// * must be copy-constructible |
|
// * destructor must not throw exception |
|
// |
|
// Methods marked with note A only throws an exception if the evaluation of the |
|
// predicate throws an exception. If an exception is thrown the call has no |
|
// effect on the containers state |
|
// |
|
// Methods marked with note B only throws an exception if the coppy constructor |
|
// or assignment operator of the predicate throws an exception. If an exception |
|
// is thrown the call has no effect on the containers state |
|
// |
|
// iterators are only invalidated, if the element pointed to by the iterator |
|
// is deleted. The same goes for element references |
|
// |
|
|
|
#ifndef BOOST_INTRUSIVE_SPLAYTREE_ALGORITHMS_HPP |
|
#define BOOST_INTRUSIVE_SPLAYTREE_ALGORITHMS_HPP |
|
|
|
#include <boost/intrusive/detail/config_begin.hpp> |
|
#include <boost/intrusive/detail/assert.hpp> |
|
#include <boost/intrusive/intrusive_fwd.hpp> |
|
#include <cstddef> |
|
#include <boost/intrusive/detail/utilities.hpp> |
|
#include <boost/intrusive/detail/tree_algorithms.hpp> |
|
|
|
namespace boost { |
|
namespace intrusive { |
|
|
|
/// @cond |
|
namespace detail { |
|
|
|
template<class NodeTraits> |
|
struct splaydown_rollback |
|
{ |
|
typedef typename NodeTraits::node_ptr node_ptr; |
|
splaydown_rollback( const node_ptr *pcur_subtree, node_ptr header |
|
, node_ptr leftmost , node_ptr rightmost) |
|
: pcur_subtree_(pcur_subtree) , header_(header) |
|
, leftmost_(leftmost) , rightmost_(rightmost) |
|
{} |
|
|
|
void release() |
|
{ pcur_subtree_ = 0; } |
|
|
|
~splaydown_rollback() |
|
{ |
|
if(pcur_subtree_){ |
|
//Exception can only be thrown by comp, but |
|
//tree invariants still hold. *pcur_subtree is the current root |
|
//so link it to the header. |
|
NodeTraits::set_parent(*pcur_subtree_, header_); |
|
NodeTraits::set_parent(header_, *pcur_subtree_); |
|
//Recover leftmost/rightmost pointers |
|
NodeTraits::set_left (header_, leftmost_); |
|
NodeTraits::set_right(header_, rightmost_); |
|
} |
|
} |
|
const node_ptr *pcur_subtree_; |
|
node_ptr header_, leftmost_, rightmost_; |
|
}; |
|
|
|
} //namespace detail { |
|
/// @endcond |
|
|
|
//! A splay tree is an implementation of a binary search tree. The tree is |
|
//! self balancing using the splay algorithm as described in |
|
//! |
|
//! "Self-Adjusting Binary Search Trees |
|
//! by Daniel Dominic Sleator and Robert Endre Tarjan |
|
//! AT&T Bell Laboratories, Murray Hill, NJ |
|
//! Journal of the ACM, Vol 32, no 3, July 1985, pp 652-686 |
|
|
|
//! splaytree_algorithms is configured with a NodeTraits class, which encapsulates the |
|
//! information about the node to be manipulated. NodeTraits must support the |
|
//! following interface: |
|
//! |
|
//! <b>Typedefs</b>: |
|
//! |
|
//! <tt>node</tt>: The type of the node that forms the circular list |
|
//! |
|
//! <tt>node_ptr</tt>: A pointer to a node |
|
//! |
|
//! <tt>const_node_ptr</tt>: A pointer to a const node |
|
//! |
|
//! <b>Static functions</b>: |
|
//! |
|
//! <tt>static node_ptr get_parent(const_node_ptr n);</tt> |
|
//! |
|
//! <tt>static void set_parent(node_ptr n, node_ptr parent);</tt> |
|
//! |
|
//! <tt>static node_ptr get_left(const_node_ptr n);</tt> |
|
//! |
|
//! <tt>static void set_left(node_ptr n, node_ptr left);</tt> |
|
//! |
|
//! <tt>static node_ptr get_right(const_node_ptr n);</tt> |
|
//! |
|
//! <tt>static void set_right(node_ptr n, node_ptr right);</tt> |
|
template<class NodeTraits> |
|
class splaytree_algorithms |
|
{ |
|
/// @cond |
|
private: |
|
typedef detail::tree_algorithms<NodeTraits> tree_algorithms; |
|
/// @endcond |
|
|
|
public: |
|
typedef typename NodeTraits::node node; |
|
typedef NodeTraits node_traits; |
|
typedef typename NodeTraits::node_ptr node_ptr; |
|
typedef typename NodeTraits::const_node_ptr const_node_ptr; |
|
|
|
//! This type is the information that will be |
|
//! filled by insert_unique_check |
|
typedef typename tree_algorithms::insert_commit_data insert_commit_data; |
|
|
|
/// @cond |
|
private: |
|
static node_ptr uncast(const_node_ptr ptr) |
|
{ |
|
return node_ptr(const_cast<node*>(::boost::intrusive::detail::boost_intrusive_get_pointer(ptr))); |
|
} |
|
/// @endcond |
|
|
|
public: |
|
static node_ptr begin_node(const_node_ptr header) |
|
{ return tree_algorithms::begin_node(header); } |
|
|
|
static node_ptr end_node(const_node_ptr header) |
|
{ return tree_algorithms::end_node(header); } |
|
|
|
//! <b>Requires</b>: node is a node of the tree or an node initialized |
|
//! by init(...). |
|
//! |
|
//! <b>Effects</b>: Returns true if the node is initialized by init(). |
|
//! |
|
//! <b>Complexity</b>: Constant time. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
static bool unique(const_node_ptr node) |
|
{ return tree_algorithms::unique(node); } |
|
|
|
static void unlink(node_ptr node) |
|
{ tree_algorithms::unlink(node); } |
|
|
|
//! <b>Requires</b>: node1 and node2 can't be header nodes |
|
//! of two trees. |
|
//! |
|
//! <b>Effects</b>: Swaps two nodes. After the function node1 will be inserted |
|
//! in the position node2 before the function. node2 will be inserted in the |
|
//! position node1 had before the function. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: This function will break container ordering invariants if |
|
//! node1 and node2 are not equivalent according to the ordering rules. |
|
//! |
|
//!Experimental function |
|
static void swap_nodes(node_ptr node1, node_ptr node2) |
|
{ |
|
if(node1 == node2) |
|
return; |
|
|
|
node_ptr header1(tree_algorithms::get_header(node1)), header2(tree_algorithms::get_header(node2)); |
|
swap_nodes(node1, header1, node2, header2); |
|
} |
|
|
|
//! <b>Requires</b>: node1 and node2 can't be header nodes |
|
//! of two trees with header header1 and header2. |
|
//! |
|
//! <b>Effects</b>: Swaps two nodes. After the function node1 will be inserted |
|
//! in the position node2 before the function. node2 will be inserted in the |
|
//! position node1 had before the function. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: This function will break container ordering invariants if |
|
//! node1 and node2 are not equivalent according to the ordering rules. |
|
//! |
|
//!Experimental function |
|
static void swap_nodes(node_ptr node1, node_ptr header1, node_ptr node2, node_ptr header2) |
|
{ tree_algorithms::swap_nodes(node1, header1, node2, header2); } |
|
|
|
//! <b>Requires</b>: node_to_be_replaced must be inserted in a tree |
|
//! and new_node must not be inserted in a tree. |
|
//! |
|
//! <b>Effects</b>: Replaces node_to_be_replaced in its position in the |
|
//! tree with new_node. The tree does not need to be rebalanced |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: This function will break container ordering invariants if |
|
//! new_node is not equivalent to node_to_be_replaced according to the |
|
//! ordering rules. This function is faster than erasing and inserting |
|
//! the node, since no rebalancing and comparison is needed. |
|
//! |
|
//!Experimental function |
|
static void replace_node(node_ptr node_to_be_replaced, node_ptr new_node) |
|
{ |
|
if(node_to_be_replaced == new_node) |
|
return; |
|
replace_node(node_to_be_replaced, tree_algorithms::get_header(node_to_be_replaced), new_node); |
|
} |
|
|
|
//! <b>Requires</b>: node_to_be_replaced must be inserted in a tree |
|
//! with header "header" and new_node must not be inserted in a tree. |
|
//! |
|
//! <b>Effects</b>: Replaces node_to_be_replaced in its position in the |
|
//! tree with new_node. The tree does not need to be rebalanced |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: This function will break container ordering invariants if |
|
//! new_node is not equivalent to node_to_be_replaced according to the |
|
//! ordering rules. This function is faster than erasing and inserting |
|
//! the node, since no rebalancing or comparison is needed. |
|
//! |
|
//!Experimental function |
|
static void replace_node(node_ptr node_to_be_replaced, node_ptr header, node_ptr new_node) |
|
{ tree_algorithms::replace_node(node_to_be_replaced, header, new_node); } |
|
|
|
//! <b>Requires</b>: p is a node from the tree except the header. |
|
//! |
|
//! <b>Effects</b>: Returns the next node of the tree. |
|
//! |
|
//! <b>Complexity</b>: Average constant time. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
static node_ptr next_node(node_ptr p) |
|
{ return tree_algorithms::next_node(p); } |
|
|
|
//! <b>Requires</b>: p is a node from the tree except the leftmost node. |
|
//! |
|
//! <b>Effects</b>: Returns the previous node of the tree. |
|
//! |
|
//! <b>Complexity</b>: Average constant time. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
static node_ptr prev_node(node_ptr p) |
|
{ return tree_algorithms::prev_node(p); } |
|
|
|
//! <b>Requires</b>: node must not be part of any tree. |
|
//! |
|
//! <b>Effects</b>: After the function unique(node) == true. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree. |
|
static void init(node_ptr node) |
|
{ tree_algorithms::init(node); } |
|
|
|
//! <b>Requires</b>: node must not be part of any tree. |
|
//! |
|
//! <b>Effects</b>: Initializes the header to represent an empty tree. |
|
//! unique(header) == true. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree. |
|
static void init_header(node_ptr header) |
|
{ tree_algorithms::init_header(header); } |
|
|
|
//! <b>Requires</b>: "disposer" must be an object function |
|
//! taking a node_ptr parameter and shouldn't throw. |
|
//! |
|
//! <b>Effects</b>: Empties the target tree calling |
|
//! <tt>void disposer::operator()(node_ptr)</tt> for every node of the tree |
|
//! except the header. |
|
//! |
|
//! <b>Complexity</b>: Linear to the number of element of the source tree plus the. |
|
//! number of elements of tree target tree when calling this function. |
|
//! |
|
//! <b>Throws</b>: If cloner functor throws. If this happens target nodes are disposed. |
|
template<class Disposer> |
|
static void clear_and_dispose(node_ptr header, Disposer disposer) |
|
{ tree_algorithms::clear_and_dispose(header, disposer); } |
|
|
|
//! <b>Requires</b>: node is a node of the tree but it's not the header. |
|
//! |
|
//! <b>Effects</b>: Returns the number of nodes of the subtree. |
|
//! |
|
//! <b>Complexity</b>: Linear time. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
static std::size_t count(const_node_ptr node) |
|
{ return tree_algorithms::count(node); } |
|
|
|
//! <b>Requires</b>: header is the header node of the tree. |
|
//! |
|
//! <b>Effects</b>: Returns the number of nodes above the header. |
|
//! |
|
//! <b>Complexity</b>: Linear time. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
static std::size_t size(const_node_ptr header) |
|
{ return tree_algorithms::size(header); } |
|
|
|
//! <b>Requires</b>: header1 and header2 must be the header nodes |
|
//! of two trees. |
|
//! |
|
//! <b>Effects</b>: Swaps two trees. After the function header1 will contain |
|
//! links to the second tree and header2 will have links to the first tree. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
static void swap_tree(node_ptr header1, node_ptr header2) |
|
{ return tree_algorithms::swap_tree(header1, header2); } |
|
|
|
//! <b>Requires</b>: "header" must be the header node of a tree. |
|
//! "commit_data" must have been obtained from a previous call to |
|
//! "insert_unique_check". No objects should have been inserted or erased |
|
//! from the set between the "insert_unique_check" that filled "commit_data" |
|
//! and the call to "insert_commit". |
|
//! |
|
//! |
|
//! <b>Effects</b>: Inserts new_node in the set using the information obtained |
|
//! from the "commit_data" that a previous "insert_check" filled. |
|
//! |
|
//! <b>Complexity</b>: Constant time. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Notes</b>: This function has only sense if a "insert_unique_check" has been |
|
//! previously executed to fill "commit_data". No value should be inserted or |
|
//! erased between the "insert_check" and "insert_commit" calls. |
|
static void insert_unique_commit |
|
(node_ptr header, node_ptr new_value, const insert_commit_data &commit_data) |
|
{ tree_algorithms::insert_unique_commit(header, new_value, commit_data); } |
|
|
|
//! <b>Requires</b>: "header" must be the header node of a tree. |
|
//! KeyNodePtrCompare is a function object that induces a strict weak |
|
//! ordering compatible with the strict weak ordering used to create the |
|
//! the tree. NodePtrCompare compares KeyType with a node_ptr. |
|
//! |
|
//! <b>Effects</b>: Checks if there is an equivalent node to "key" in the |
|
//! tree according to "comp" and obtains the needed information to realize |
|
//! a constant-time node insertion if there is no equivalent node. |
|
//! |
|
//! <b>Returns</b>: If there is an equivalent value |
|
//! returns a pair containing a node_ptr to the already present node |
|
//! and false. If there is not equivalent key can be inserted returns true |
|
//! in the returned pair's boolean and fills "commit_data" that is meant to |
|
//! be used with the "insert_commit" function to achieve a constant-time |
|
//! insertion function. |
|
//! |
|
//! <b>Complexity</b>: Average complexity is at most logarithmic. |
|
//! |
|
//! <b>Throws</b>: If "comp" throws. |
|
//! |
|
//! <b>Notes</b>: This function is used to improve performance when constructing |
|
//! a node is expensive and the user does not want to have two equivalent nodes |
|
//! in the tree: if there is an equivalent value |
|
//! the constructed object must be discarded. Many times, the part of the |
|
//! node that is used to impose the order is much cheaper to construct |
|
//! than the node and this function offers the possibility to use that part |
|
//! to check if the insertion will be successful. |
|
//! |
|
//! If the check is successful, the user can construct the node and use |
|
//! "insert_commit" to insert the node in constant-time. This gives a total |
|
//! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)). |
|
//! |
|
//! "commit_data" remains valid for a subsequent "insert_unique_commit" only |
|
//! if no more objects are inserted or erased from the set. |
|
template<class KeyType, class KeyNodePtrCompare> |
|
static std::pair<node_ptr, bool> insert_unique_check |
|
(node_ptr header, const KeyType &key |
|
,KeyNodePtrCompare comp, insert_commit_data &commit_data) |
|
{ |
|
splay_down(header, key, comp); |
|
return tree_algorithms::insert_unique_check(header, key, comp, commit_data); |
|
} |
|
|
|
template<class KeyType, class KeyNodePtrCompare> |
|
static std::pair<node_ptr, bool> insert_unique_check |
|
(node_ptr header, node_ptr hint, const KeyType &key |
|
,KeyNodePtrCompare comp, insert_commit_data &commit_data) |
|
{ |
|
splay_down(header, key, comp); |
|
return tree_algorithms::insert_unique_check(header, hint, key, comp, commit_data); |
|
} |
|
|
|
static bool is_header(const_node_ptr p) |
|
{ return tree_algorithms::is_header(p); } |
|
|
|
//! <b>Requires</b>: "header" must be the header node of a tree. |
|
//! KeyNodePtrCompare is a function object that induces a strict weak |
|
//! ordering compatible with the strict weak ordering used to create the |
|
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs. |
|
//! |
|
//! <b>Effects</b>: Returns an node_ptr to the element that is equivalent to |
|
//! "key" according to "comp" or "header" if that element does not exist. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: If "comp" throws. |
|
template<class KeyType, class KeyNodePtrCompare> |
|
static node_ptr find |
|
(const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp, bool splay = true) |
|
{ |
|
if(splay) |
|
splay_down(uncast(header), key, comp); |
|
node_ptr end = uncast(header); |
|
node_ptr y = lower_bound(header, key, comp, false); |
|
node_ptr r = (y == end || comp(key, y)) ? end : y; |
|
return r; |
|
} |
|
|
|
//! <b>Requires</b>: "header" must be the header node of a tree. |
|
//! KeyNodePtrCompare is a function object that induces a strict weak |
|
//! ordering compatible with the strict weak ordering used to create the |
|
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs. |
|
//! |
|
//! <b>Effects</b>: Returns an a pair of node_ptr delimiting a range containing |
|
//! all elements that are equivalent to "key" according to "comp" or an |
|
//! empty range that indicates the position where those elements would be |
|
//! if they there are no equivalent elements. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: If "comp" throws. |
|
template<class KeyType, class KeyNodePtrCompare> |
|
static std::pair<node_ptr, node_ptr> equal_range |
|
(const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp, bool splay = true) |
|
{ |
|
//if(splay) |
|
//splay_down(uncast(header), key, comp); |
|
std::pair<node_ptr, node_ptr> ret = |
|
tree_algorithms::equal_range(header, key, comp); |
|
|
|
if(splay) |
|
splay_up(ret.first, uncast(header)); |
|
return ret; |
|
} |
|
|
|
//! <b>Requires</b>: "header" must be the header node of a tree. |
|
//! KeyNodePtrCompare is a function object that induces a strict weak |
|
//! ordering compatible with the strict weak ordering used to create the |
|
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs. |
|
//! |
|
//! <b>Effects</b>: Returns an node_ptr to the first element that is |
|
//! not less than "key" according to "comp" or "header" if that element does |
|
//! not exist. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: If "comp" throws. |
|
template<class KeyType, class KeyNodePtrCompare> |
|
static node_ptr lower_bound |
|
(const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp, bool splay = true) |
|
{ |
|
//if(splay) |
|
//splay_down(uncast(header), key, comp); |
|
node_ptr y = tree_algorithms::lower_bound(header, key, comp); |
|
if(splay) |
|
splay_up(y, uncast(header)); |
|
return y; |
|
} |
|
|
|
//! <b>Requires</b>: "header" must be the header node of a tree. |
|
//! KeyNodePtrCompare is a function object that induces a strict weak |
|
//! ordering compatible with the strict weak ordering used to create the |
|
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs. |
|
//! |
|
//! <b>Effects</b>: Returns an node_ptr to the first element that is greater |
|
//! than "key" according to "comp" or "header" if that element does not exist. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: If "comp" throws. |
|
template<class KeyType, class KeyNodePtrCompare> |
|
static node_ptr upper_bound |
|
(const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp, bool splay = true) |
|
{ |
|
//if(splay) |
|
//splay_down(uncast(header), key, comp); |
|
node_ptr y = tree_algorithms::upper_bound(header, key, comp); |
|
if(splay) |
|
splay_up(y, uncast(header)); |
|
return y; |
|
} |
|
|
|
//! <b>Requires</b>: "header" must be the header node of a tree. |
|
//! NodePtrCompare is a function object that induces a strict weak |
|
//! ordering compatible with the strict weak ordering used to create the |
|
//! the tree. NodePtrCompare compares two node_ptrs. "hint" is node from |
|
//! the "header"'s tree. |
|
//! |
|
//! <b>Effects</b>: Inserts new_node into the tree, using "hint" as a hint to |
|
//! where it will be inserted. If "hint" is the upper_bound |
|
//! the insertion takes constant time (two comparisons in the worst case). |
|
//! |
|
//! <b>Complexity</b>: Logarithmic in general, but it is amortized |
|
//! constant time if new_node is inserted immediately before "hint". |
|
//! |
|
//! <b>Throws</b>: If "comp" throws. |
|
template<class NodePtrCompare> |
|
static node_ptr insert_equal |
|
(node_ptr header, node_ptr hint, node_ptr new_node, NodePtrCompare comp) |
|
{ |
|
splay_down(header, new_node, comp); |
|
return tree_algorithms::insert_equal(header, hint, new_node, comp); |
|
} |
|
|
|
|
|
//! <b>Requires</b>: "header" must be the header node of a tree. |
|
//! "pos" must be a valid iterator or header (end) node. |
|
//! "pos" must be an iterator pointing to the successor to "new_node" |
|
//! once inserted according to the order of already inserted nodes. This function does not |
|
//! check "pos" and this precondition must be guaranteed by the caller. |
|
//! |
|
//! <b>Effects</b>: Inserts new_node into the tree before "pos". |
|
//! |
|
//! <b>Complexity</b>: Constant-time. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: If "pos" is not the successor of the newly inserted "new_node" |
|
//! tree invariants might be broken. |
|
static node_ptr insert_before |
|
(node_ptr header, node_ptr pos, node_ptr new_node) |
|
{ |
|
tree_algorithms::insert_before(header, pos, new_node); |
|
splay_up(new_node, header); |
|
return new_node; |
|
} |
|
|
|
//! <b>Requires</b>: "header" must be the header node of a tree. |
|
//! "new_node" must be, according to the used ordering no less than the |
|
//! greatest inserted key. |
|
//! |
|
//! <b>Effects</b>: Inserts new_node into the tree before "pos". |
|
//! |
|
//! <b>Complexity</b>: Constant-time. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: If "new_node" is less than the greatest inserted key |
|
//! tree invariants are broken. This function is slightly faster than |
|
//! using "insert_before". |
|
static void push_back(node_ptr header, node_ptr new_node) |
|
{ |
|
tree_algorithms::push_back(header, new_node); |
|
splay_up(new_node, header); |
|
} |
|
|
|
//! <b>Requires</b>: "header" must be the header node of a tree. |
|
//! "new_node" must be, according to the used ordering, no greater than the |
|
//! lowest inserted key. |
|
//! |
|
//! <b>Effects</b>: Inserts new_node into the tree before "pos". |
|
//! |
|
//! <b>Complexity</b>: Constant-time. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: If "new_node" is greater than the lowest inserted key |
|
//! tree invariants are broken. This function is slightly faster than |
|
//! using "insert_before". |
|
static void push_front(node_ptr header, node_ptr new_node) |
|
{ |
|
tree_algorithms::push_front(header, new_node); |
|
splay_up(new_node, header); |
|
} |
|
|
|
//! <b>Requires</b>: "header" must be the header node of a tree. |
|
//! NodePtrCompare is a function object that induces a strict weak |
|
//! ordering compatible with the strict weak ordering used to create the |
|
//! the tree. NodePtrCompare compares two node_ptrs. |
|
//! |
|
//! <b>Effects</b>: Inserts new_node into the tree before the upper bound |
|
//! according to "comp". |
|
//! |
|
//! <b>Complexity</b>: Average complexity for insert element is at |
|
//! most logarithmic. |
|
//! |
|
//! <b>Throws</b>: If "comp" throws. |
|
template<class NodePtrCompare> |
|
static node_ptr insert_equal_upper_bound |
|
(node_ptr header, node_ptr new_node, NodePtrCompare comp) |
|
{ |
|
splay_down(header, new_node, comp); |
|
return tree_algorithms::insert_equal_upper_bound(header, new_node, comp); |
|
} |
|
|
|
//! <b>Requires</b>: "header" must be the header node of a tree. |
|
//! NodePtrCompare is a function object that induces a strict weak |
|
//! ordering compatible with the strict weak ordering used to create the |
|
//! the tree. NodePtrCompare compares two node_ptrs. |
|
//! |
|
//! <b>Effects</b>: Inserts new_node into the tree before the lower bound |
|
//! according to "comp". |
|
//! |
|
//! <b>Complexity</b>: Average complexity for insert element is at |
|
//! most logarithmic. |
|
//! |
|
//! <b>Throws</b>: If "comp" throws. |
|
template<class NodePtrCompare> |
|
static node_ptr insert_equal_lower_bound |
|
(node_ptr header, node_ptr new_node, NodePtrCompare comp) |
|
{ |
|
splay_down(header, new_node, comp); |
|
return tree_algorithms::insert_equal_lower_bound(header, new_node, comp); |
|
} |
|
|
|
//! <b>Requires</b>: "cloner" must be a function |
|
//! object taking a node_ptr and returning a new cloned node of it. "disposer" must |
|
//! take a node_ptr and shouldn't throw. |
|
//! |
|
//! <b>Effects</b>: First empties target tree calling |
|
//! <tt>void disposer::operator()(node_ptr)</tt> for every node of the tree |
|
//! except the header. |
|
//! |
|
//! Then, duplicates the entire tree pointed by "source_header" cloning each |
|
//! source node with <tt>node_ptr Cloner::operator()(node_ptr)</tt> to obtain |
|
//! the nodes of the target tree. If "cloner" throws, the cloned target nodes |
|
//! are disposed using <tt>void disposer(node_ptr)</tt>. |
|
//! |
|
//! <b>Complexity</b>: Linear to the number of element of the source tree plus the. |
|
//! number of elements of tree target tree when calling this function. |
|
//! |
|
//! <b>Throws</b>: If cloner functor throws. If this happens target nodes are disposed. |
|
template <class Cloner, class Disposer> |
|
static void clone |
|
(const_node_ptr source_header, node_ptr target_header, Cloner cloner, Disposer disposer) |
|
{ tree_algorithms::clone(source_header, target_header, cloner, disposer); } |
|
|
|
// delete node | complexity : constant | exception : nothrow |
|
static void erase(node_ptr header, node_ptr z, bool splay = true) |
|
{ |
|
// node_base* n = t->right; |
|
// if( t->left != 0 ){ |
|
// node_base* l = t->previous(); |
|
// splay_up( l , t ); |
|
// n = t->left; |
|
// n->right = t->right; |
|
// if( n->right != 0 ) |
|
// n->right->parent = n; |
|
// } |
|
// |
|
// if( n != 0 ) |
|
// n->parent = t->parent; |
|
// |
|
// if( t->parent->left == t ) |
|
// t->parent->left = n; |
|
// else // must be ( t->parent->right == t ) |
|
// t->parent->right = n; |
|
// |
|
// if( data_->parent == t ) |
|
// data_->parent = find_leftmost(); |
|
//posibility 1 |
|
if(splay && NodeTraits::get_left(z)){ |
|
splay_up(prev_node(z), header); |
|
} |
|
/* |
|
//possibility 2 |
|
if(splay && NodeTraits::get_left(z) != 0 ){ |
|
node_ptr l = NodeTraits::get_left(z); |
|
splay_up(l, header); |
|
}*//* |
|
if(splay && NodeTraits::get_left(z) != 0 ){ |
|
node_ptr l = prev_node(z); |
|
splay_up_impl(l, z); |
|
}*/ |
|
/* |
|
//possibility 4 |
|
if(splay){ |
|
splay_up(z, header); |
|
}*/ |
|
|
|
//if(splay) |
|
//splay_up(z, header); |
|
tree_algorithms::erase(header, z); |
|
} |
|
|
|
// bottom-up splay, use data_ as parent for n | complexity : logarithmic | exception : nothrow |
|
static void splay_up(node_ptr n, node_ptr header) |
|
{ |
|
if(n == header){ // do a splay for the right most node instead |
|
// this is to boost performance of equal_range/count on equivalent containers in the case |
|
// where there are many equal elements at the end |
|
n = NodeTraits::get_right(header); |
|
} |
|
|
|
node_ptr t = header; |
|
|
|
if( n == t ) return; |
|
|
|
for( ;; ){ |
|
node_ptr p(NodeTraits::get_parent(n)); |
|
node_ptr g(NodeTraits::get_parent(p)); |
|
|
|
if( p == t ) break; |
|
|
|
if( g == t ){ |
|
// zig |
|
rotate(n); |
|
} |
|
else if ((NodeTraits::get_left(p) == n && NodeTraits::get_left(g) == p) || |
|
(NodeTraits::get_right(p) == n && NodeTraits::get_right(g) == p) ){ |
|
// zig-zig |
|
rotate(p); |
|
rotate(n); |
|
} |
|
else{ |
|
// zig-zag |
|
rotate(n); |
|
rotate(n); |
|
} |
|
} |
|
} |
|
|
|
// top-down splay | complexity : logarithmic | exception : strong, note A |
|
template<class KeyType, class KeyNodePtrCompare> |
|
static node_ptr splay_down(node_ptr header, const KeyType &key, KeyNodePtrCompare comp) |
|
{ |
|
if(!NodeTraits::get_parent(header)) |
|
return header; |
|
//Most splay tree implementations use a dummy/null node to implement. |
|
//this function. This has some problems for a generic library like Intrusive: |
|
// |
|
// * The node might not have a default constructor. |
|
// * The default constructor could throw. |
|
// |
|
//We already have a header node. Leftmost and rightmost nodes of the tree |
|
//are not changed when splaying (because the invariants of the tree don't |
|
//change) We can back up them, use the header as the null node and |
|
//reassign old values after the function has been completed. |
|
node_ptr t = NodeTraits::get_parent(header); |
|
//Check if tree has a single node |
|
if(!NodeTraits::get_left(t) && !NodeTraits::get_right(t)) |
|
return t; |
|
//Backup leftmost/rightmost |
|
node_ptr leftmost (NodeTraits::get_left(header)); |
|
node_ptr rightmost(NodeTraits::get_right(header)); |
|
{ |
|
detail::splaydown_rollback<NodeTraits> rollback(&t, header, leftmost, rightmost); |
|
node_ptr null = header; |
|
node_ptr l = null; |
|
node_ptr r = null; |
|
|
|
for( ;; ){ |
|
if(comp(key, t)){ |
|
if(NodeTraits::get_left(t) == 0 ) |
|
break; |
|
if(comp(key, NodeTraits::get_left(t))){ |
|
t = tree_algorithms::rotate_right(t); |
|
|
|
if(NodeTraits::get_left(t) == 0) |
|
break; |
|
link_right(t, r); |
|
} |
|
else if(comp(NodeTraits::get_left(t), key)){ |
|
link_right(t, r); |
|
|
|
if(NodeTraits::get_right(t) == 0 ) |
|
break; |
|
link_left(t, l); |
|
} |
|
else{ |
|
link_right(t, r); |
|
} |
|
} |
|
else if(comp(t, key)){ |
|
if(NodeTraits::get_right(t) == 0 ) |
|
break; |
|
|
|
if(comp(NodeTraits::get_right(t), key)){ |
|
t = tree_algorithms::rotate_left( t ); |
|
|
|
if(NodeTraits::get_right(t) == 0 ) |
|
break; |
|
link_left(t, l); |
|
} |
|
else if(comp(key, NodeTraits::get_right(t))){ |
|
link_left(t, l); |
|
|
|
if(NodeTraits::get_left(t) == 0) |
|
break; |
|
|
|
link_right(t, r); |
|
} |
|
else{ |
|
link_left(t, l); |
|
} |
|
} |
|
else{ |
|
break; |
|
} |
|
} |
|
|
|
assemble(t, l, r, null); |
|
rollback.release(); |
|
} |
|
|
|
//t is the current root |
|
NodeTraits::set_parent(header, t); |
|
NodeTraits::set_parent(t, header); |
|
//Recover leftmost/rightmost pointers |
|
NodeTraits::set_left (header, leftmost); |
|
NodeTraits::set_right(header, rightmost); |
|
return t; |
|
} |
|
|
|
//! <b>Requires</b>: header must be the header of a tree. |
|
//! |
|
//! <b>Effects</b>: Rebalances the tree. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Linear. |
|
static void rebalance(node_ptr header) |
|
{ tree_algorithms::rebalance(header); } |
|
|
|
//! <b>Requires</b>: old_root is a node of a tree. |
|
//! |
|
//! <b>Effects</b>: Rebalances the subtree rooted at old_root. |
|
//! |
|
//! <b>Returns</b>: The new root of the subtree. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Linear. |
|
static node_ptr rebalance_subtree(node_ptr old_root) |
|
{ return tree_algorithms::rebalance_subtree(old_root); } |
|
|
|
|
|
//! <b>Requires</b>: "n" must be a node inserted in a tree. |
|
//! |
|
//! <b>Effects</b>: Returns a pointer to the header node of the tree. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
static node_ptr get_header(node_ptr n) |
|
{ return tree_algorithms::get_header(n); } |
|
|
|
private: |
|
|
|
/// @cond |
|
|
|
// assemble the three sub-trees into new tree pointed to by t | complexity : constant | exception : nothrow |
|
static void assemble( node_ptr t, node_ptr l, node_ptr r, const_node_ptr null_node ) |
|
{ |
|
NodeTraits::set_right(l, NodeTraits::get_left(t)); |
|
NodeTraits::set_left(r, NodeTraits::get_right(t)); |
|
|
|
if(NodeTraits::get_right(l) != 0){ |
|
NodeTraits::set_parent(NodeTraits::get_right(l), l); |
|
} |
|
|
|
if(NodeTraits::get_left(r) != 0){ |
|
NodeTraits::set_parent(NodeTraits::get_left(r), r); |
|
} |
|
|
|
NodeTraits::set_left (t, NodeTraits::get_right(null_node)); |
|
NodeTraits::set_right(t, NodeTraits::get_left(null_node)); |
|
|
|
if( NodeTraits::get_left(t) != 0 ){ |
|
NodeTraits::set_parent(NodeTraits::get_left(t), t); |
|
} |
|
|
|
if( NodeTraits::get_right(t) ){ |
|
NodeTraits::set_parent(NodeTraits::get_right(t), t); |
|
} |
|
} |
|
|
|
// break link to left child node and attach it to left tree pointed to by l | complexity : constant | exception : nothrow |
|
static void link_left(node_ptr& t, node_ptr& l) |
|
{ |
|
NodeTraits::set_right(l, t); |
|
NodeTraits::set_parent(t, l); |
|
l = t; |
|
t = NodeTraits::get_right(t); |
|
} |
|
|
|
// break link to right child node and attach it to right tree pointed to by r | complexity : constant | exception : nothrow |
|
static void link_right(node_ptr& t, node_ptr& r) |
|
{ |
|
NodeTraits::set_left(r, t); |
|
NodeTraits::set_parent(t, r); |
|
r = t; |
|
t = NodeTraits::get_left(t); |
|
} |
|
|
|
// rotate n with its parent | complexity : constant | exception : nothrow |
|
static void rotate(node_ptr n) |
|
{ |
|
node_ptr p = NodeTraits::get_parent(n); |
|
node_ptr g = NodeTraits::get_parent(p); |
|
//Test if g is header before breaking tree |
|
//invariants that would make is_header invalid |
|
bool g_is_header = is_header(g); |
|
|
|
if(NodeTraits::get_left(p) == n){ |
|
NodeTraits::set_left(p, NodeTraits::get_right(n)); |
|
if(NodeTraits::get_left(p) != 0) |
|
NodeTraits::set_parent(NodeTraits::get_left(p), p); |
|
NodeTraits::set_right(n, p); |
|
} |
|
else{ // must be ( p->right == n ) |
|
NodeTraits::set_right(p, NodeTraits::get_left(n)); |
|
if(NodeTraits::get_right(p) != 0) |
|
NodeTraits::set_parent(NodeTraits::get_right(p), p); |
|
NodeTraits::set_left(n, p); |
|
} |
|
|
|
NodeTraits::set_parent(p, n); |
|
NodeTraits::set_parent(n, g); |
|
|
|
if(g_is_header){ |
|
if(NodeTraits::get_parent(g) == p) |
|
NodeTraits::set_parent(g, n); |
|
else{//must be ( g->right == p ) |
|
BOOST_INTRUSIVE_INVARIANT_ASSERT(0); |
|
NodeTraits::set_right(g, n); |
|
} |
|
} |
|
else{ |
|
if(NodeTraits::get_left(g) == p) |
|
NodeTraits::set_left(g, n); |
|
else //must be ( g->right == p ) |
|
NodeTraits::set_right(g, n); |
|
} |
|
} |
|
|
|
/// @endcond |
|
}; |
|
|
|
} //namespace intrusive |
|
} //namespace boost |
|
|
|
#include <boost/intrusive/detail/config_end.hpp> |
|
|
|
#endif //BOOST_INTRUSIVE_SPLAYTREE_ALGORITHMS_HPP
|
|
|