You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
332 lines
11 KiB
332 lines
11 KiB
//======================================================================= |
|
// Copyright 2007 Aaron Windsor |
|
// |
|
// Distributed under the Boost Software License, Version 1.0. (See |
|
// accompanying file LICENSE_1_0.txt or copy at |
|
// http://www.boost.org/LICENSE_1_0.txt) |
|
//======================================================================= |
|
#ifndef __IS_KURATOWSKI_SUBGRAPH_HPP__ |
|
#define __IS_KURATOWSKI_SUBGRAPH_HPP__ |
|
|
|
#include <boost/config.hpp> |
|
#include <boost/utility.hpp> //for next/prior |
|
#include <boost/tuple/tuple.hpp> //for tie |
|
#include <boost/property_map/property_map.hpp> |
|
#include <boost/graph/properties.hpp> |
|
#include <boost/graph/isomorphism.hpp> |
|
#include <boost/graph/adjacency_list.hpp> |
|
|
|
#include <algorithm> |
|
#include <vector> |
|
#include <set> |
|
|
|
|
|
|
|
namespace boost |
|
{ |
|
|
|
namespace detail |
|
{ |
|
|
|
template <typename Graph> |
|
Graph make_K_5() |
|
{ |
|
typename graph_traits<Graph>::vertex_iterator vi, vi_end, inner_vi; |
|
Graph K_5(5); |
|
for(boost::tie(vi,vi_end) = vertices(K_5); vi != vi_end; ++vi) |
|
for(inner_vi = next(vi); inner_vi != vi_end; ++inner_vi) |
|
add_edge(*vi, *inner_vi, K_5); |
|
return K_5; |
|
} |
|
|
|
|
|
template <typename Graph> |
|
Graph make_K_3_3() |
|
{ |
|
typename graph_traits<Graph>::vertex_iterator |
|
vi, vi_end, bipartition_start, inner_vi; |
|
Graph K_3_3(6); |
|
bipartition_start = next(next(next(vertices(K_3_3).first))); |
|
for(boost::tie(vi, vi_end) = vertices(K_3_3); vi != bipartition_start; ++vi) |
|
for(inner_vi= bipartition_start; inner_vi != vi_end; ++inner_vi) |
|
add_edge(*vi, *inner_vi, K_3_3); |
|
return K_3_3; |
|
} |
|
|
|
|
|
template <typename AdjacencyList, typename Vertex> |
|
void contract_edge(AdjacencyList& neighbors, Vertex u, Vertex v) |
|
{ |
|
// Remove u from v's neighbor list |
|
neighbors[v].erase(std::remove(neighbors[v].begin(), |
|
neighbors[v].end(), u |
|
), |
|
neighbors[v].end() |
|
); |
|
|
|
// Replace any references to u with references to v |
|
typedef typename AdjacencyList::value_type::iterator |
|
adjacency_iterator_t; |
|
|
|
adjacency_iterator_t u_neighbor_end = neighbors[u].end(); |
|
for(adjacency_iterator_t u_neighbor_itr = neighbors[u].begin(); |
|
u_neighbor_itr != u_neighbor_end; ++u_neighbor_itr |
|
) |
|
{ |
|
Vertex u_neighbor(*u_neighbor_itr); |
|
std::replace(neighbors[u_neighbor].begin(), |
|
neighbors[u_neighbor].end(), u, v |
|
); |
|
} |
|
|
|
// Remove v from u's neighbor list |
|
neighbors[u].erase(std::remove(neighbors[u].begin(), |
|
neighbors[u].end(), v |
|
), |
|
neighbors[u].end() |
|
); |
|
|
|
// Add everything in u's neighbor list to v's neighbor list |
|
std::copy(neighbors[u].begin(), |
|
neighbors[u].end(), |
|
std::back_inserter(neighbors[v]) |
|
); |
|
|
|
// Clear u's neighbor list |
|
neighbors[u].clear(); |
|
|
|
} |
|
|
|
enum target_graph_t { tg_k_3_3, tg_k_5}; |
|
|
|
} // namespace detail |
|
|
|
|
|
|
|
|
|
template <typename Graph, typename ForwardIterator, typename VertexIndexMap> |
|
bool is_kuratowski_subgraph(const Graph& g, |
|
ForwardIterator begin, |
|
ForwardIterator end, |
|
VertexIndexMap vm |
|
) |
|
{ |
|
|
|
typedef typename graph_traits<Graph>::vertex_descriptor vertex_t; |
|
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator_t; |
|
typedef typename graph_traits<Graph>::edge_descriptor edge_t; |
|
typedef typename graph_traits<Graph>::edges_size_type e_size_t; |
|
typedef typename graph_traits<Graph>::vertices_size_type v_size_t; |
|
typedef typename std::vector<vertex_t> v_list_t; |
|
typedef typename v_list_t::iterator v_list_iterator_t; |
|
typedef iterator_property_map |
|
<typename std::vector<v_list_t>::iterator, VertexIndexMap> |
|
vertex_to_v_list_map_t; |
|
|
|
typedef adjacency_list<vecS, vecS, undirectedS> small_graph_t; |
|
|
|
detail::target_graph_t target_graph = detail::tg_k_3_3; //unless we decide otherwise later |
|
|
|
static small_graph_t K_5(detail::make_K_5<small_graph_t>()); |
|
|
|
static small_graph_t K_3_3(detail::make_K_3_3<small_graph_t>()); |
|
|
|
v_size_t n_vertices(num_vertices(g)); |
|
v_size_t max_num_edges(3*n_vertices - 5); |
|
|
|
std::vector<v_list_t> neighbors_vector(n_vertices); |
|
vertex_to_v_list_map_t neighbors(neighbors_vector.begin(), vm); |
|
|
|
e_size_t count = 0; |
|
for(ForwardIterator itr = begin; itr != end; ++itr) |
|
{ |
|
|
|
if (count++ > max_num_edges) |
|
return false; |
|
|
|
edge_t e(*itr); |
|
vertex_t u(source(e,g)); |
|
vertex_t v(target(e,g)); |
|
|
|
neighbors[u].push_back(v); |
|
neighbors[v].push_back(u); |
|
|
|
} |
|
|
|
|
|
for(v_size_t max_size = 2; max_size < 5; ++max_size) |
|
{ |
|
|
|
vertex_iterator_t vi, vi_end; |
|
for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi) |
|
{ |
|
vertex_t v(*vi); |
|
|
|
//a hack to make sure we don't contract the middle edge of a path |
|
//of four degree-3 vertices |
|
if (max_size == 4 && neighbors[v].size() == 3) |
|
{ |
|
if (neighbors[neighbors[v][0]].size() + |
|
neighbors[neighbors[v][1]].size() + |
|
neighbors[neighbors[v][2]].size() |
|
< 11 // so, it has two degree-3 neighbors |
|
) |
|
continue; |
|
} |
|
|
|
while (neighbors[v].size() > 0 && neighbors[v].size() < max_size) |
|
{ |
|
// Find one of v's neighbors u such that that v and u |
|
// have no neighbors in common. We'll look for such a |
|
// neighbor with a naive cubic-time algorithm since the |
|
// max size of any of the neighbor sets we'll consider |
|
// merging is 3 |
|
|
|
bool neighbor_sets_intersect = false; |
|
|
|
vertex_t min_u = graph_traits<Graph>::null_vertex(); |
|
vertex_t u; |
|
v_list_iterator_t v_neighbor_end = neighbors[v].end(); |
|
for(v_list_iterator_t v_neighbor_itr = neighbors[v].begin(); |
|
v_neighbor_itr != v_neighbor_end; |
|
++v_neighbor_itr |
|
) |
|
{ |
|
neighbor_sets_intersect = false; |
|
u = *v_neighbor_itr; |
|
v_list_iterator_t u_neighbor_end = neighbors[u].end(); |
|
for(v_list_iterator_t u_neighbor_itr = |
|
neighbors[u].begin(); |
|
u_neighbor_itr != u_neighbor_end && |
|
!neighbor_sets_intersect; |
|
++u_neighbor_itr |
|
) |
|
{ |
|
for(v_list_iterator_t inner_v_neighbor_itr = |
|
neighbors[v].begin(); |
|
inner_v_neighbor_itr != v_neighbor_end; |
|
++inner_v_neighbor_itr |
|
) |
|
{ |
|
if (*u_neighbor_itr == *inner_v_neighbor_itr) |
|
{ |
|
neighbor_sets_intersect = true; |
|
break; |
|
} |
|
} |
|
|
|
} |
|
if (!neighbor_sets_intersect && |
|
(min_u == graph_traits<Graph>::null_vertex() || |
|
neighbors[u].size() < neighbors[min_u].size()) |
|
) |
|
{ |
|
min_u = u; |
|
} |
|
|
|
} |
|
|
|
if (min_u == graph_traits<Graph>::null_vertex()) |
|
// Exited the loop without finding an appropriate neighbor of |
|
// v, so v must be a lost cause. Move on to other vertices. |
|
break; |
|
else |
|
u = min_u; |
|
|
|
detail::contract_edge(neighbors, u, v); |
|
|
|
}//end iteration over v's neighbors |
|
|
|
}//end iteration through vertices v |
|
|
|
if (max_size == 3) |
|
{ |
|
// check to see whether we should go on to find a K_5 |
|
for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi) |
|
if (neighbors[*vi].size() == 4) |
|
{ |
|
target_graph = detail::tg_k_5; |
|
break; |
|
} |
|
|
|
if (target_graph == detail::tg_k_3_3) |
|
break; |
|
} |
|
|
|
}//end iteration through max degree 2,3, and 4 |
|
|
|
|
|
//Now, there should only be 5 or 6 vertices with any neighbors. Find them. |
|
|
|
v_list_t main_vertices; |
|
vertex_iterator_t vi, vi_end; |
|
|
|
for(boost::tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi) |
|
{ |
|
if (!neighbors[*vi].empty()) |
|
main_vertices.push_back(*vi); |
|
} |
|
|
|
// create a graph isomorphic to the contracted graph to test |
|
// against K_5 and K_3_3 |
|
small_graph_t contracted_graph(main_vertices.size()); |
|
std::map<vertex_t,typename graph_traits<small_graph_t>::vertex_descriptor> |
|
contracted_vertex_map; |
|
|
|
typename v_list_t::iterator itr, itr_end; |
|
itr_end = main_vertices.end(); |
|
typename graph_traits<small_graph_t>::vertex_iterator |
|
si = vertices(contracted_graph).first; |
|
|
|
for(itr = main_vertices.begin(); itr != itr_end; ++itr, ++si) |
|
{ |
|
contracted_vertex_map[*itr] = *si; |
|
} |
|
|
|
typename v_list_t::iterator jtr, jtr_end; |
|
for(itr = main_vertices.begin(); itr != itr_end; ++itr) |
|
{ |
|
jtr_end = neighbors[*itr].end(); |
|
for(jtr = neighbors[*itr].begin(); jtr != jtr_end; ++jtr) |
|
{ |
|
if (get(vm,*itr) < get(vm,*jtr)) |
|
{ |
|
add_edge(contracted_vertex_map[*itr], |
|
contracted_vertex_map[*jtr], |
|
contracted_graph |
|
); |
|
} |
|
} |
|
} |
|
|
|
if (target_graph == detail::tg_k_5) |
|
{ |
|
return isomorphism(K_5,contracted_graph); |
|
} |
|
else //target_graph == tg_k_3_3 |
|
{ |
|
return isomorphism(K_3_3,contracted_graph); |
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
template <typename Graph, typename ForwardIterator> |
|
bool is_kuratowski_subgraph(const Graph& g, |
|
ForwardIterator begin, |
|
ForwardIterator end |
|
) |
|
{ |
|
return is_kuratowski_subgraph(g, begin, end, get(vertex_index,g)); |
|
} |
|
|
|
|
|
|
|
|
|
} |
|
|
|
#endif //__IS_KURATOWSKI_SUBGRAPH_HPP__
|
|
|