You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
1908 lines
69 KiB
1908 lines
69 KiB
///////////////////////////////////////////////////////////////////////////// |
|
// |
|
// (C) Copyright Ion Gaztanaga 2007-2009 |
|
// |
|
// Distributed under the Boost Software License, Version 1.0. |
|
// (See accompanying file LICENSE_1_0.txt or copy at |
|
// http://www.boost.org/LICENSE_1_0.txt) |
|
// |
|
// See http://www.boost.org/libs/intrusive for documentation. |
|
// |
|
///////////////////////////////////////////////////////////////////////////// |
|
// |
|
// The option that yields to non-floating point 1/sqrt(2) alpha is taken |
|
// from the scapegoat tree implementation of the PSPP library. |
|
// |
|
///////////////////////////////////////////////////////////////////////////// |
|
|
|
#ifndef BOOST_INTRUSIVE_SGTREE_HPP |
|
#define BOOST_INTRUSIVE_SGTREE_HPP |
|
|
|
#include <boost/intrusive/detail/config_begin.hpp> |
|
#include <algorithm> |
|
#include <cstddef> |
|
#include <functional> |
|
#include <iterator> |
|
#include <utility> |
|
#include <cmath> |
|
#include <cstddef> |
|
#include <boost/intrusive/detail/assert.hpp> |
|
#include <boost/static_assert.hpp> |
|
#include <boost/intrusive/intrusive_fwd.hpp> |
|
#include <boost/intrusive/bs_set_hook.hpp> |
|
#include <boost/intrusive/detail/tree_node.hpp> |
|
#include <boost/intrusive/detail/ebo_functor_holder.hpp> |
|
#include <boost/intrusive/detail/pointer_to_other.hpp> |
|
#include <boost/intrusive/detail/clear_on_destructor_base.hpp> |
|
#include <boost/intrusive/detail/mpl.hpp> |
|
#include <boost/intrusive/options.hpp> |
|
#include <boost/intrusive/sgtree_algorithms.hpp> |
|
#include <boost/intrusive/link_mode.hpp> |
|
#include <boost/move/move.hpp> |
|
|
|
namespace boost { |
|
namespace intrusive { |
|
|
|
/// @cond |
|
|
|
namespace detail{ |
|
|
|
//! Returns floor(log(n)/log(sqrt(2))) -> floor(2*log2(n)) |
|
//! Undefined if N is 0. |
|
//! |
|
//! This function does not use float point operations. |
|
inline std::size_t calculate_h_sqrt2 (std::size_t n) |
|
{ |
|
std::size_t f_log2 = detail::floor_log2(n); |
|
return (2*f_log2) + (n >= detail::sqrt2_pow_2xplus1 (f_log2)); |
|
} |
|
|
|
struct h_alpha_sqrt2_t |
|
{ |
|
h_alpha_sqrt2_t(void){} |
|
std::size_t operator()(std::size_t n) const |
|
{ return calculate_h_sqrt2(n); } |
|
}; |
|
|
|
struct alpha_0_75_by_max_size_t |
|
{ |
|
alpha_0_75_by_max_size_t(void){} |
|
std::size_t operator()(std::size_t max_tree_size) const |
|
{ |
|
const std::size_t max_tree_size_limit = ((~std::size_t(0))/std::size_t(3)); |
|
return max_tree_size > max_tree_size_limit ? max_tree_size/4*3 : max_tree_size*3/4; |
|
} |
|
}; |
|
|
|
struct h_alpha_t |
|
{ |
|
h_alpha_t(float inv_minus_logalpha) |
|
: inv_minus_logalpha_(inv_minus_logalpha) |
|
{} |
|
|
|
std::size_t operator()(std::size_t n) const |
|
{ |
|
//Returns floor(log1/alpha(n)) -> |
|
// floor(log(n)/log(1/alpha)) -> |
|
// floor(log(n)/(-log(alpha))) |
|
//return static_cast<std::size_t>(std::log(float(n))*inv_minus_logalpha_); |
|
return static_cast<std::size_t>(detail::fast_log2(float(n))*inv_minus_logalpha_); |
|
} |
|
|
|
private: |
|
//Since the function will be repeatedly called |
|
//precalculate constant data to avoid repeated |
|
//calls to log and division. |
|
//This will store 1/(-std::log(alpha_)) |
|
float inv_minus_logalpha_; |
|
}; |
|
|
|
struct alpha_by_max_size_t |
|
{ |
|
alpha_by_max_size_t(float alpha) |
|
: alpha_(alpha) |
|
{} |
|
|
|
float operator()(std::size_t max_tree_size) const |
|
{ return float(max_tree_size)*alpha_; } |
|
|
|
private: |
|
float alpha_; |
|
float inv_minus_logalpha_; |
|
}; |
|
|
|
template<bool Activate> |
|
struct alpha_holder |
|
{ |
|
typedef boost::intrusive::detail::h_alpha_t h_alpha_t; |
|
typedef boost::intrusive::detail::alpha_by_max_size_t multiply_by_alpha_t; |
|
|
|
alpha_holder() |
|
{ set_alpha(0.7f); } |
|
|
|
float get_alpha() const |
|
{ return alpha_; } |
|
|
|
void set_alpha(float alpha) |
|
{ |
|
alpha_ = alpha; |
|
inv_minus_logalpha_ = 1/(-detail::fast_log2(alpha)); |
|
} |
|
|
|
h_alpha_t get_h_alpha_t() const |
|
{ return h_alpha_t(inv_minus_logalpha_); } |
|
|
|
multiply_by_alpha_t get_multiply_by_alpha_t() const |
|
{ return multiply_by_alpha_t(alpha_); } |
|
|
|
private: |
|
float alpha_; |
|
float inv_minus_logalpha_; |
|
}; |
|
|
|
template<> |
|
struct alpha_holder<false> |
|
{ |
|
//This specialization uses alpha = 1/sqrt(2) |
|
//without using floating point operations |
|
//Downside: alpha CAN't be changed. |
|
typedef boost::intrusive::detail::h_alpha_sqrt2_t h_alpha_t; |
|
typedef boost::intrusive::detail::alpha_0_75_by_max_size_t multiply_by_alpha_t; |
|
|
|
float get_alpha() const |
|
{ return 0.70710677f; } |
|
|
|
void set_alpha(float) |
|
{ //alpha CAN't be changed. |
|
BOOST_INTRUSIVE_INVARIANT_ASSERT(0); |
|
} |
|
|
|
h_alpha_t get_h_alpha_t() const |
|
{ return h_alpha_t(); } |
|
|
|
multiply_by_alpha_t get_multiply_by_alpha_t() const |
|
{ return multiply_by_alpha_t(); } |
|
}; |
|
|
|
} //namespace detail{ |
|
|
|
template <class ValueTraits, class Compare, class SizeType, bool FloatingPoint> |
|
struct sg_setopt |
|
{ |
|
typedef ValueTraits value_traits; |
|
typedef Compare compare; |
|
typedef SizeType size_type; |
|
static const bool floating_point = FloatingPoint; |
|
}; |
|
|
|
template <class T> |
|
struct sg_set_defaults |
|
: pack_options |
|
< none |
|
, base_hook<detail::default_bs_set_hook> |
|
, floating_point<true> |
|
, size_type<std::size_t> |
|
, compare<std::less<T> > |
|
>::type |
|
{}; |
|
|
|
/// @endcond |
|
|
|
//! The class template sgtree is an intrusive scapegoat tree container, that |
|
//! is used to construct intrusive sg_set and sg_multiset containers. |
|
//! The no-throw guarantee holds only, if the value_compare object |
|
//! doesn't throw. |
|
//! |
|
//! The template parameter \c T is the type to be managed by the container. |
|
//! The user can specify additional options and if no options are provided |
|
//! default options are used. |
|
//! |
|
//! The container supports the following options: |
|
//! \c base_hook<>/member_hook<>/value_traits<>, |
|
//! \c floating_point<>, \c size_type<> and |
|
//! \c compare<>. |
|
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) |
|
template<class T, class ...Options> |
|
#else |
|
template<class Config> |
|
#endif |
|
class sgtree_impl |
|
: private detail::clear_on_destructor_base<sgtree_impl<Config> > |
|
{ |
|
template<class C> friend class detail::clear_on_destructor_base; |
|
public: |
|
typedef typename Config::value_traits value_traits; |
|
/// @cond |
|
static const bool external_value_traits = |
|
detail::external_value_traits_is_true<value_traits>::value; |
|
typedef typename detail::eval_if_c |
|
< external_value_traits |
|
, detail::eval_value_traits<value_traits> |
|
, detail::identity<value_traits> |
|
>::type real_value_traits; |
|
/// @endcond |
|
typedef typename real_value_traits::pointer pointer; |
|
typedef typename real_value_traits::const_pointer const_pointer; |
|
typedef typename std::iterator_traits<pointer>::value_type value_type; |
|
typedef value_type key_type; |
|
typedef typename std::iterator_traits<pointer>::reference reference; |
|
typedef typename std::iterator_traits<const_pointer>::reference const_reference; |
|
typedef typename std::iterator_traits<pointer>::difference_type difference_type; |
|
typedef typename Config::size_type size_type; |
|
typedef typename Config::compare value_compare; |
|
typedef value_compare key_compare; |
|
typedef tree_iterator<sgtree_impl, false> iterator; |
|
typedef tree_iterator<sgtree_impl, true> const_iterator; |
|
typedef std::reverse_iterator<iterator> reverse_iterator; |
|
typedef std::reverse_iterator<const_iterator> const_reverse_iterator; |
|
typedef typename real_value_traits::node_traits node_traits; |
|
typedef typename node_traits::node node; |
|
typedef typename boost::pointer_to_other |
|
<pointer, node>::type node_ptr; |
|
typedef typename boost::pointer_to_other |
|
<node_ptr, const node>::type const_node_ptr; |
|
typedef sgtree_algorithms<node_traits> node_algorithms; |
|
|
|
static const bool floating_point = Config::floating_point; |
|
static const bool constant_time_size = true; |
|
static const bool stateful_value_traits = detail::is_stateful_value_traits<real_value_traits>::value; |
|
|
|
/// @cond |
|
private: |
|
typedef detail::size_holder<true, size_type> size_traits; |
|
typedef detail::alpha_holder<floating_point> alpha_traits; |
|
typedef typename alpha_traits::h_alpha_t h_alpha_t; |
|
typedef typename alpha_traits::multiply_by_alpha_t multiply_by_alpha_t; |
|
|
|
//noncopyable |
|
BOOST_MOVABLE_BUT_NOT_COPYABLE(sgtree_impl) |
|
|
|
enum { safemode_or_autounlink = |
|
(int)real_value_traits::link_mode == (int)auto_unlink || |
|
(int)real_value_traits::link_mode == (int)safe_link }; |
|
|
|
BOOST_STATIC_ASSERT(((int)real_value_traits::link_mode != (int)auto_unlink)); |
|
|
|
//BOOST_STATIC_ASSERT(( |
|
// (int)real_value_traits::link_mode != (int)auto_unlink || |
|
// !floating_point |
|
// )); |
|
|
|
struct header_plus_alpha : public alpha_traits |
|
{ node header_; }; |
|
|
|
struct node_plus_pred_t : public detail::ebo_functor_holder<value_compare> |
|
{ |
|
node_plus_pred_t(const value_compare &comp) |
|
: detail::ebo_functor_holder<value_compare>(comp) |
|
{} |
|
header_plus_alpha header_plus_alpha_; |
|
size_traits size_traits_; |
|
}; |
|
|
|
struct data_t : public sgtree_impl::value_traits |
|
{ |
|
typedef typename sgtree_impl::value_traits value_traits; |
|
data_t(const value_compare & comp, const value_traits &val_traits) |
|
: value_traits(val_traits), node_plus_pred_(comp) |
|
, max_tree_size_(0) |
|
{} |
|
node_plus_pred_t node_plus_pred_; |
|
size_type max_tree_size_; |
|
} data_; |
|
|
|
float priv_alpha() const |
|
{ return this->priv_alpha_traits().get_alpha(); } |
|
|
|
void priv_alpha(float alpha) |
|
{ return this->priv_alpha_traits().set_alpha(alpha); } |
|
|
|
const value_compare &priv_comp() const |
|
{ return data_.node_plus_pred_.get(); } |
|
|
|
value_compare &priv_comp() |
|
{ return data_.node_plus_pred_.get(); } |
|
|
|
const value_traits &priv_value_traits() const |
|
{ return data_; } |
|
|
|
value_traits &priv_value_traits() |
|
{ return data_; } |
|
|
|
const node &priv_header() const |
|
{ return data_.node_plus_pred_.header_plus_alpha_.header_; } |
|
|
|
node &priv_header() |
|
{ return data_.node_plus_pred_.header_plus_alpha_.header_; } |
|
|
|
static node_ptr uncast(const_node_ptr ptr) |
|
{ return node_ptr(const_cast<node*>(detail::boost_intrusive_get_pointer(ptr))); } |
|
|
|
size_traits &priv_size_traits() |
|
{ return data_.node_plus_pred_.size_traits_; } |
|
|
|
const size_traits &priv_size_traits() const |
|
{ return data_.node_plus_pred_.size_traits_; } |
|
|
|
alpha_traits &priv_alpha_traits() |
|
{ return data_.node_plus_pred_.header_plus_alpha_; } |
|
|
|
const alpha_traits &priv_alpha_traits() const |
|
{ return data_.node_plus_pred_.header_plus_alpha_; } |
|
|
|
const real_value_traits &get_real_value_traits(detail::bool_<false>) const |
|
{ return data_; } |
|
|
|
const real_value_traits &get_real_value_traits(detail::bool_<true>) const |
|
{ return data_.get_value_traits(*this); } |
|
|
|
real_value_traits &get_real_value_traits(detail::bool_<false>) |
|
{ return data_; } |
|
|
|
real_value_traits &get_real_value_traits(detail::bool_<true>) |
|
{ return data_.get_value_traits(*this); } |
|
|
|
h_alpha_t get_h_alpha_func() const |
|
{ return priv_alpha_traits().get_h_alpha_t(); } |
|
|
|
multiply_by_alpha_t get_alpha_by_max_size_func() const |
|
{ return priv_alpha_traits().get_multiply_by_alpha_t(); } |
|
|
|
/// @endcond |
|
|
|
public: |
|
|
|
const real_value_traits &get_real_value_traits() const |
|
{ return this->get_real_value_traits(detail::bool_<external_value_traits>()); } |
|
|
|
real_value_traits &get_real_value_traits() |
|
{ return this->get_real_value_traits(detail::bool_<external_value_traits>()); } |
|
|
|
typedef typename node_algorithms::insert_commit_data insert_commit_data; |
|
|
|
//! <b>Effects</b>: Constructs an empty tree. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: If value_traits::node_traits::node |
|
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks) |
|
//! or the copy constructorof the value_compare object throws. Basic guarantee. |
|
sgtree_impl( const value_compare &cmp = value_compare() |
|
, const value_traits &v_traits = value_traits()) |
|
: data_(cmp, v_traits) |
|
{ |
|
node_algorithms::init_header(&priv_header()); |
|
this->priv_size_traits().set_size(size_type(0)); |
|
} |
|
|
|
//! <b>Requires</b>: Dereferencing iterator must yield an lvalue of type value_type. |
|
//! cmp must be a comparison function that induces a strict weak ordering. |
|
//! |
|
//! <b>Effects</b>: Constructs an empty tree and inserts elements from |
|
//! [b, e). |
|
//! |
|
//! <b>Complexity</b>: Linear in N if [b, e) is already sorted using |
|
//! comp and otherwise N * log N, where N is the distance between first and last. |
|
//! |
|
//! <b>Throws</b>: If value_traits::node_traits::node |
|
//! constructor throws (this does not happen with predefined Boost.Intrusive hooks) |
|
//! or the copy constructor/operator() of the value_compare object throws. Basic guarantee. |
|
template<class Iterator> |
|
sgtree_impl( bool unique, Iterator b, Iterator e |
|
, const value_compare &cmp = value_compare() |
|
, const value_traits &v_traits = value_traits()) |
|
: data_(cmp, v_traits) |
|
{ |
|
node_algorithms::init_header(&priv_header()); |
|
this->priv_size_traits().set_size(size_type(0)); |
|
if(unique) |
|
this->insert_unique(b, e); |
|
else |
|
this->insert_equal(b, e); |
|
} |
|
|
|
//! <b>Effects</b>: to-do |
|
//! |
|
sgtree_impl(BOOST_RV_REF(sgtree_impl) x) |
|
: data_(::boost::move(x.priv_comp()), ::boost::move(x.priv_value_traits())) |
|
{ |
|
node_algorithms::init_header(&priv_header()); |
|
this->priv_size_traits().set_size(size_type(0)); |
|
this->swap(x); |
|
} |
|
|
|
//! <b>Effects</b>: to-do |
|
//! |
|
sgtree_impl& operator=(BOOST_RV_REF(sgtree_impl) x) |
|
{ this->swap(x); return *this; } |
|
|
|
//! <b>Effects</b>: Detaches all elements from this. The objects in the set |
|
//! are not deleted (i.e. no destructors are called), but the nodes according to |
|
//! the value_traits template parameter are reinitialized and thus can be reused. |
|
//! |
|
//! <b>Complexity</b>: Linear to elements contained in *this. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
~sgtree_impl() |
|
{} |
|
|
|
//! <b>Effects</b>: Returns an iterator pointing to the beginning of the tree. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
iterator begin() |
|
{ return iterator (node_traits::get_left(node_ptr(&priv_header())), this); } |
|
|
|
//! <b>Effects</b>: Returns a const_iterator pointing to the beginning of the tree. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
const_iterator begin() const |
|
{ return cbegin(); } |
|
|
|
//! <b>Effects</b>: Returns a const_iterator pointing to the beginning of the tree. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
const_iterator cbegin() const |
|
{ return const_iterator (node_traits::get_left(const_node_ptr(&priv_header())), this); } |
|
|
|
//! <b>Effects</b>: Returns an iterator pointing to the end of the tree. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
iterator end() |
|
{ return iterator (node_ptr(&priv_header()), this); } |
|
|
|
//! <b>Effects</b>: Returns a const_iterator pointing to the end of the tree. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
const_iterator end() const |
|
{ return cend(); } |
|
|
|
//! <b>Effects</b>: Returns a const_iterator pointing to the end of the tree. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
const_iterator cend() const |
|
{ return const_iterator (uncast(const_node_ptr(&priv_header())), this); } |
|
|
|
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning of the |
|
//! reversed tree. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
reverse_iterator rbegin() |
|
{ return reverse_iterator(end()); } |
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning |
|
//! of the reversed tree. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
const_reverse_iterator rbegin() const |
|
{ return const_reverse_iterator(end()); } |
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning |
|
//! of the reversed tree. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
const_reverse_iterator crbegin() const |
|
{ return const_reverse_iterator(end()); } |
|
|
|
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end |
|
//! of the reversed tree. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
reverse_iterator rend() |
|
{ return reverse_iterator(begin()); } |
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end |
|
//! of the reversed tree. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
const_reverse_iterator rend() const |
|
{ return const_reverse_iterator(begin()); } |
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end |
|
//! of the reversed tree. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
const_reverse_iterator crend() const |
|
{ return const_reverse_iterator(begin()); } |
|
|
|
//! <b>Precondition</b>: end_iterator must be a valid end iterator |
|
//! of sgtree. |
|
//! |
|
//! <b>Effects</b>: Returns a const reference to the sgtree associated to the end iterator |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
static sgtree_impl &container_from_end_iterator(iterator end_iterator) |
|
{ return priv_container_from_end_iterator(end_iterator); } |
|
|
|
//! <b>Precondition</b>: end_iterator must be a valid end const_iterator |
|
//! of sgtree. |
|
//! |
|
//! <b>Effects</b>: Returns a const reference to the sgtree associated to the end iterator |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
static const sgtree_impl &container_from_end_iterator(const_iterator end_iterator) |
|
{ return priv_container_from_end_iterator(end_iterator); } |
|
|
|
//! <b>Precondition</b>: it must be a valid iterator |
|
//! of rbtree. |
|
//! |
|
//! <b>Effects</b>: Returns a const reference to the tree associated to the iterator |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
static sgtree_impl &container_from_iterator(iterator it) |
|
{ return priv_container_from_iterator(it); } |
|
|
|
//! <b>Precondition</b>: it must be a valid end const_iterator |
|
//! of rbtree. |
|
//! |
|
//! <b>Effects</b>: Returns a const reference to the tree associated to the iterator |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
static const sgtree_impl &container_from_iterator(const_iterator it) |
|
{ return priv_container_from_iterator(it); } |
|
|
|
//! <b>Effects</b>: Returns the value_compare object used by the tree. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: If value_compare copy-constructor throws. |
|
value_compare value_comp() const |
|
{ return priv_comp(); } |
|
|
|
//! <b>Effects</b>: Returns true if the container is empty. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
bool empty() const |
|
{ return node_algorithms::unique(const_node_ptr(&priv_header())); } |
|
|
|
//! <b>Effects</b>: Returns the number of elements stored in the tree. |
|
//! |
|
//! <b>Complexity</b>: Linear to elements contained in *this |
|
//! if constant-time size option is disabled. Constant time otherwise. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
size_type size() const |
|
{ |
|
if(constant_time_size) |
|
return this->priv_size_traits().get_size(); |
|
else{ |
|
return (size_type)node_algorithms::size(const_node_ptr(&priv_header())); |
|
} |
|
} |
|
|
|
//! <b>Effects</b>: Swaps the contents of two sgtrees. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: If the comparison functor's swap call throws. |
|
void swap(sgtree_impl& other) |
|
{ |
|
//This can throw |
|
using std::swap; |
|
swap(priv_comp(), priv_comp()); |
|
swap(priv_alpha_traits(), priv_alpha_traits()); |
|
swap(data_.max_tree_size_, other.data_.max_tree_size_); |
|
//These can't throw |
|
node_algorithms::swap_tree(node_ptr(&priv_header()), node_ptr(&other.priv_header())); |
|
if(constant_time_size){ |
|
size_type backup = this->priv_size_traits().get_size(); |
|
this->priv_size_traits().set_size(other.priv_size_traits().get_size()); |
|
other.priv_size_traits().set_size(backup); |
|
} |
|
} |
|
|
|
//! <b>Requires</b>: value must be an lvalue |
|
//! |
|
//! <b>Effects</b>: Inserts value into the tree before the upper bound. |
|
//! |
|
//! <b>Complexity</b>: Average complexity for insert element is at |
|
//! most logarithmic. |
|
//! |
|
//! <b>Throws</b>: If the internal value_compare ordering function throws. Strong guarantee. |
|
//! |
|
//! <b>Note</b>: Does not affect the validity of iterators and references. |
|
//! No copy-constructors are called. |
|
iterator insert_equal(reference value) |
|
{ |
|
detail::key_nodeptr_comp<value_compare, sgtree_impl> |
|
key_node_comp(priv_comp(), this); |
|
node_ptr to_insert(get_real_value_traits().to_node_ptr(value)); |
|
if(safemode_or_autounlink) |
|
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); |
|
std::size_t max_tree_size = (std::size_t)data_.max_tree_size_; |
|
node_ptr p = node_algorithms::insert_equal_upper_bound |
|
(node_ptr(&priv_header()), to_insert, key_node_comp |
|
, (size_type)this->size(), this->get_h_alpha_func(), max_tree_size); |
|
this->priv_size_traits().increment(); |
|
data_.max_tree_size_ = (size_type)max_tree_size; |
|
return iterator(p, this); |
|
} |
|
|
|
//! <b>Requires</b>: value must be an lvalue, and "hint" must be |
|
//! a valid iterator. |
|
//! |
|
//! <b>Effects</b>: Inserts x into the tree, using "hint" as a hint to |
|
//! where it will be inserted. If "hint" is the upper_bound |
|
//! the insertion takes constant time (two comparisons in the worst case) |
|
//! |
|
//! <b>Complexity</b>: Logarithmic in general, but it is amortized |
|
//! constant time if t is inserted immediately before hint. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: Does not affect the validity of iterators and references. |
|
//! No copy-constructors are called. |
|
iterator insert_equal(const_iterator hint, reference value) |
|
{ |
|
detail::key_nodeptr_comp<value_compare, sgtree_impl> |
|
key_node_comp(priv_comp(), this); |
|
node_ptr to_insert(get_real_value_traits().to_node_ptr(value)); |
|
if(safemode_or_autounlink) |
|
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); |
|
std::size_t max_tree_size = (std::size_t)data_.max_tree_size_; |
|
node_ptr p = node_algorithms::insert_equal |
|
(node_ptr(&priv_header()), hint.pointed_node(), to_insert, key_node_comp |
|
, (std::size_t)this->size(), this->get_h_alpha_func(), max_tree_size); |
|
this->priv_size_traits().increment(); |
|
data_.max_tree_size_ = (size_type)max_tree_size; |
|
return iterator(p, this); |
|
} |
|
|
|
//! <b>Requires</b>: Dereferencing iterator must yield an lvalue |
|
//! of type value_type. |
|
//! |
|
//! <b>Effects</b>: Inserts a each element of a range into the tree |
|
//! before the upper bound of the key of each element. |
|
//! |
|
//! <b>Complexity</b>: Insert range is in general O(N * log(N)), where N is the |
|
//! size of the range. However, it is linear in N if the range is already sorted |
|
//! by value_comp(). |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: Does not affect the validity of iterators and references. |
|
//! No copy-constructors are called. |
|
template<class Iterator> |
|
void insert_equal(Iterator b, Iterator e) |
|
{ |
|
iterator end(this->end()); |
|
for (; b != e; ++b) |
|
this->insert_equal(end, *b); |
|
} |
|
|
|
//! <b>Requires</b>: value must be an lvalue |
|
//! |
|
//! <b>Effects</b>: Inserts value into the tree if the value |
|
//! is not already present. |
|
//! |
|
//! <b>Complexity</b>: Average complexity for insert element is at |
|
//! most logarithmic. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: Does not affect the validity of iterators and references. |
|
//! No copy-constructors are called. |
|
std::pair<iterator, bool> insert_unique(reference value) |
|
{ |
|
insert_commit_data commit_data; |
|
std::pair<iterator, bool> ret = insert_unique_check(value, priv_comp(), commit_data); |
|
if(!ret.second) |
|
return ret; |
|
return std::pair<iterator, bool> (insert_unique_commit(value, commit_data), true); |
|
} |
|
|
|
//! <b>Requires</b>: value must be an lvalue, and "hint" must be |
|
//! a valid iterator |
|
//! |
|
//! <b>Effects</b>: Tries to insert x into the tree, using "hint" as a hint |
|
//! to where it will be inserted. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic in general, but it is amortized |
|
//! constant time (two comparisons in the worst case) |
|
//! if t is inserted immediately before hint. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: Does not affect the validity of iterators and references. |
|
//! No copy-constructors are called. |
|
iterator insert_unique(const_iterator hint, reference value) |
|
{ |
|
insert_commit_data commit_data; |
|
std::pair<iterator, bool> ret = insert_unique_check(hint, value, priv_comp(), commit_data); |
|
if(!ret.second) |
|
return ret.first; |
|
return insert_unique_commit(value, commit_data); |
|
} |
|
|
|
//! <b>Requires</b>: Dereferencing iterator must yield an lvalue |
|
//! of type value_type. |
|
//! |
|
//! <b>Effects</b>: Tries to insert each element of a range into the tree. |
|
//! |
|
//! <b>Complexity</b>: Insert range is in general O(N * log(N)), where N is the |
|
//! size of the range. However, it is linear in N if the range is already sorted |
|
//! by value_comp(). |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: Does not affect the validity of iterators and references. |
|
//! No copy-constructors are called. |
|
template<class Iterator> |
|
void insert_unique(Iterator b, Iterator e) |
|
{ |
|
if(this->empty()){ |
|
iterator end(this->end()); |
|
for (; b != e; ++b) |
|
this->insert_unique(end, *b); |
|
} |
|
else{ |
|
for (; b != e; ++b) |
|
this->insert_unique(*b); |
|
} |
|
} |
|
|
|
//! <b>Requires</b>: key_value_comp must be a comparison function that induces |
|
//! the same strict weak ordering as value_compare. The difference is that |
|
//! key_value_comp compares an arbitrary key with the contained values. |
|
//! |
|
//! <b>Effects</b>: Checks if a value can be inserted in the container, using |
|
//! a user provided key instead of the value itself. |
|
//! |
|
//! <b>Returns</b>: If there is an equivalent value |
|
//! returns a pair containing an iterator to the already present value |
|
//! and false. If the value can be inserted returns true in the returned |
|
//! pair boolean and fills "commit_data" that is meant to be used with |
|
//! the "insert_commit" function. |
|
//! |
|
//! <b>Complexity</b>: Average complexity is at most logarithmic. |
|
//! |
|
//! <b>Throws</b>: If the key_value_comp ordering function throws. Strong guarantee. |
|
//! |
|
//! <b>Notes</b>: This function is used to improve performance when constructing |
|
//! a value_type is expensive: if there is an equivalent value |
|
//! the constructed object must be discarded. Many times, the part of the |
|
//! node that is used to impose the order is much cheaper to construct |
|
//! than the value_type and this function offers the possibility to use that |
|
//! part to check if the insertion will be successful. |
|
//! |
|
//! If the check is successful, the user can construct the value_type and use |
|
//! "insert_commit" to insert the object in constant-time. This gives a total |
|
//! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)). |
|
//! |
|
//! "commit_data" remains valid for a subsequent "insert_commit" only if no more |
|
//! objects are inserted or erased from the container. |
|
template<class KeyType, class KeyValueCompare> |
|
std::pair<iterator, bool> insert_unique_check |
|
(const KeyType &key, KeyValueCompare key_value_comp, insert_commit_data &commit_data) |
|
{ |
|
detail::key_nodeptr_comp<KeyValueCompare, sgtree_impl> |
|
comp(key_value_comp, this); |
|
std::pair<node_ptr, bool> ret = |
|
(node_algorithms::insert_unique_check |
|
(node_ptr(&priv_header()), key, comp, commit_data)); |
|
return std::pair<iterator, bool>(iterator(ret.first, this), ret.second); |
|
} |
|
|
|
//! <b>Requires</b>: key_value_comp must be a comparison function that induces |
|
//! the same strict weak ordering as value_compare. The difference is that |
|
//! key_value_comp compares an arbitrary key with the contained values. |
|
//! |
|
//! <b>Effects</b>: Checks if a value can be inserted in the container, using |
|
//! a user provided key instead of the value itself, using "hint" |
|
//! as a hint to where it will be inserted. |
|
//! |
|
//! <b>Returns</b>: If there is an equivalent value |
|
//! returns a pair containing an iterator to the already present value |
|
//! and false. If the value can be inserted returns true in the returned |
|
//! pair boolean and fills "commit_data" that is meant to be used with |
|
//! the "insert_commit" function. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic in general, but it's amortized |
|
//! constant time if t is inserted immediately before hint. |
|
//! |
|
//! <b>Throws</b>: If the key_value_comp ordering function throws. Strong guarantee. |
|
//! |
|
//! <b>Notes</b>: This function is used to improve performance when constructing |
|
//! a value_type is expensive: if there is an equivalent value |
|
//! the constructed object must be discarded. Many times, the part of the |
|
//! constructing that is used to impose the order is much cheaper to construct |
|
//! than the value_type and this function offers the possibility to use that key |
|
//! to check if the insertion will be successful. |
|
//! |
|
//! If the check is successful, the user can construct the value_type and use |
|
//! "insert_commit" to insert the object in constant-time. This can give a total |
|
//! constant-time complexity to the insertion: check(O(1)) + commit(O(1)). |
|
//! |
|
//! "commit_data" remains valid for a subsequent "insert_commit" only if no more |
|
//! objects are inserted or erased from the container. |
|
template<class KeyType, class KeyValueCompare> |
|
std::pair<iterator, bool> insert_unique_check |
|
(const_iterator hint, const KeyType &key |
|
,KeyValueCompare key_value_comp, insert_commit_data &commit_data) |
|
{ |
|
detail::key_nodeptr_comp<KeyValueCompare, sgtree_impl> |
|
comp(key_value_comp, this); |
|
std::pair<node_ptr, bool> ret = |
|
(node_algorithms::insert_unique_check |
|
(node_ptr(&priv_header()), hint.pointed_node(), key, comp, commit_data)); |
|
return std::pair<iterator, bool>(iterator(ret.first, this), ret.second); |
|
} |
|
|
|
//! <b>Requires</b>: value must be an lvalue of type value_type. commit_data |
|
//! must have been obtained from a previous call to "insert_check". |
|
//! No objects should have been inserted or erased from the container between |
|
//! the "insert_check" that filled "commit_data" and the call to "insert_commit". |
|
//! |
|
//! <b>Effects</b>: Inserts the value in the avl_set using the information obtained |
|
//! from the "commit_data" that a previous "insert_check" filled. |
|
//! |
|
//! <b>Returns</b>: An iterator to the newly inserted object. |
|
//! |
|
//! <b>Complexity</b>: Constant time. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Notes</b>: This function has only sense if a "insert_check" has been |
|
//! previously executed to fill "commit_data". No value should be inserted or |
|
//! erased between the "insert_check" and "insert_commit" calls. |
|
iterator insert_unique_commit(reference value, const insert_commit_data &commit_data) |
|
{ |
|
node_ptr to_insert(get_real_value_traits().to_node_ptr(value)); |
|
if(safemode_or_autounlink) |
|
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); |
|
std::size_t max_tree_size = (std::size_t)data_.max_tree_size_; |
|
node_algorithms::insert_unique_commit |
|
( node_ptr(&priv_header()), to_insert, commit_data |
|
, (std::size_t)this->size(), this->get_h_alpha_func(), max_tree_size); |
|
this->priv_size_traits().increment(); |
|
data_.max_tree_size_ = (size_type)max_tree_size; |
|
return iterator(to_insert, this); |
|
} |
|
|
|
//! <b>Requires</b>: value must be an lvalue, "pos" must be |
|
//! a valid iterator (or end) and must be the succesor of value |
|
//! once inserted according to the predicate |
|
//! |
|
//! <b>Effects</b>: Inserts x into the tree before "pos". |
|
//! |
|
//! <b>Complexity</b>: Constant time. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: This function does not check preconditions so if "pos" is not |
|
//! the successor of "value" tree ordering invariant will be broken. |
|
//! This is a low-level function to be used only for performance reasons |
|
//! by advanced users. |
|
iterator insert_before(const_iterator pos, reference value) |
|
{ |
|
node_ptr to_insert(get_real_value_traits().to_node_ptr(value)); |
|
if(safemode_or_autounlink) |
|
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); |
|
std::size_t max_tree_size = (std::size_t)data_.max_tree_size_; |
|
node_ptr p = node_algorithms::insert_before |
|
( node_ptr(&priv_header()), pos.pointed_node(), to_insert |
|
, (size_type)this->size(), this->get_h_alpha_func(), max_tree_size); |
|
this->priv_size_traits().increment(); |
|
data_.max_tree_size_ = (size_type)max_tree_size; |
|
return iterator(p, this); |
|
} |
|
|
|
//! <b>Requires</b>: value must be an lvalue, and it must be no less |
|
//! than the greatest inserted key |
|
//! |
|
//! <b>Effects</b>: Inserts x into the tree in the last position. |
|
//! |
|
//! <b>Complexity</b>: Constant time. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: This function does not check preconditions so if value is |
|
//! less than the greatest inserted key tree ordering invariant will be broken. |
|
//! This function is slightly more efficient than using "insert_before". |
|
//! This is a low-level function to be used only for performance reasons |
|
//! by advanced users. |
|
void push_back(reference value) |
|
{ |
|
node_ptr to_insert(get_real_value_traits().to_node_ptr(value)); |
|
if(safemode_or_autounlink) |
|
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); |
|
std::size_t max_tree_size = (std::size_t)data_.max_tree_size_; |
|
node_algorithms::push_back |
|
( node_ptr(&priv_header()), to_insert |
|
, (size_type)this->size(), this->get_h_alpha_func(), max_tree_size); |
|
this->priv_size_traits().increment(); |
|
data_.max_tree_size_ = (size_type)max_tree_size; |
|
} |
|
|
|
//! <b>Requires</b>: value must be an lvalue, and it must be no greater |
|
//! than the minimum inserted key |
|
//! |
|
//! <b>Effects</b>: Inserts x into the tree in the first position. |
|
//! |
|
//! <b>Complexity</b>: Constant time. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: This function does not check preconditions so if value is |
|
//! greater than the minimum inserted key tree ordering invariant will be broken. |
|
//! This function is slightly more efficient than using "insert_before". |
|
//! This is a low-level function to be used only for performance reasons |
|
//! by advanced users. |
|
void push_front(reference value) |
|
{ |
|
node_ptr to_insert(get_real_value_traits().to_node_ptr(value)); |
|
if(safemode_or_autounlink) |
|
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert)); |
|
std::size_t max_tree_size = (std::size_t)data_.max_tree_size_; |
|
node_algorithms::push_front |
|
( node_ptr(&priv_header()), to_insert |
|
, (size_type)this->size(), this->get_h_alpha_func(), max_tree_size); |
|
this->priv_size_traits().increment(); |
|
data_.max_tree_size_ = (size_type)max_tree_size; |
|
} |
|
|
|
//! <b>Effects</b>: Erases the element pointed to by pos. |
|
//! |
|
//! <b>Complexity</b>: Average complexity for erase element is constant time. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: Invalidates the iterators (but not the references) |
|
//! to the erased elements. No destructors are called. |
|
iterator erase(const_iterator i) |
|
{ |
|
const_iterator ret(i); |
|
++ret; |
|
node_ptr to_erase(i.pointed_node()); |
|
if(safemode_or_autounlink) |
|
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!node_algorithms::unique(to_erase)); |
|
std::size_t max_tree_size = data_.max_tree_size_; |
|
node_algorithms::erase |
|
( &priv_header(), to_erase, (std::size_t)this->size() |
|
, max_tree_size, this->get_alpha_by_max_size_func()); |
|
data_.max_tree_size_ = (size_type)max_tree_size; |
|
this->priv_size_traits().decrement(); |
|
if(safemode_or_autounlink) |
|
node_algorithms::init(to_erase); |
|
return ret.unconst(); |
|
} |
|
|
|
//! <b>Effects</b>: Erases the range pointed to by b end e. |
|
//! |
|
//! <b>Complexity</b>: Average complexity for erase range is at most |
|
//! O(log(size() + N)), where N is the number of elements in the range. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: Invalidates the iterators (but not the references) |
|
//! to the erased elements. No destructors are called. |
|
iterator erase(const_iterator b, const_iterator e) |
|
{ size_type n; return private_erase(b, e, n); } |
|
|
|
//! <b>Effects</b>: Erases all the elements with the given value. |
|
//! |
|
//! <b>Returns</b>: The number of erased elements. |
|
//! |
|
//! <b>Complexity</b>: O(log(size() + N). |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: Invalidates the iterators (but not the references) |
|
//! to the erased elements. No destructors are called. |
|
size_type erase(const_reference value) |
|
{ return this->erase(value, priv_comp()); } |
|
|
|
//! <b>Effects</b>: Erases all the elements with the given key. |
|
//! according to the comparison functor "comp". |
|
//! |
|
//! <b>Returns</b>: The number of erased elements. |
|
//! |
|
//! <b>Complexity</b>: O(log(size() + N). |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: Invalidates the iterators (but not the references) |
|
//! to the erased elements. No destructors are called. |
|
template<class KeyType, class KeyValueCompare> |
|
size_type erase(const KeyType& key, KeyValueCompare comp |
|
/// @cond |
|
, typename detail::enable_if_c<!detail::is_convertible<KeyValueCompare, const_iterator>::value >::type * = 0 |
|
/// @endcond |
|
) |
|
{ |
|
std::pair<iterator,iterator> p = this->equal_range(key, comp); |
|
size_type n; |
|
private_erase(p.first, p.second, n); |
|
return n; |
|
} |
|
|
|
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw. |
|
//! |
|
//! <b>Effects</b>: Erases the element pointed to by pos. |
|
//! Disposer::operator()(pointer) is called for the removed element. |
|
//! |
|
//! <b>Complexity</b>: Average complexity for erase element is constant time. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: Invalidates the iterators |
|
//! to the erased elements. |
|
template<class Disposer> |
|
iterator erase_and_dispose(const_iterator i, Disposer disposer) |
|
{ |
|
node_ptr to_erase(i.pointed_node()); |
|
iterator ret(this->erase(i)); |
|
disposer(get_real_value_traits().to_value_ptr(to_erase)); |
|
return ret; |
|
} |
|
|
|
#if !defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) |
|
template<class Disposer> |
|
iterator erase_and_dispose(iterator i, Disposer disposer) |
|
{ return this->erase_and_dispose(const_iterator(i), disposer); } |
|
#endif |
|
|
|
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw. |
|
//! |
|
//! <b>Effects</b>: Erases the range pointed to by b end e. |
|
//! Disposer::operator()(pointer) is called for the removed elements. |
|
//! |
|
//! <b>Complexity</b>: Average complexity for erase range is at most |
|
//! O(log(size() + N)), where N is the number of elements in the range. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: Invalidates the iterators |
|
//! to the erased elements. |
|
template<class Disposer> |
|
iterator erase_and_dispose(const_iterator b, const_iterator e, Disposer disposer) |
|
{ size_type n; return private_erase(b, e, n, disposer); } |
|
|
|
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw. |
|
//! |
|
//! <b>Effects</b>: Erases all the elements with the given value. |
|
//! Disposer::operator()(pointer) is called for the removed elements. |
|
//! |
|
//! <b>Returns</b>: The number of erased elements. |
|
//! |
|
//! <b>Complexity</b>: O(log(size() + N). |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: Invalidates the iterators (but not the references) |
|
//! to the erased elements. No destructors are called. |
|
template<class Disposer> |
|
size_type erase_and_dispose(const_reference value, Disposer disposer) |
|
{ |
|
std::pair<iterator,iterator> p = this->equal_range(value); |
|
size_type n; |
|
private_erase(p.first, p.second, n, disposer); |
|
return n; |
|
} |
|
|
|
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw. |
|
//! |
|
//! <b>Effects</b>: Erases all the elements with the given key. |
|
//! according to the comparison functor "comp". |
|
//! Disposer::operator()(pointer) is called for the removed elements. |
|
//! |
|
//! <b>Returns</b>: The number of erased elements. |
|
//! |
|
//! <b>Complexity</b>: O(log(size() + N). |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: Invalidates the iterators |
|
//! to the erased elements. |
|
template<class KeyType, class KeyValueCompare, class Disposer> |
|
size_type erase_and_dispose(const KeyType& key, KeyValueCompare comp, Disposer disposer |
|
/// @cond |
|
, typename detail::enable_if_c<!detail::is_convertible<KeyValueCompare, const_iterator>::value >::type * = 0 |
|
/// @endcond |
|
) |
|
{ |
|
std::pair<iterator,iterator> p = this->equal_range(key, comp); |
|
size_type n; |
|
private_erase(p.first, p.second, n, disposer); |
|
return n; |
|
} |
|
|
|
//! <b>Effects</b>: Erases all of the elements. |
|
//! |
|
//! <b>Complexity</b>: Linear to the number of elements on the container. |
|
//! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: Invalidates the iterators (but not the references) |
|
//! to the erased elements. No destructors are called. |
|
void clear() |
|
{ |
|
if(safemode_or_autounlink){ |
|
this->clear_and_dispose(detail::null_disposer()); |
|
} |
|
else{ |
|
node_algorithms::init_header(&priv_header()); |
|
this->priv_size_traits().set_size(0); |
|
} |
|
} |
|
|
|
//! <b>Effects</b>: Erases all of the elements calling disposer(p) for |
|
//! each node to be erased. |
|
//! <b>Complexity</b>: Average complexity for is at most O(log(size() + N)), |
|
//! where N is the number of elements in the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: Invalidates the iterators (but not the references) |
|
//! to the erased elements. Calls N times to disposer functor. |
|
template<class Disposer> |
|
void clear_and_dispose(Disposer disposer) |
|
{ |
|
node_algorithms::clear_and_dispose(node_ptr(&priv_header()) |
|
, detail::node_disposer<Disposer, sgtree_impl>(disposer, this)); |
|
this->priv_size_traits().set_size(0); |
|
} |
|
|
|
//! <b>Effects</b>: Returns the number of contained elements with the given value |
|
//! |
|
//! <b>Complexity</b>: Logarithmic to the number of elements contained plus lineal |
|
//! to number of objects with the given value. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
size_type count(const_reference value) const |
|
{ return this->count(value, priv_comp()); } |
|
|
|
//! <b>Effects</b>: Returns the number of contained elements with the given key |
|
//! |
|
//! <b>Complexity</b>: Logarithmic to the number of elements contained plus lineal |
|
//! to number of objects with the given key. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
template<class KeyType, class KeyValueCompare> |
|
size_type count(const KeyType &key, KeyValueCompare comp) const |
|
{ |
|
std::pair<const_iterator, const_iterator> ret = this->equal_range(key, comp); |
|
return std::distance(ret.first, ret.second); |
|
} |
|
|
|
//! <b>Effects</b>: Returns an iterator to the first element whose |
|
//! key is not less than k or end() if that element does not exist. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
iterator lower_bound(const_reference value) |
|
{ return this->lower_bound(value, priv_comp()); } |
|
|
|
//! <b>Effects</b>: Returns an iterator to the first element whose |
|
//! key is not less than k or end() if that element does not exist. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
const_iterator lower_bound(const_reference value) const |
|
{ return this->lower_bound(value, priv_comp()); } |
|
|
|
//! <b>Effects</b>: Returns an iterator to the first element whose |
|
//! key is not less than k or end() if that element does not exist. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
template<class KeyType, class KeyValueCompare> |
|
iterator lower_bound(const KeyType &key, KeyValueCompare comp) |
|
{ |
|
detail::key_nodeptr_comp<KeyValueCompare, sgtree_impl> |
|
key_node_comp(comp, this); |
|
return iterator(node_algorithms::lower_bound |
|
(const_node_ptr(&priv_header()), key, key_node_comp), this); |
|
} |
|
|
|
//! <b>Effects</b>: Returns a const iterator to the first element whose |
|
//! key is not less than k or end() if that element does not exist. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
template<class KeyType, class KeyValueCompare> |
|
const_iterator lower_bound(const KeyType &key, KeyValueCompare comp) const |
|
{ |
|
detail::key_nodeptr_comp<KeyValueCompare, sgtree_impl> |
|
key_node_comp(comp, this); |
|
return const_iterator(node_algorithms::lower_bound |
|
(const_node_ptr(&priv_header()), key, key_node_comp), this); |
|
} |
|
|
|
//! <b>Effects</b>: Returns an iterator to the first element whose |
|
//! key is greater than k or end() if that element does not exist. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
iterator upper_bound(const_reference value) |
|
{ return this->upper_bound(value, priv_comp()); } |
|
|
|
//! <b>Effects</b>: Returns an iterator to the first element whose |
|
//! key is greater than k according to comp or end() if that element |
|
//! does not exist. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
template<class KeyType, class KeyValueCompare> |
|
iterator upper_bound(const KeyType &key, KeyValueCompare comp) |
|
{ |
|
detail::key_nodeptr_comp<KeyValueCompare, sgtree_impl> |
|
key_node_comp(comp, this); |
|
return iterator(node_algorithms::upper_bound |
|
(const_node_ptr(&priv_header()), key, key_node_comp), this); |
|
} |
|
|
|
//! <b>Effects</b>: Returns an iterator to the first element whose |
|
//! key is greater than k or end() if that element does not exist. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
const_iterator upper_bound(const_reference value) const |
|
{ return this->upper_bound(value, priv_comp()); } |
|
|
|
//! <b>Effects</b>: Returns an iterator to the first element whose |
|
//! key is greater than k according to comp or end() if that element |
|
//! does not exist. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
template<class KeyType, class KeyValueCompare> |
|
const_iterator upper_bound(const KeyType &key, KeyValueCompare comp) const |
|
{ |
|
detail::key_nodeptr_comp<KeyValueCompare, sgtree_impl> |
|
key_node_comp(comp, this); |
|
return const_iterator(node_algorithms::upper_bound |
|
(const_node_ptr(&priv_header()), key, key_node_comp), this); |
|
} |
|
|
|
//! <b>Effects</b>: Finds an iterator to the first element whose key is |
|
//! k or end() if that element does not exist. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
iterator find(const_reference value) |
|
{ return this->find(value, priv_comp()); } |
|
|
|
//! <b>Effects</b>: Finds an iterator to the first element whose key is |
|
//! k or end() if that element does not exist. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
template<class KeyType, class KeyValueCompare> |
|
iterator find(const KeyType &key, KeyValueCompare comp) |
|
{ |
|
detail::key_nodeptr_comp<KeyValueCompare, sgtree_impl> |
|
key_node_comp(comp, this); |
|
return iterator |
|
(node_algorithms::find(const_node_ptr(&priv_header()), key, key_node_comp), this); |
|
} |
|
|
|
//! <b>Effects</b>: Finds a const_iterator to the first element whose key is |
|
//! k or end() if that element does not exist. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
const_iterator find(const_reference value) const |
|
{ return this->find(value, priv_comp()); } |
|
|
|
//! <b>Effects</b>: Finds a const_iterator to the first element whose key is |
|
//! k or end() if that element does not exist. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
template<class KeyType, class KeyValueCompare> |
|
const_iterator find(const KeyType &key, KeyValueCompare comp) const |
|
{ |
|
detail::key_nodeptr_comp<KeyValueCompare, sgtree_impl> |
|
key_node_comp(comp, this); |
|
return const_iterator |
|
(node_algorithms::find(const_node_ptr(&priv_header()), key, key_node_comp), this); |
|
} |
|
|
|
//! <b>Effects</b>: Finds a range containing all elements whose key is k or |
|
//! an empty range that indicates the position where those elements would be |
|
//! if they there is no elements with key k. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
std::pair<iterator,iterator> equal_range(const_reference value) |
|
{ return this->equal_range(value, priv_comp()); } |
|
|
|
//! <b>Effects</b>: Finds a range containing all elements whose key is k or |
|
//! an empty range that indicates the position where those elements would be |
|
//! if they there is no elements with key k. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
template<class KeyType, class KeyValueCompare> |
|
std::pair<iterator,iterator> equal_range(const KeyType &key, KeyValueCompare comp) |
|
{ |
|
detail::key_nodeptr_comp<KeyValueCompare, sgtree_impl> |
|
key_node_comp(comp, this); |
|
std::pair<node_ptr, node_ptr> ret |
|
(node_algorithms::equal_range(const_node_ptr(&priv_header()), key, key_node_comp)); |
|
return std::pair<iterator, iterator>(iterator(ret.first, this), iterator(ret.second, this)); |
|
} |
|
|
|
//! <b>Effects</b>: Finds a range containing all elements whose key is k or |
|
//! an empty range that indicates the position where those elements would be |
|
//! if they there is no elements with key k. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
std::pair<const_iterator, const_iterator> |
|
equal_range(const_reference value) const |
|
{ return this->equal_range(value, priv_comp()); } |
|
|
|
//! <b>Effects</b>: Finds a range containing all elements whose key is k or |
|
//! an empty range that indicates the position where those elements would be |
|
//! if they there is no elements with key k. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
template<class KeyType, class KeyValueCompare> |
|
std::pair<const_iterator, const_iterator> |
|
equal_range(const KeyType &key, KeyValueCompare comp) const |
|
{ |
|
detail::key_nodeptr_comp<KeyValueCompare, sgtree_impl> |
|
key_node_comp(comp, this); |
|
std::pair<node_ptr, node_ptr> ret |
|
(node_algorithms::equal_range(const_node_ptr(&priv_header()), key, key_node_comp)); |
|
return std::pair<const_iterator, const_iterator>(const_iterator(ret.first, this), const_iterator(ret.second, this)); |
|
} |
|
|
|
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw. |
|
//! Cloner should yield to nodes equivalent to the original nodes. |
|
//! |
|
//! <b>Effects</b>: Erases all the elements from *this |
|
//! calling Disposer::operator()(pointer), clones all the |
|
//! elements from src calling Cloner::operator()(const_reference ) |
|
//! and inserts them on *this. Copies the predicate from the source container. |
|
//! |
|
//! If cloner throws, all cloned elements are unlinked and disposed |
|
//! calling Disposer::operator()(pointer). |
|
//! |
|
//! <b>Complexity</b>: Linear to erased plus inserted elements. |
|
//! |
|
//! <b>Throws</b>: If cloner throws or predicate copy assignment throws. Basic guarantee. |
|
template <class Cloner, class Disposer> |
|
void clone_from(const sgtree_impl &src, Cloner cloner, Disposer disposer) |
|
{ |
|
this->clear_and_dispose(disposer); |
|
if(!src.empty()){ |
|
detail::exception_disposer<sgtree_impl, Disposer> |
|
rollback(*this, disposer); |
|
node_algorithms::clone |
|
(const_node_ptr(&src.priv_header()) |
|
,node_ptr(&this->priv_header()) |
|
,detail::node_cloner<Cloner, sgtree_impl>(cloner, this) |
|
,detail::node_disposer<Disposer, sgtree_impl>(disposer, this)); |
|
this->priv_size_traits().set_size(src.priv_size_traits().get_size()); |
|
this->priv_comp() = src.priv_comp(); |
|
rollback.release(); |
|
} |
|
} |
|
|
|
//! <b>Effects</b>: Unlinks the leftmost node from the tree. |
|
//! |
|
//! <b>Complexity</b>: Average complexity is constant time. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Notes</b>: This function breaks the tree and the tree can |
|
//! only be used for more unlink_leftmost_without_rebalance calls. |
|
//! This function is normally used to achieve a step by step |
|
//! controlled destruction of the tree. |
|
pointer unlink_leftmost_without_rebalance() |
|
{ |
|
node_ptr to_be_disposed(node_algorithms::unlink_leftmost_without_rebalance |
|
(node_ptr(&priv_header()))); |
|
if(!to_be_disposed) |
|
return 0; |
|
this->priv_size_traits().decrement(); |
|
if(safemode_or_autounlink)//If this is commented does not work with normal_link |
|
node_algorithms::init(to_be_disposed); |
|
return get_real_value_traits().to_value_ptr(to_be_disposed); |
|
} |
|
|
|
//! <b>Requires</b>: replace_this must be a valid iterator of *this |
|
//! and with_this must not be inserted in any tree. |
|
//! |
|
//! <b>Effects</b>: Replaces replace_this in its position in the |
|
//! tree with with_this. The tree does not need to be rebalanced. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: This function will break container ordering invariants if |
|
//! with_this is not equivalent to *replace_this according to the |
|
//! ordering rules. This function is faster than erasing and inserting |
|
//! the node, since no rebalancing or comparison is needed. |
|
void replace_node(iterator replace_this, reference with_this) |
|
{ |
|
node_algorithms::replace_node( get_real_value_traits().to_node_ptr(*replace_this) |
|
, node_ptr(&priv_header()) |
|
, get_real_value_traits().to_node_ptr(with_this)); |
|
if(safemode_or_autounlink) |
|
node_algorithms::init(replace_this.pointed_node()); |
|
} |
|
|
|
//! <b>Requires</b>: value must be an lvalue and shall be in a set of |
|
//! appropriate type. Otherwise the behavior is undefined. |
|
//! |
|
//! <b>Effects</b>: Returns: a valid iterator i belonging to the set |
|
//! that points to the value |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: This static function is available only if the <i>value traits</i> |
|
//! is stateless. |
|
static iterator s_iterator_to(reference value) |
|
{ |
|
BOOST_STATIC_ASSERT((!stateful_value_traits)); |
|
return iterator (value_traits::to_node_ptr(value), 0); |
|
} |
|
|
|
//! <b>Requires</b>: value must be an lvalue and shall be in a set of |
|
//! appropriate type. Otherwise the behavior is undefined. |
|
//! |
|
//! <b>Effects</b>: Returns: a valid const_iterator i belonging to the |
|
//! set that points to the value |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Note</b>: This static function is available only if the <i>value traits</i> |
|
//! is stateless. |
|
static const_iterator s_iterator_to(const_reference value) |
|
{ |
|
BOOST_STATIC_ASSERT((!stateful_value_traits)); |
|
return const_iterator (value_traits::to_node_ptr(const_cast<reference> (value)), 0); |
|
} |
|
|
|
//! <b>Requires</b>: value must be an lvalue and shall be in a set of |
|
//! appropriate type. Otherwise the behavior is undefined. |
|
//! |
|
//! <b>Effects</b>: Returns: a valid iterator i belonging to the set |
|
//! that points to the value |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
iterator iterator_to(reference value) |
|
{ return iterator (value_traits::to_node_ptr(value), this); } |
|
|
|
//! <b>Requires</b>: value must be an lvalue and shall be in a set of |
|
//! appropriate type. Otherwise the behavior is undefined. |
|
//! |
|
//! <b>Effects</b>: Returns: a valid const_iterator i belonging to the |
|
//! set that points to the value |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
const_iterator iterator_to(const_reference value) const |
|
{ return const_iterator (value_traits::to_node_ptr(const_cast<reference> (value)), this); } |
|
|
|
//! <b>Requires</b>: value shall not be in a tree. |
|
//! |
|
//! <b>Effects</b>: init_node puts the hook of a value in a well-known default |
|
//! state. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant time. |
|
//! |
|
//! <b>Note</b>: This function puts the hook in the well-known default state |
|
//! used by auto_unlink and safe hooks. |
|
static void init_node(reference value) |
|
{ node_algorithms::init(value_traits::to_node_ptr(value)); } |
|
|
|
//! <b>Effects</b>: Rebalances the tree. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Linear. |
|
void rebalance() |
|
{ node_algorithms::rebalance(node_ptr(&priv_header())); } |
|
|
|
//! <b>Requires</b>: old_root is a node of a tree. |
|
//! |
|
//! <b>Effects</b>: Rebalances the subtree rooted at old_root. |
|
//! |
|
//! <b>Returns</b>: The new root of the subtree. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Linear to the elements in the subtree. |
|
iterator rebalance_subtree(iterator root) |
|
{ return iterator(node_algorithms::rebalance_subtree(root.pointed_node()), this); } |
|
|
|
//! <b>Returns</b>: The balance factor (alpha) used in this tree |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
float balance_factor() const |
|
{ return this->priv_alpha(); } |
|
|
|
//! <b>Requires</b>: new_alpha must be a value between 0.5 and 1.0 |
|
//! |
|
//! <b>Effects</b>: Establishes a new balance factor (alpha) and rebalances |
|
//! the tree if the new balance factor is stricter (less) than the old factor. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Linear to the elements in the subtree. |
|
void balance_factor(float new_alpha) |
|
{ |
|
BOOST_INTRUSIVE_INVARIANT_ASSERT((new_alpha > 0.5f && new_alpha < 1.0f)); |
|
if(new_alpha < 0.5f && new_alpha >= 1.0f) return; |
|
|
|
//The alpha factor CAN't be changed if the fixed, floating operation-less |
|
//1/sqrt(2) alpha factor option is activated |
|
BOOST_STATIC_ASSERT((floating_point)); |
|
float old_alpha = this->priv_alpha(); |
|
this->priv_alpha(new_alpha); |
|
|
|
if(new_alpha < old_alpha){ |
|
data_.max_tree_size_ = this->size(); |
|
this->rebalance(); |
|
} |
|
} |
|
/* |
|
//! <b>Effects</b>: removes x from a tree of the appropriate type. It has no effect, |
|
//! if x is not in such a tree. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant time. |
|
//! |
|
//! <b>Note</b>: This static function is only usable with the "safe mode" |
|
//! hook and non-constant time size lists. Otherwise, the user must use |
|
//! the non-static "erase(reference )" member. If the user calls |
|
//! this function with a non "safe mode" or constant time size list |
|
//! a compilation error will be issued. |
|
template<class T> |
|
static void remove_node(T& value) |
|
{ |
|
//This function is only usable for safe mode hooks and non-constant |
|
//time lists. |
|
//BOOST_STATIC_ASSERT((!(safemode_or_autounlink && constant_time_size))); |
|
BOOST_STATIC_ASSERT((!constant_time_size)); |
|
BOOST_STATIC_ASSERT((boost::is_convertible<T, value_type>::value)); |
|
node_ptr to_remove(value_traits::to_node_ptr(value)); |
|
node_algorithms::unlink_and_rebalance(to_remove); |
|
if(safemode_or_autounlink) |
|
node_algorithms::init(to_remove); |
|
} |
|
*/ |
|
|
|
/// @cond |
|
private: |
|
template<class Disposer> |
|
iterator private_erase(const_iterator b, const_iterator e, size_type &n, Disposer disposer) |
|
{ |
|
for(n = 0; b != e; ++n) |
|
this->erase_and_dispose(b++, disposer); |
|
return b.unconst(); |
|
} |
|
|
|
iterator private_erase(const_iterator b, const_iterator e, size_type &n) |
|
{ |
|
for(n = 0; b != e; ++n) |
|
this->erase(b++); |
|
return b.unconst(); |
|
} |
|
/// @endcond |
|
|
|
private: |
|
static sgtree_impl &priv_container_from_end_iterator(const const_iterator &end_iterator) |
|
{ |
|
header_plus_alpha *r = detail::parent_from_member<header_plus_alpha, node> |
|
( detail::boost_intrusive_get_pointer(end_iterator.pointed_node()), &header_plus_alpha::header_); |
|
node_plus_pred_t *n = detail::parent_from_member |
|
<node_plus_pred_t, header_plus_alpha>(r, &node_plus_pred_t::header_plus_alpha_); |
|
data_t *d = detail::parent_from_member<data_t, node_plus_pred_t>(n, &data_t::node_plus_pred_); |
|
sgtree_impl *scapegoat = detail::parent_from_member<sgtree_impl, data_t>(d, &sgtree_impl::data_); |
|
return *scapegoat; |
|
} |
|
|
|
static sgtree_impl &priv_container_from_iterator(const const_iterator &it) |
|
{ return priv_container_from_end_iterator(it.end_iterator_from_it()); } |
|
}; |
|
|
|
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) |
|
template<class T, class ...Options> |
|
#else |
|
template<class Config> |
|
#endif |
|
inline bool operator< |
|
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) |
|
(const sgtree_impl<T, Options...> &x, const sgtree_impl<T, Options...> &y) |
|
#else |
|
(const sgtree_impl<Config> &x, const sgtree_impl<Config> &y) |
|
#endif |
|
{ return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } |
|
|
|
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) |
|
template<class T, class ...Options> |
|
#else |
|
template<class Config> |
|
#endif |
|
bool operator== |
|
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) |
|
(const sgtree_impl<T, Options...> &x, const sgtree_impl<T, Options...> &y) |
|
#else |
|
(const sgtree_impl<Config> &x, const sgtree_impl<Config> &y) |
|
#endif |
|
{ |
|
typedef sgtree_impl<Config> tree_type; |
|
typedef typename tree_type::const_iterator const_iterator; |
|
|
|
if(tree_type::constant_time_size && x.size() != y.size()){ |
|
return false; |
|
} |
|
const_iterator end1 = x.end(); |
|
const_iterator i1 = x.begin(); |
|
const_iterator i2 = y.begin(); |
|
if(tree_type::constant_time_size){ |
|
while (i1 != end1 && *i1 == *i2) { |
|
++i1; |
|
++i2; |
|
} |
|
return i1 == end1; |
|
} |
|
else{ |
|
const_iterator end2 = y.end(); |
|
while (i1 != end1 && i2 != end2 && *i1 == *i2) { |
|
++i1; |
|
++i2; |
|
} |
|
return i1 == end1 && i2 == end2; |
|
} |
|
} |
|
|
|
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) |
|
template<class T, class ...Options> |
|
#else |
|
template<class Config> |
|
#endif |
|
inline bool operator!= |
|
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) |
|
(const sgtree_impl<T, Options...> &x, const sgtree_impl<T, Options...> &y) |
|
#else |
|
(const sgtree_impl<Config> &x, const sgtree_impl<Config> &y) |
|
#endif |
|
{ return !(x == y); } |
|
|
|
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) |
|
template<class T, class ...Options> |
|
#else |
|
template<class Config> |
|
#endif |
|
inline bool operator> |
|
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) |
|
(const sgtree_impl<T, Options...> &x, const sgtree_impl<T, Options...> &y) |
|
#else |
|
(const sgtree_impl<Config> &x, const sgtree_impl<Config> &y) |
|
#endif |
|
{ return y < x; } |
|
|
|
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) |
|
template<class T, class ...Options> |
|
#else |
|
template<class Config> |
|
#endif |
|
inline bool operator<= |
|
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) |
|
(const sgtree_impl<T, Options...> &x, const sgtree_impl<T, Options...> &y) |
|
#else |
|
(const sgtree_impl<Config> &x, const sgtree_impl<Config> &y) |
|
#endif |
|
{ return !(y < x); } |
|
|
|
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) |
|
template<class T, class ...Options> |
|
#else |
|
template<class Config> |
|
#endif |
|
inline bool operator>= |
|
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) |
|
(const sgtree_impl<T, Options...> &x, const sgtree_impl<T, Options...> &y) |
|
#else |
|
(const sgtree_impl<Config> &x, const sgtree_impl<Config> &y) |
|
#endif |
|
{ return !(x < y); } |
|
|
|
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) |
|
template<class T, class ...Options> |
|
#else |
|
template<class Config> |
|
#endif |
|
inline void swap |
|
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) |
|
(sgtree_impl<T, Options...> &x, sgtree_impl<T, Options...> &y) |
|
#else |
|
(sgtree_impl<Config> &x, sgtree_impl<Config> &y) |
|
#endif |
|
{ x.swap(y); } |
|
|
|
/// @cond |
|
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) |
|
template<class T, class O1 = none, class O2 = none |
|
, class O3 = none, class O4 = none> |
|
#else |
|
template<class T, class ...Options> |
|
#endif |
|
struct make_sgtree_opt |
|
{ |
|
typedef typename pack_options |
|
< sg_set_defaults<T>, |
|
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) |
|
O1, O2, O3, O4 |
|
#else |
|
Options... |
|
#endif |
|
>::type packed_options; |
|
typedef typename detail::get_value_traits |
|
<T, typename packed_options::value_traits>::type value_traits; |
|
|
|
typedef sg_setopt |
|
< value_traits |
|
, typename packed_options::compare |
|
, typename packed_options::size_type |
|
, packed_options::floating_point |
|
> type; |
|
}; |
|
/// @endcond |
|
|
|
//! Helper metafunction to define a \c sgtree that yields to the same type when the |
|
//! same options (either explicitly or implicitly) are used. |
|
#if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) || defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) |
|
template<class T, class ...Options> |
|
#else |
|
template<class T, class O1 = none, class O2 = none |
|
, class O3 = none, class O4 = none> |
|
#endif |
|
struct make_sgtree |
|
{ |
|
/// @cond |
|
typedef sgtree_impl |
|
< typename make_sgtree_opt<T, |
|
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) |
|
O1, O2, O3, O4 |
|
#else |
|
Options... |
|
#endif |
|
>::type |
|
> implementation_defined; |
|
/// @endcond |
|
typedef implementation_defined type; |
|
}; |
|
|
|
#ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED |
|
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) |
|
template<class T, class O1, class O2, class O3, class O4> |
|
#else |
|
template<class T, class ...Options> |
|
#endif |
|
class sgtree |
|
: public make_sgtree<T, |
|
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) |
|
O1, O2, O3, O4 |
|
#else |
|
Options... |
|
#endif |
|
>::type |
|
{ |
|
typedef typename make_sgtree |
|
<T, |
|
#if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) |
|
O1, O2, O3, O4 |
|
#else |
|
Options... |
|
#endif |
|
>::type Base; |
|
|
|
BOOST_MOVABLE_BUT_NOT_COPYABLE(sgtree) |
|
|
|
public: |
|
typedef typename Base::value_compare value_compare; |
|
typedef typename Base::value_traits value_traits; |
|
typedef typename Base::real_value_traits real_value_traits; |
|
typedef typename Base::iterator iterator; |
|
typedef typename Base::const_iterator const_iterator; |
|
|
|
//Assert if passed value traits are compatible with the type |
|
BOOST_STATIC_ASSERT((detail::is_same<typename real_value_traits::value_type, T>::value)); |
|
|
|
sgtree( const value_compare &cmp = value_compare() |
|
, const value_traits &v_traits = value_traits()) |
|
: Base(cmp, v_traits) |
|
{} |
|
|
|
template<class Iterator> |
|
sgtree( bool unique, Iterator b, Iterator e |
|
, const value_compare &cmp = value_compare() |
|
, const value_traits &v_traits = value_traits()) |
|
: Base(unique, b, e, cmp, v_traits) |
|
{} |
|
|
|
sgtree(BOOST_RV_REF(sgtree) x) |
|
: Base(::boost::move(static_cast<Base&>(x))) |
|
{} |
|
|
|
sgtree& operator=(BOOST_RV_REF(sgtree) x) |
|
{ this->Base::operator=(::boost::move(static_cast<Base&>(x))); return *this; } |
|
|
|
static sgtree &container_from_end_iterator(iterator end_iterator) |
|
{ return static_cast<sgtree &>(Base::container_from_end_iterator(end_iterator)); } |
|
|
|
static const sgtree &container_from_end_iterator(const_iterator end_iterator) |
|
{ return static_cast<const sgtree &>(Base::container_from_end_iterator(end_iterator)); } |
|
}; |
|
|
|
#endif |
|
|
|
|
|
} //namespace intrusive |
|
} //namespace boost |
|
|
|
#include <boost/intrusive/detail/config_end.hpp> |
|
|
|
#endif //BOOST_INTRUSIVE_SGTREE_HPP
|
|
|