You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
883 lines
29 KiB
883 lines
29 KiB
//======================================================================= |
|
// Copyright (c) 2005 Aaron Windsor |
|
// |
|
// Distributed under the Boost Software License, Version 1.0. |
|
// (See accompanying file LICENSE_1_0.txt or copy at |
|
// http://www.boost.org/LICENSE_1_0.txt) |
|
// |
|
//======================================================================= |
|
|
|
#ifndef BOOST_GRAPH_MAXIMUM_CARDINALITY_MATCHING_HPP |
|
#define BOOST_GRAPH_MAXIMUM_CARDINALITY_MATCHING_HPP |
|
|
|
#include <vector> |
|
#include <list> |
|
#include <deque> |
|
#include <algorithm> // for std::sort and std::stable_sort |
|
#include <utility> // for std::pair |
|
#include <boost/property_map/property_map.hpp> |
|
#include <boost/utility.hpp> // for boost::tie |
|
#include <boost/graph/graph_traits.hpp> |
|
#include <boost/graph/visitors.hpp> |
|
#include <boost/graph/depth_first_search.hpp> |
|
#include <boost/graph/filtered_graph.hpp> |
|
#include <boost/pending/disjoint_sets.hpp> |
|
#include <boost/assert.hpp> |
|
|
|
|
|
namespace boost |
|
{ |
|
namespace graph { namespace detail { |
|
enum { V_EVEN, V_ODD, V_UNREACHED }; |
|
} } // end namespace graph::detail |
|
|
|
template <typename Graph, typename MateMap, typename VertexIndexMap> |
|
typename graph_traits<Graph>::vertices_size_type |
|
matching_size(const Graph& g, MateMap mate, VertexIndexMap vm) |
|
{ |
|
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator_t; |
|
typedef typename graph_traits<Graph>::vertex_descriptor |
|
vertex_descriptor_t; |
|
typedef typename graph_traits<Graph>::vertices_size_type v_size_t; |
|
|
|
v_size_t size_of_matching = 0; |
|
vertex_iterator_t vi, vi_end; |
|
|
|
for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi) |
|
{ |
|
vertex_descriptor_t v = *vi; |
|
if (get(mate,v) != graph_traits<Graph>::null_vertex() |
|
&& get(vm,v) < get(vm,get(mate,v))) |
|
++size_of_matching; |
|
} |
|
return size_of_matching; |
|
} |
|
|
|
|
|
|
|
|
|
template <typename Graph, typename MateMap> |
|
inline typename graph_traits<Graph>::vertices_size_type |
|
matching_size(const Graph& g, MateMap mate) |
|
{ |
|
return matching_size(g, mate, get(vertex_index,g)); |
|
} |
|
|
|
|
|
|
|
|
|
template <typename Graph, typename MateMap, typename VertexIndexMap> |
|
bool is_a_matching(const Graph& g, MateMap mate, VertexIndexMap) |
|
{ |
|
typedef typename graph_traits<Graph>::vertex_descriptor |
|
vertex_descriptor_t; |
|
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator_t; |
|
|
|
vertex_iterator_t vi, vi_end; |
|
for( boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi) |
|
{ |
|
vertex_descriptor_t v = *vi; |
|
if (get(mate,v) != graph_traits<Graph>::null_vertex() |
|
&& v != get(mate,get(mate,v))) |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
|
|
|
|
|
|
template <typename Graph, typename MateMap> |
|
inline bool is_a_matching(const Graph& g, MateMap mate) |
|
{ |
|
return is_a_matching(g, mate, get(vertex_index,g)); |
|
} |
|
|
|
|
|
|
|
|
|
//*************************************************************************** |
|
//*************************************************************************** |
|
// Maximum Cardinality Matching Functors |
|
//*************************************************************************** |
|
//*************************************************************************** |
|
|
|
template <typename Graph, typename MateMap, |
|
typename VertexIndexMap = dummy_property_map> |
|
struct no_augmenting_path_finder |
|
{ |
|
no_augmenting_path_finder(const Graph&, MateMap, VertexIndexMap) |
|
{ } |
|
|
|
inline bool augment_matching() { return false; } |
|
|
|
template <typename PropertyMap> |
|
void get_current_matching(PropertyMap) {} |
|
}; |
|
|
|
|
|
|
|
|
|
template <typename Graph, typename MateMap, typename VertexIndexMap> |
|
class edmonds_augmenting_path_finder |
|
{ |
|
// This implementation of Edmonds' matching algorithm closely |
|
// follows Tarjan's description of the algorithm in "Data |
|
// Structures and Network Algorithms." |
|
|
|
public: |
|
|
|
//generates the type of an iterator property map from vertices to type X |
|
template <typename X> |
|
struct map_vertex_to_ |
|
{ |
|
typedef boost::iterator_property_map<typename std::vector<X>::iterator, |
|
VertexIndexMap> type; |
|
}; |
|
|
|
typedef typename graph_traits<Graph>::vertex_descriptor |
|
vertex_descriptor_t; |
|
typedef typename std::pair< vertex_descriptor_t, vertex_descriptor_t > |
|
vertex_pair_t; |
|
typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor_t; |
|
typedef typename graph_traits<Graph>::vertices_size_type v_size_t; |
|
typedef typename graph_traits<Graph>::edges_size_type e_size_t; |
|
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator_t; |
|
typedef typename graph_traits<Graph>::out_edge_iterator |
|
out_edge_iterator_t; |
|
typedef typename std::deque<vertex_descriptor_t> vertex_list_t; |
|
typedef typename std::vector<edge_descriptor_t> edge_list_t; |
|
typedef typename map_vertex_to_<vertex_descriptor_t>::type |
|
vertex_to_vertex_map_t; |
|
typedef typename map_vertex_to_<int>::type vertex_to_int_map_t; |
|
typedef typename map_vertex_to_<vertex_pair_t>::type |
|
vertex_to_vertex_pair_map_t; |
|
typedef typename map_vertex_to_<v_size_t>::type vertex_to_vsize_map_t; |
|
typedef typename map_vertex_to_<e_size_t>::type vertex_to_esize_map_t; |
|
|
|
|
|
|
|
|
|
edmonds_augmenting_path_finder(const Graph& arg_g, MateMap arg_mate, |
|
VertexIndexMap arg_vm) : |
|
g(arg_g), |
|
vm(arg_vm), |
|
n_vertices(num_vertices(arg_g)), |
|
|
|
mate_vector(n_vertices), |
|
ancestor_of_v_vector(n_vertices), |
|
ancestor_of_w_vector(n_vertices), |
|
vertex_state_vector(n_vertices), |
|
origin_vector(n_vertices), |
|
pred_vector(n_vertices), |
|
bridge_vector(n_vertices), |
|
ds_parent_vector(n_vertices), |
|
ds_rank_vector(n_vertices), |
|
|
|
mate(mate_vector.begin(), vm), |
|
ancestor_of_v(ancestor_of_v_vector.begin(), vm), |
|
ancestor_of_w(ancestor_of_w_vector.begin(), vm), |
|
vertex_state(vertex_state_vector.begin(), vm), |
|
origin(origin_vector.begin(), vm), |
|
pred(pred_vector.begin(), vm), |
|
bridge(bridge_vector.begin(), vm), |
|
ds_parent_map(ds_parent_vector.begin(), vm), |
|
ds_rank_map(ds_rank_vector.begin(), vm), |
|
|
|
ds(ds_rank_map, ds_parent_map) |
|
{ |
|
vertex_iterator_t vi, vi_end; |
|
for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi) |
|
mate[*vi] = get(arg_mate, *vi); |
|
} |
|
|
|
|
|
|
|
|
|
bool augment_matching() |
|
{ |
|
//As an optimization, some of these values can be saved from one |
|
//iteration to the next instead of being re-initialized each |
|
//iteration, allowing for "lazy blossom expansion." This is not |
|
//currently implemented. |
|
|
|
e_size_t timestamp = 0; |
|
even_edges.clear(); |
|
|
|
vertex_iterator_t vi, vi_end; |
|
for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi) |
|
{ |
|
vertex_descriptor_t u = *vi; |
|
|
|
origin[u] = u; |
|
pred[u] = u; |
|
ancestor_of_v[u] = 0; |
|
ancestor_of_w[u] = 0; |
|
ds.make_set(u); |
|
|
|
if (mate[u] == graph_traits<Graph>::null_vertex()) |
|
{ |
|
vertex_state[u] = graph::detail::V_EVEN; |
|
out_edge_iterator_t ei, ei_end; |
|
for(boost::tie(ei,ei_end) = out_edges(u,g); ei != ei_end; ++ei) |
|
even_edges.push_back( *ei ); |
|
} |
|
else |
|
vertex_state[u] = graph::detail::V_UNREACHED; |
|
} |
|
|
|
//end initializations |
|
|
|
vertex_descriptor_t v,w,w_free_ancestor,v_free_ancestor; |
|
w_free_ancestor = graph_traits<Graph>::null_vertex(); |
|
v_free_ancestor = graph_traits<Graph>::null_vertex(); |
|
bool found_alternating_path = false; |
|
|
|
while(!even_edges.empty() && !found_alternating_path) |
|
{ |
|
// since we push even edges onto the back of the list as |
|
// they're discovered, taking them off the back will search |
|
// for augmenting paths depth-first. |
|
edge_descriptor_t current_edge = even_edges.back(); |
|
even_edges.pop_back(); |
|
|
|
v = source(current_edge,g); |
|
w = target(current_edge,g); |
|
|
|
vertex_descriptor_t v_prime = origin[ds.find_set(v)]; |
|
vertex_descriptor_t w_prime = origin[ds.find_set(w)]; |
|
|
|
// because of the way we put all of the edges on the queue, |
|
// v_prime should be labeled V_EVEN; the following is a |
|
// little paranoid but it could happen... |
|
if (vertex_state[v_prime] != graph::detail::V_EVEN) |
|
{ |
|
std::swap(v_prime,w_prime); |
|
std::swap(v,w); |
|
} |
|
|
|
if (vertex_state[w_prime] == graph::detail::V_UNREACHED) |
|
{ |
|
vertex_state[w_prime] = graph::detail::V_ODD; |
|
vertex_state[mate[w_prime]] = graph::detail::V_EVEN; |
|
out_edge_iterator_t ei, ei_end; |
|
for( boost::tie(ei,ei_end) = out_edges(mate[w_prime], g); ei != ei_end; ++ei) |
|
even_edges.push_back(*ei); |
|
pred[w_prime] = v; |
|
} |
|
|
|
//w_prime == v_prime can happen below if we get an edge that has been |
|
//shrunk into a blossom |
|
else if (vertex_state[w_prime] == graph::detail::V_EVEN && w_prime != v_prime) |
|
{ |
|
vertex_descriptor_t w_up = w_prime; |
|
vertex_descriptor_t v_up = v_prime; |
|
vertex_descriptor_t nearest_common_ancestor |
|
= graph_traits<Graph>::null_vertex(); |
|
w_free_ancestor = graph_traits<Graph>::null_vertex(); |
|
v_free_ancestor = graph_traits<Graph>::null_vertex(); |
|
|
|
// We now need to distinguish between the case that |
|
// w_prime and v_prime share an ancestor under the |
|
// "parent" relation, in which case we've found a |
|
// blossom and should shrink it, or the case that |
|
// w_prime and v_prime both have distinct ancestors that |
|
// are free, in which case we've found an alternating |
|
// path between those two ancestors. |
|
|
|
++timestamp; |
|
|
|
while (nearest_common_ancestor == graph_traits<Graph>::null_vertex() && |
|
(v_free_ancestor == graph_traits<Graph>::null_vertex() || |
|
w_free_ancestor == graph_traits<Graph>::null_vertex() |
|
) |
|
) |
|
{ |
|
ancestor_of_w[w_up] = timestamp; |
|
ancestor_of_v[v_up] = timestamp; |
|
|
|
if (w_free_ancestor == graph_traits<Graph>::null_vertex()) |
|
w_up = parent(w_up); |
|
if (v_free_ancestor == graph_traits<Graph>::null_vertex()) |
|
v_up = parent(v_up); |
|
|
|
if (mate[v_up] == graph_traits<Graph>::null_vertex()) |
|
v_free_ancestor = v_up; |
|
if (mate[w_up] == graph_traits<Graph>::null_vertex()) |
|
w_free_ancestor = w_up; |
|
|
|
if (ancestor_of_w[v_up] == timestamp) |
|
nearest_common_ancestor = v_up; |
|
else if (ancestor_of_v[w_up] == timestamp) |
|
nearest_common_ancestor = w_up; |
|
else if (v_free_ancestor == w_free_ancestor && |
|
v_free_ancestor != graph_traits<Graph>::null_vertex()) |
|
nearest_common_ancestor = v_up; |
|
} |
|
|
|
if (nearest_common_ancestor == graph_traits<Graph>::null_vertex()) |
|
found_alternating_path = true; //to break out of the loop |
|
else |
|
{ |
|
//shrink the blossom |
|
link_and_set_bridges(w_prime, nearest_common_ancestor, std::make_pair(w,v)); |
|
link_and_set_bridges(v_prime, nearest_common_ancestor, std::make_pair(v,w)); |
|
} |
|
} |
|
} |
|
|
|
if (!found_alternating_path) |
|
return false; |
|
|
|
// retrieve the augmenting path and put it in aug_path |
|
reversed_retrieve_augmenting_path(v, v_free_ancestor); |
|
retrieve_augmenting_path(w, w_free_ancestor); |
|
|
|
// augment the matching along aug_path |
|
vertex_descriptor_t a,b; |
|
while (!aug_path.empty()) |
|
{ |
|
a = aug_path.front(); |
|
aug_path.pop_front(); |
|
b = aug_path.front(); |
|
aug_path.pop_front(); |
|
mate[a] = b; |
|
mate[b] = a; |
|
} |
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
template <typename PropertyMap> |
|
void get_current_matching(PropertyMap pm) |
|
{ |
|
vertex_iterator_t vi,vi_end; |
|
for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi) |
|
put(pm, *vi, mate[*vi]); |
|
} |
|
|
|
|
|
|
|
|
|
template <typename PropertyMap> |
|
void get_vertex_state_map(PropertyMap pm) |
|
{ |
|
vertex_iterator_t vi,vi_end; |
|
for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi) |
|
put(pm, *vi, vertex_state[origin[ds.find_set(*vi)]]); |
|
} |
|
|
|
|
|
|
|
|
|
private: |
|
|
|
vertex_descriptor_t parent(vertex_descriptor_t x) |
|
{ |
|
if (vertex_state[x] == graph::detail::V_EVEN |
|
&& mate[x] != graph_traits<Graph>::null_vertex()) |
|
return mate[x]; |
|
else if (vertex_state[x] == graph::detail::V_ODD) |
|
return origin[ds.find_set(pred[x])]; |
|
else |
|
return x; |
|
} |
|
|
|
|
|
|
|
|
|
void link_and_set_bridges(vertex_descriptor_t x, |
|
vertex_descriptor_t stop_vertex, |
|
vertex_pair_t the_bridge) |
|
{ |
|
for(vertex_descriptor_t v = x; v != stop_vertex; v = parent(v)) |
|
{ |
|
ds.union_set(v, stop_vertex); |
|
origin[ds.find_set(stop_vertex)] = stop_vertex; |
|
|
|
if (vertex_state[v] == graph::detail::V_ODD) |
|
{ |
|
bridge[v] = the_bridge; |
|
out_edge_iterator_t oei, oei_end; |
|
for(boost::tie(oei, oei_end) = out_edges(v,g); oei != oei_end; ++oei) |
|
even_edges.push_back(*oei); |
|
} |
|
} |
|
} |
|
|
|
|
|
// Since none of the STL containers support both constant-time |
|
// concatenation and reversal, the process of expanding an |
|
// augmenting path once we know one exists is a little more |
|
// complicated than it has to be. If we know the path is from v to |
|
// w, then the augmenting path is recursively defined as: |
|
// |
|
// path(v,w) = [v], if v = w |
|
// = concat([v, mate[v]], path(pred[mate[v]], w), |
|
// if v != w and vertex_state[v] == graph::detail::V_EVEN |
|
// = concat([v], reverse(path(x,mate[v])), path(y,w)), |
|
// if v != w, vertex_state[v] == graph::detail::V_ODD, and bridge[v] = (x,y) |
|
// |
|
// These next two mutually recursive functions implement this definition. |
|
|
|
void retrieve_augmenting_path(vertex_descriptor_t v, vertex_descriptor_t w) |
|
{ |
|
if (v == w) |
|
aug_path.push_back(v); |
|
else if (vertex_state[v] == graph::detail::V_EVEN) |
|
{ |
|
aug_path.push_back(v); |
|
aug_path.push_back(mate[v]); |
|
retrieve_augmenting_path(pred[mate[v]], w); |
|
} |
|
else //vertex_state[v] == graph::detail::V_ODD |
|
{ |
|
aug_path.push_back(v); |
|
reversed_retrieve_augmenting_path(bridge[v].first, mate[v]); |
|
retrieve_augmenting_path(bridge[v].second, w); |
|
} |
|
} |
|
|
|
|
|
void reversed_retrieve_augmenting_path(vertex_descriptor_t v, |
|
vertex_descriptor_t w) |
|
{ |
|
|
|
if (v == w) |
|
aug_path.push_back(v); |
|
else if (vertex_state[v] == graph::detail::V_EVEN) |
|
{ |
|
reversed_retrieve_augmenting_path(pred[mate[v]], w); |
|
aug_path.push_back(mate[v]); |
|
aug_path.push_back(v); |
|
} |
|
else //vertex_state[v] == graph::detail::V_ODD |
|
{ |
|
reversed_retrieve_augmenting_path(bridge[v].second, w); |
|
retrieve_augmenting_path(bridge[v].first, mate[v]); |
|
aug_path.push_back(v); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
//private data members |
|
|
|
const Graph& g; |
|
VertexIndexMap vm; |
|
v_size_t n_vertices; |
|
|
|
//storage for the property maps below |
|
std::vector<vertex_descriptor_t> mate_vector; |
|
std::vector<e_size_t> ancestor_of_v_vector; |
|
std::vector<e_size_t> ancestor_of_w_vector; |
|
std::vector<int> vertex_state_vector; |
|
std::vector<vertex_descriptor_t> origin_vector; |
|
std::vector<vertex_descriptor_t> pred_vector; |
|
std::vector<vertex_pair_t> bridge_vector; |
|
std::vector<vertex_descriptor_t> ds_parent_vector; |
|
std::vector<v_size_t> ds_rank_vector; |
|
|
|
//iterator property maps |
|
vertex_to_vertex_map_t mate; |
|
vertex_to_esize_map_t ancestor_of_v; |
|
vertex_to_esize_map_t ancestor_of_w; |
|
vertex_to_int_map_t vertex_state; |
|
vertex_to_vertex_map_t origin; |
|
vertex_to_vertex_map_t pred; |
|
vertex_to_vertex_pair_map_t bridge; |
|
vertex_to_vertex_map_t ds_parent_map; |
|
vertex_to_vsize_map_t ds_rank_map; |
|
|
|
vertex_list_t aug_path; |
|
edge_list_t even_edges; |
|
disjoint_sets< vertex_to_vsize_map_t, vertex_to_vertex_map_t > ds; |
|
|
|
}; |
|
|
|
|
|
|
|
|
|
//*************************************************************************** |
|
//*************************************************************************** |
|
// Initial Matching Functors |
|
//*************************************************************************** |
|
//*************************************************************************** |
|
|
|
template <typename Graph, typename MateMap> |
|
struct greedy_matching |
|
{ |
|
typedef typename graph_traits< Graph >::vertex_descriptor vertex_descriptor_t; |
|
typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator_t; |
|
typedef typename graph_traits< Graph >::edge_descriptor edge_descriptor_t; |
|
typedef typename graph_traits< Graph >::edge_iterator edge_iterator_t; |
|
|
|
static void find_matching(const Graph& g, MateMap mate) |
|
{ |
|
vertex_iterator_t vi, vi_end; |
|
for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi) |
|
put(mate, *vi, graph_traits<Graph>::null_vertex()); |
|
|
|
edge_iterator_t ei, ei_end; |
|
for( boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) |
|
{ |
|
edge_descriptor_t e = *ei; |
|
vertex_descriptor_t u = source(e,g); |
|
vertex_descriptor_t v = target(e,g); |
|
|
|
if (get(mate,u) == get(mate,v)) |
|
//only way equality can hold is if |
|
// mate[u] == mate[v] == null_vertex |
|
{ |
|
put(mate,u,v); |
|
put(mate,v,u); |
|
} |
|
} |
|
} |
|
}; |
|
|
|
|
|
|
|
|
|
template <typename Graph, typename MateMap> |
|
struct extra_greedy_matching |
|
{ |
|
// The "extra greedy matching" is formed by repeating the |
|
// following procedure as many times as possible: Choose the |
|
// unmatched vertex v of minimum non-zero degree. Choose the |
|
// neighbor w of v which is unmatched and has minimum degree over |
|
// all of v's neighbors. Add (u,v) to the matching. Ties for |
|
// either choice are broken arbitrarily. This procedure takes time |
|
// O(m log n), where m is the number of edges in the graph and n |
|
// is the number of vertices. |
|
|
|
typedef typename graph_traits< Graph >::vertex_descriptor |
|
vertex_descriptor_t; |
|
typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator_t; |
|
typedef typename graph_traits< Graph >::edge_descriptor edge_descriptor_t; |
|
typedef typename graph_traits< Graph >::edge_iterator edge_iterator_t; |
|
typedef std::pair<vertex_descriptor_t, vertex_descriptor_t> vertex_pair_t; |
|
|
|
struct select_first |
|
{ |
|
inline static vertex_descriptor_t select_vertex(const vertex_pair_t p) |
|
{return p.first;} |
|
}; |
|
|
|
struct select_second |
|
{ |
|
inline static vertex_descriptor_t select_vertex(const vertex_pair_t p) |
|
{return p.second;} |
|
}; |
|
|
|
template <class PairSelector> |
|
class less_than_by_degree |
|
{ |
|
public: |
|
less_than_by_degree(const Graph& g): m_g(g) {} |
|
bool operator() (const vertex_pair_t x, const vertex_pair_t y) |
|
{ |
|
return |
|
out_degree(PairSelector::select_vertex(x), m_g) |
|
< out_degree(PairSelector::select_vertex(y), m_g); |
|
} |
|
private: |
|
const Graph& m_g; |
|
}; |
|
|
|
|
|
static void find_matching(const Graph& g, MateMap mate) |
|
{ |
|
typedef std::vector<std::pair<vertex_descriptor_t, vertex_descriptor_t> > |
|
directed_edges_vector_t; |
|
|
|
directed_edges_vector_t edge_list; |
|
vertex_iterator_t vi, vi_end; |
|
for(boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) |
|
put(mate, *vi, graph_traits<Graph>::null_vertex()); |
|
|
|
edge_iterator_t ei, ei_end; |
|
for(boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) |
|
{ |
|
edge_descriptor_t e = *ei; |
|
vertex_descriptor_t u = source(e,g); |
|
vertex_descriptor_t v = target(e,g); |
|
edge_list.push_back(std::make_pair(u,v)); |
|
edge_list.push_back(std::make_pair(v,u)); |
|
} |
|
|
|
//sort the edges by the degree of the target, then (using a |
|
//stable sort) by degree of the source |
|
std::sort(edge_list.begin(), edge_list.end(), |
|
less_than_by_degree<select_second>(g)); |
|
std::stable_sort(edge_list.begin(), edge_list.end(), |
|
less_than_by_degree<select_first>(g)); |
|
|
|
//construct the extra greedy matching |
|
for(typename directed_edges_vector_t::const_iterator itr = edge_list.begin(); itr != edge_list.end(); ++itr) |
|
{ |
|
if (get(mate,itr->first) == get(mate,itr->second)) |
|
//only way equality can hold is if mate[itr->first] == mate[itr->second] == null_vertex |
|
{ |
|
put(mate, itr->first, itr->second); |
|
put(mate, itr->second, itr->first); |
|
} |
|
} |
|
} |
|
}; |
|
|
|
|
|
|
|
|
|
template <typename Graph, typename MateMap> |
|
struct empty_matching |
|
{ |
|
typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator_t; |
|
|
|
static void find_matching(const Graph& g, MateMap mate) |
|
{ |
|
vertex_iterator_t vi, vi_end; |
|
for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi) |
|
put(mate, *vi, graph_traits<Graph>::null_vertex()); |
|
} |
|
}; |
|
|
|
|
|
|
|
|
|
//*************************************************************************** |
|
//*************************************************************************** |
|
// Matching Verifiers |
|
//*************************************************************************** |
|
//*************************************************************************** |
|
|
|
namespace detail |
|
{ |
|
|
|
template <typename SizeType> |
|
class odd_components_counter : public dfs_visitor<> |
|
// This depth-first search visitor will count the number of connected |
|
// components with an odd number of vertices. It's used by |
|
// maximum_matching_verifier. |
|
{ |
|
public: |
|
odd_components_counter(SizeType& c_count): |
|
m_count(c_count) |
|
{ |
|
m_count = 0; |
|
} |
|
|
|
template <class Vertex, class Graph> |
|
void start_vertex(Vertex, Graph&) |
|
{ |
|
m_parity = false; |
|
} |
|
|
|
template <class Vertex, class Graph> |
|
void discover_vertex(Vertex, Graph&) |
|
{ |
|
m_parity = !m_parity; |
|
m_parity ? ++m_count : --m_count; |
|
} |
|
|
|
protected: |
|
SizeType& m_count; |
|
|
|
private: |
|
bool m_parity; |
|
|
|
}; |
|
|
|
}//namespace detail |
|
|
|
|
|
|
|
|
|
template <typename Graph, typename MateMap, |
|
typename VertexIndexMap = dummy_property_map> |
|
struct no_matching_verifier |
|
{ |
|
inline static bool |
|
verify_matching(const Graph&, MateMap, VertexIndexMap) |
|
{ return true;} |
|
}; |
|
|
|
|
|
|
|
|
|
template <typename Graph, typename MateMap, typename VertexIndexMap> |
|
struct maximum_cardinality_matching_verifier |
|
{ |
|
|
|
template <typename X> |
|
struct map_vertex_to_ |
|
{ |
|
typedef boost::iterator_property_map<typename std::vector<X>::iterator, |
|
VertexIndexMap> type; |
|
}; |
|
|
|
typedef typename graph_traits<Graph>::vertex_descriptor |
|
vertex_descriptor_t; |
|
typedef typename graph_traits<Graph>::vertices_size_type v_size_t; |
|
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator_t; |
|
typedef typename map_vertex_to_<int>::type vertex_to_int_map_t; |
|
typedef typename map_vertex_to_<vertex_descriptor_t>::type |
|
vertex_to_vertex_map_t; |
|
|
|
|
|
template <typename VertexStateMap> |
|
struct non_odd_vertex { |
|
//this predicate is used to create a filtered graph that |
|
//excludes vertices labeled "graph::detail::V_ODD" |
|
non_odd_vertex() : vertex_state(0) { } |
|
|
|
non_odd_vertex(VertexStateMap* arg_vertex_state) |
|
: vertex_state(arg_vertex_state) { } |
|
|
|
template <typename Vertex> |
|
bool operator()(const Vertex& v) const |
|
{ |
|
BOOST_ASSERT(vertex_state); |
|
return get(*vertex_state, v) != graph::detail::V_ODD; |
|
} |
|
|
|
VertexStateMap* vertex_state; |
|
}; |
|
|
|
|
|
static bool verify_matching(const Graph& g, MateMap mate, VertexIndexMap vm) |
|
{ |
|
//For any graph G, let o(G) be the number of connected |
|
//components in G of odd size. For a subset S of G's vertex set |
|
//V(G), let (G - S) represent the subgraph of G induced by |
|
//removing all vertices in S from G. Let M(G) be the size of the |
|
//maximum cardinality matching in G. Then the Tutte-Berge |
|
//formula guarantees that |
|
// |
|
// 2 * M(G) = min ( |V(G)| + |U| + o(G - U) ) |
|
// |
|
//where the minimum is taken over all subsets U of |
|
//V(G). Edmonds' algorithm finds a set U that achieves the |
|
//minimum in the above formula, namely the vertices labeled |
|
//"ODD." This function runs one iteration of Edmonds' algorithm |
|
//to find U, then verifies that the size of the matching given |
|
//by mate satisfies the Tutte-Berge formula. |
|
|
|
//first, make sure it's a valid matching |
|
if (!is_a_matching(g,mate,vm)) |
|
return false; |
|
|
|
//We'll try to augment the matching once. This serves two |
|
//purposes: first, if we find some augmenting path, the matching |
|
//is obviously non-maximum. Second, running edmonds' algorithm |
|
//on a graph with no augmenting path will create the |
|
//Edmonds-Gallai decomposition that we need as a certificate of |
|
//maximality - we can get it by looking at the vertex_state map |
|
//that results. |
|
edmonds_augmenting_path_finder<Graph,MateMap,VertexIndexMap> |
|
augmentor(g,mate,vm); |
|
if (augmentor.augment_matching()) |
|
return false; |
|
|
|
std::vector<int> vertex_state_vector(num_vertices(g)); |
|
vertex_to_int_map_t vertex_state(vertex_state_vector.begin(), vm); |
|
augmentor.get_vertex_state_map(vertex_state); |
|
|
|
//count the number of graph::detail::V_ODD vertices |
|
v_size_t num_odd_vertices = 0; |
|
vertex_iterator_t vi, vi_end; |
|
for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi) |
|
if (vertex_state[*vi] == graph::detail::V_ODD) |
|
++num_odd_vertices; |
|
|
|
//count the number of connected components with odd cardinality |
|
//in the graph without graph::detail::V_ODD vertices |
|
non_odd_vertex<vertex_to_int_map_t> filter(&vertex_state); |
|
filtered_graph<Graph, keep_all, non_odd_vertex<vertex_to_int_map_t> > fg(g, keep_all(), filter); |
|
|
|
v_size_t num_odd_components; |
|
detail::odd_components_counter<v_size_t> occ(num_odd_components); |
|
depth_first_search(fg, visitor(occ).vertex_index_map(vm)); |
|
|
|
if (2 * matching_size(g,mate,vm) == num_vertices(g) + num_odd_vertices - num_odd_components) |
|
return true; |
|
else |
|
return false; |
|
} |
|
}; |
|
|
|
|
|
|
|
|
|
template <typename Graph, |
|
typename MateMap, |
|
typename VertexIndexMap, |
|
template <typename, typename, typename> class AugmentingPathFinder, |
|
template <typename, typename> class InitialMatchingFinder, |
|
template <typename, typename, typename> class MatchingVerifier> |
|
bool matching(const Graph& g, MateMap mate, VertexIndexMap vm) |
|
{ |
|
|
|
InitialMatchingFinder<Graph,MateMap>::find_matching(g,mate); |
|
|
|
AugmentingPathFinder<Graph,MateMap,VertexIndexMap> augmentor(g,mate,vm); |
|
bool not_maximum_yet = true; |
|
while(not_maximum_yet) |
|
{ |
|
not_maximum_yet = augmentor.augment_matching(); |
|
} |
|
augmentor.get_current_matching(mate); |
|
|
|
return MatchingVerifier<Graph,MateMap,VertexIndexMap>::verify_matching(g,mate,vm); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
template <typename Graph, typename MateMap, typename VertexIndexMap> |
|
inline bool checked_edmonds_maximum_cardinality_matching(const Graph& g, MateMap mate, VertexIndexMap vm) |
|
{ |
|
return matching |
|
< Graph, MateMap, VertexIndexMap, |
|
edmonds_augmenting_path_finder, extra_greedy_matching, maximum_cardinality_matching_verifier> |
|
(g, mate, vm); |
|
} |
|
|
|
|
|
|
|
|
|
template <typename Graph, typename MateMap> |
|
inline bool checked_edmonds_maximum_cardinality_matching(const Graph& g, MateMap mate) |
|
{ |
|
return checked_edmonds_maximum_cardinality_matching(g, mate, get(vertex_index,g)); |
|
} |
|
|
|
|
|
|
|
|
|
template <typename Graph, typename MateMap, typename VertexIndexMap> |
|
inline void edmonds_maximum_cardinality_matching(const Graph& g, MateMap mate, VertexIndexMap vm) |
|
{ |
|
matching < Graph, MateMap, VertexIndexMap, |
|
edmonds_augmenting_path_finder, extra_greedy_matching, no_matching_verifier> |
|
(g, mate, vm); |
|
} |
|
|
|
|
|
|
|
|
|
template <typename Graph, typename MateMap> |
|
inline void edmonds_maximum_cardinality_matching(const Graph& g, MateMap mate) |
|
{ |
|
edmonds_maximum_cardinality_matching(g, mate, get(vertex_index,g)); |
|
} |
|
|
|
}//namespace boost |
|
|
|
#endif //BOOST_GRAPH_MAXIMUM_CARDINALITY_MATCHING_HPP
|
|
|