You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
376 lines
12 KiB
376 lines
12 KiB
// (C) Copyright 2007-2009 Andrew Sutton |
|
// |
|
// Use, modification and distribution are subject to the |
|
// Boost Software License, Version 1.0 (See accompanying file |
|
// LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt) |
|
|
|
#ifndef BOOST_GRAPH_CYCLE_HPP |
|
#define BOOST_GRAPH_CYCLE_HPP |
|
|
|
#include <vector> |
|
|
|
#include <boost/config.hpp> |
|
#include <boost/graph/graph_concepts.hpp> |
|
#include <boost/graph/graph_traits.hpp> |
|
#include <boost/graph/properties.hpp> |
|
|
|
#include <boost/concept/detail/concept_def.hpp> |
|
namespace boost { |
|
namespace concepts { |
|
BOOST_concept(CycleVisitor,(Visitor)(Path)(Graph)) |
|
{ |
|
BOOST_CONCEPT_USAGE(CycleVisitor) |
|
{ |
|
vis.cycle(p, g); |
|
} |
|
private: |
|
Visitor vis; |
|
Graph g; |
|
Path p; |
|
}; |
|
} /* namespace concepts */ |
|
using concepts::CycleVisitorConcept; |
|
} /* namespace boost */ |
|
#include <boost/concept/detail/concept_undef.hpp> |
|
|
|
|
|
namespace boost |
|
{ |
|
|
|
// The implementation of this algorithm is a reproduction of the Teirnan |
|
// approach for directed graphs: bibtex follows |
|
// |
|
// @article{362819, |
|
// author = {James C. Tiernan}, |
|
// title = {An efficient search algorithm to find the elementary circuits of a graph}, |
|
// journal = {Commun. ACM}, |
|
// volume = {13}, |
|
// number = {12}, |
|
// year = {1970}, |
|
// issn = {0001-0782}, |
|
// pages = {722--726}, |
|
// doi = {http://doi.acm.org/10.1145/362814.362819}, |
|
// publisher = {ACM Press}, |
|
// address = {New York, NY, USA}, |
|
// } |
|
// |
|
// It should be pointed out that the author does not provide a complete analysis for |
|
// either time or space. This is in part, due to the fact that it's a fairly input |
|
// sensitive problem related to the density and construction of the graph, not just |
|
// its size. |
|
// |
|
// I've also taken some liberties with the interpretation of the algorithm - I've |
|
// basically modernized it to use real data structures (no more arrays and matrices). |
|
// Oh... and there's explicit control structures - not just gotos. |
|
// |
|
// The problem is definitely NP-complete, an an unbounded implementation of this |
|
// will probably run for quite a while on a large graph. The conclusions |
|
// of this paper also reference a Paton algorithm for undirected graphs as being |
|
// much more efficient (apparently based on spanning trees). Although not implemented, |
|
// it can be found here: |
|
// |
|
// @article{363232, |
|
// author = {Keith Paton}, |
|
// title = {An algorithm for finding a fundamental set of cycles of a graph}, |
|
// journal = {Commun. ACM}, |
|
// volume = {12}, |
|
// number = {9}, |
|
// year = {1969}, |
|
// issn = {0001-0782}, |
|
// pages = {514--518}, |
|
// doi = {http://doi.acm.org/10.1145/363219.363232}, |
|
// publisher = {ACM Press}, |
|
// address = {New York, NY, USA}, |
|
// } |
|
|
|
/** |
|
* The default cycle visitor providse an empty visit function for cycle |
|
* visitors. |
|
*/ |
|
struct cycle_visitor |
|
{ |
|
template <typename Path, typename Graph> |
|
inline void cycle(const Path& p, const Graph& g) |
|
{ } |
|
}; |
|
|
|
/** |
|
* The min_max_cycle_visitor simultaneously records the minimum and maximum |
|
* cycles in a graph. |
|
*/ |
|
struct min_max_cycle_visitor |
|
{ |
|
min_max_cycle_visitor(std::size_t& min_, std::size_t& max_) |
|
: minimum(min_), maximum(max_) |
|
{ } |
|
|
|
template <typename Path, typename Graph> |
|
inline void cycle(const Path& p, const Graph& g) |
|
{ |
|
BOOST_USING_STD_MIN(); |
|
BOOST_USING_STD_MAX(); |
|
std::size_t len = p.size(); |
|
minimum = min BOOST_PREVENT_MACRO_SUBSTITUTION (minimum, len); |
|
maximum = max BOOST_PREVENT_MACRO_SUBSTITUTION (maximum, len); |
|
} |
|
std::size_t& minimum; |
|
std::size_t& maximum; |
|
}; |
|
|
|
inline min_max_cycle_visitor |
|
find_min_max_cycle(std::size_t& min_, std::size_t& max_) |
|
{ return min_max_cycle_visitor(min_, max_); } |
|
|
|
namespace detail |
|
{ |
|
template <typename Graph, typename Path> |
|
inline bool |
|
is_vertex_in_path(const Graph&, |
|
typename graph_traits<Graph>::vertex_descriptor v, |
|
const Path& p) |
|
{ |
|
return (std::find(p.begin(), p.end(), v) != p.end()); |
|
} |
|
|
|
template <typename Graph, typename ClosedMatrix> |
|
inline bool |
|
is_path_closed(const Graph& g, |
|
typename graph_traits<Graph>::vertex_descriptor u, |
|
typename graph_traits<Graph>::vertex_descriptor v, |
|
const ClosedMatrix& closed) |
|
{ |
|
// the path from u to v is closed if v can be found in the list |
|
// of closed vertices associated with u. |
|
typedef typename ClosedMatrix::const_reference Row; |
|
Row r = closed[get(vertex_index, g, u)]; |
|
if(find(r.begin(), r.end(), v) != r.end()) { |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
template <typename Graph, typename Path, typename ClosedMatrix> |
|
inline bool |
|
can_extend_path(const Graph& g, |
|
typename graph_traits<Graph>::edge_descriptor e, |
|
const Path& p, |
|
const ClosedMatrix& m) |
|
{ |
|
function_requires< IncidenceGraphConcept<Graph> >(); |
|
function_requires< VertexIndexGraphConcept<Graph> >(); |
|
typedef typename graph_traits<Graph>::vertex_descriptor Vertex; |
|
|
|
// get the vertices in question |
|
Vertex |
|
u = source(e, g), |
|
v = target(e, g); |
|
|
|
// conditions for allowing a traversal along this edge are: |
|
// 1. the index of v must be greater than that at which the |
|
// the path is rooted (p.front()). |
|
// 2. the vertex v cannot already be in the path |
|
// 3. the vertex v cannot be closed to the vertex u |
|
|
|
bool indices = get(vertex_index, g, p.front()) < get(vertex_index, g, v); |
|
bool path = !is_vertex_in_path(g, v, p); |
|
bool closed = !is_path_closed(g, u, v, m); |
|
return indices && path && closed; |
|
} |
|
|
|
template <typename Graph, typename Path> |
|
inline bool |
|
can_wrap_path(const Graph& g, const Path& p) |
|
{ |
|
function_requires< IncidenceGraphConcept<Graph> >(); |
|
typedef typename graph_traits<Graph>::vertex_descriptor Vertex; |
|
typedef typename graph_traits<Graph>::out_edge_iterator OutIterator; |
|
|
|
// iterate over the out-edges of the back, looking for the |
|
// front of the path. also, we can't travel along the same |
|
// edge that we did on the way here, but we don't quite have the |
|
// stringent requirements that we do in can_extend_path(). |
|
Vertex |
|
u = p.back(), |
|
v = p.front(); |
|
OutIterator i, end; |
|
for(boost::tie(i, end) = out_edges(u, g); i != end; ++i) { |
|
if((target(*i, g) == v)) { |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
template <typename Graph, |
|
typename Path, |
|
typename ClosedMatrix> |
|
inline typename graph_traits<Graph>::vertex_descriptor |
|
extend_path(const Graph& g, |
|
Path& p, |
|
ClosedMatrix& closed) |
|
{ |
|
function_requires< IncidenceGraphConcept<Graph> >(); |
|
typedef typename graph_traits<Graph>::vertex_descriptor Vertex; |
|
typedef typename graph_traits<Graph>::edge_descriptor Edge; |
|
typedef typename graph_traits<Graph>::out_edge_iterator OutIterator; |
|
|
|
// get the current vertex |
|
Vertex u = p.back(); |
|
Vertex ret = graph_traits<Graph>::null_vertex(); |
|
|
|
// AdjacencyIterator i, end; |
|
OutIterator i, end; |
|
for(boost::tie(i, end) = out_edges(u, g); i != end; ++i) { |
|
Vertex v = target(*i, g); |
|
|
|
// if we can actually extend along this edge, |
|
// then that's what we want to do |
|
if(can_extend_path(g, *i, p, closed)) { |
|
p.push_back(v); // add the vertex to the path |
|
ret = v; |
|
break; |
|
} |
|
} |
|
return ret; |
|
} |
|
|
|
template <typename Graph, typename Path, typename ClosedMatrix> |
|
inline bool |
|
exhaust_paths(const Graph& g, Path& p, ClosedMatrix& closed) |
|
{ |
|
function_requires< GraphConcept<Graph> >(); |
|
typedef typename graph_traits<Graph>::vertex_descriptor Vertex; |
|
|
|
// if there's more than one vertex in the path, this closes |
|
// of some possible routes and returns true. otherwise, if there's |
|
// only one vertex left, the vertex has been used up |
|
if(p.size() > 1) { |
|
// get the last and second to last vertices, popping the last |
|
// vertex off the path |
|
Vertex last, prev; |
|
last = p.back(); |
|
p.pop_back(); |
|
prev = p.back(); |
|
|
|
// reset the closure for the last vertex of the path and |
|
// indicate that the last vertex in p is now closed to |
|
// the next-to-last vertex in p |
|
closed[get(vertex_index, g, last)].clear(); |
|
closed[get(vertex_index, g, prev)].push_back(last); |
|
return true; |
|
} |
|
else { |
|
return false; |
|
} |
|
} |
|
|
|
template <typename Graph, typename Visitor> |
|
inline void |
|
all_cycles_from_vertex(const Graph& g, |
|
typename graph_traits<Graph>::vertex_descriptor v, |
|
Visitor vis, |
|
std::size_t minlen, |
|
std::size_t maxlen) |
|
{ |
|
function_requires< VertexListGraphConcept<Graph> >(); |
|
typedef typename graph_traits<Graph>::vertex_descriptor Vertex; |
|
typedef std::vector<Vertex> Path; |
|
function_requires< CycleVisitorConcept<Visitor,Path,Graph> >(); |
|
typedef std::vector<Vertex> VertexList; |
|
typedef std::vector<VertexList> ClosedMatrix; |
|
|
|
Path p; |
|
ClosedMatrix closed(num_vertices(g), VertexList()); |
|
Vertex null = graph_traits<Graph>::null_vertex(); |
|
|
|
// each path investigation starts at the ith vertex |
|
p.push_back(v); |
|
|
|
while(1) { |
|
// extend the path until we've reached the end or the |
|
// maxlen-sized cycle |
|
Vertex j = null; |
|
while(((j = detail::extend_path(g, p, closed)) != null) |
|
&& (p.size() < maxlen)) |
|
; // empty loop |
|
|
|
// if we're done extending the path and there's an edge |
|
// connecting the back to the front, then we should have |
|
// a cycle. |
|
if(detail::can_wrap_path(g, p) && p.size() >= minlen) { |
|
vis.cycle(p, g); |
|
} |
|
|
|
if(!detail::exhaust_paths(g, p, closed)) { |
|
break; |
|
} |
|
} |
|
} |
|
|
|
// Select the minimum allowable length of a cycle based on the directedness |
|
// of the graph - 2 for directed, 3 for undirected. |
|
template <typename D> struct min_cycles { enum { value = 2 }; }; |
|
template <> struct min_cycles<undirected_tag> { enum { value = 3 }; }; |
|
} /* namespace detail */ |
|
|
|
template <typename Graph, typename Visitor> |
|
inline void |
|
tiernan_all_cycles(const Graph& g, |
|
Visitor vis, |
|
std::size_t minlen, |
|
std::size_t maxlen) |
|
{ |
|
function_requires< VertexListGraphConcept<Graph> >(); |
|
typedef typename graph_traits<Graph>::vertex_iterator VertexIterator; |
|
|
|
VertexIterator i, end; |
|
for(boost::tie(i, end) = vertices(g); i != end; ++i) { |
|
detail::all_cycles_from_vertex(g, *i, vis, minlen, maxlen); |
|
} |
|
} |
|
|
|
template <typename Graph, typename Visitor> |
|
inline void |
|
tiernan_all_cycles(const Graph& g, Visitor vis, std::size_t maxlen) |
|
{ |
|
typedef typename graph_traits<Graph>::directed_category Dir; |
|
tiernan_all_cycles(g, vis, detail::min_cycles<Dir>::value, maxlen); |
|
} |
|
|
|
template <typename Graph, typename Visitor> |
|
inline void |
|
tiernan_all_cycles(const Graph& g, Visitor vis) |
|
{ |
|
typedef typename graph_traits<Graph>::directed_category Dir; |
|
tiernan_all_cycles(g, vis, detail::min_cycles<Dir>::value, |
|
(std::numeric_limits<std::size_t>::max)()); |
|
} |
|
|
|
template <typename Graph> |
|
inline std::pair<std::size_t, std::size_t> |
|
tiernan_girth_and_circumference(const Graph& g) |
|
{ |
|
std::size_t |
|
min_ = (std::numeric_limits<std::size_t>::max)(), |
|
max_ = 0; |
|
tiernan_all_cycles(g, find_min_max_cycle(min_, max_)); |
|
|
|
// if this is the case, the graph is acyclic... |
|
if(max_ == 0) max_ = min_; |
|
|
|
return std::make_pair(min_, max_); |
|
} |
|
|
|
template <typename Graph> |
|
inline std::size_t |
|
tiernan_girth(const Graph& g) |
|
{ return tiernan_girth_and_circumference(g).first; } |
|
|
|
template <typename Graph> |
|
inline std::size_t |
|
tiernan_circumference(const Graph& g) |
|
{ return tiernan_girth_and_circumference(g).second; } |
|
|
|
} /* namespace boost */ |
|
|
|
#endif
|
|
|