You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
1261 lines
48 KiB
1261 lines
48 KiB
////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// (C) Copyright Ion Gaztanaga 2005-2011. Distributed under the Boost |
|
// Software License, Version 1.0. (See accompanying file |
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
// |
|
// See http://www.boost.org/libs/container for documentation. |
|
// |
|
////////////////////////////////////////////////////////////////////////////// |
|
|
|
#ifndef BOOST_CONTAINERS_FLAT_SET_HPP |
|
#define BOOST_CONTAINERS_FLAT_SET_HPP |
|
|
|
#if (defined _MSC_VER) && (_MSC_VER >= 1200) |
|
# pragma once |
|
#endif |
|
|
|
#include <boost/container/detail/config_begin.hpp> |
|
#include <boost/container/detail/workaround.hpp> |
|
|
|
#include <boost/container/container_fwd.hpp> |
|
#include <utility> |
|
#include <functional> |
|
#include <memory> |
|
#include <boost/container/detail/flat_tree.hpp> |
|
#include <boost/container/detail/mpl.hpp> |
|
#include <boost/move/move.hpp> |
|
|
|
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED |
|
namespace boost { |
|
namespace container { |
|
#else |
|
namespace boost { |
|
namespace container { |
|
#endif |
|
|
|
/// @cond |
|
// Forward declarations of operators < and ==, needed for friend declaration. |
|
|
|
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED |
|
template <class T, class Pred = std::less<T>, class A = std::allocator<T> > |
|
#else |
|
template <class T, class Pred, class A> |
|
#endif |
|
class flat_set; |
|
|
|
template <class T, class Pred, class A> |
|
inline bool operator==(const flat_set<T,Pred,A>& x, |
|
const flat_set<T,Pred,A>& y); |
|
|
|
template <class T, class Pred, class A> |
|
inline bool operator<(const flat_set<T,Pred,A>& x, |
|
const flat_set<T,Pred,A>& y); |
|
/// @endcond |
|
|
|
//! flat_set is a Sorted Associative Container that stores objects of type Key. |
|
//! flat_set is a Simple Associative Container, meaning that its value type, |
|
//! as well as its key type, is Key. It is also a Unique Associative Container, |
|
//! meaning that no two elements are the same. |
|
//! |
|
//! flat_set is similar to std::set but it's implemented like an ordered vector. |
|
//! This means that inserting a new element into a flat_set invalidates |
|
//! previous iterators and references |
|
//! |
|
//! Erasing an element of a flat_set invalidates iterators and references |
|
//! pointing to elements that come after (their keys are bigger) the erased element. |
|
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED |
|
template <class T, class Pred = std::less<T>, class A = std::allocator<T> > |
|
#else |
|
template <class T, class Pred, class A> |
|
#endif |
|
class flat_set |
|
{ |
|
/// @cond |
|
private: |
|
BOOST_COPYABLE_AND_MOVABLE(flat_set) |
|
typedef containers_detail::flat_tree<T, T, containers_detail::identity<T>, Pred, A> tree_t; |
|
tree_t m_flat_tree; // flat tree representing flat_set |
|
typedef typename containers_detail:: |
|
move_const_ref_type<T>::type insert_const_ref_type; |
|
/// @endcond |
|
|
|
public: |
|
|
|
// typedefs: |
|
typedef typename tree_t::key_type key_type; |
|
typedef typename tree_t::value_type value_type; |
|
typedef typename tree_t::pointer pointer; |
|
typedef typename tree_t::const_pointer const_pointer; |
|
typedef typename tree_t::reference reference; |
|
typedef typename tree_t::const_reference const_reference; |
|
typedef typename tree_t::key_compare key_compare; |
|
typedef typename tree_t::value_compare value_compare; |
|
typedef typename tree_t::iterator iterator; |
|
typedef typename tree_t::const_iterator const_iterator; |
|
typedef typename tree_t::reverse_iterator reverse_iterator; |
|
typedef typename tree_t::const_reverse_iterator const_reverse_iterator; |
|
typedef typename tree_t::size_type size_type; |
|
typedef typename tree_t::difference_type difference_type; |
|
typedef typename tree_t::allocator_type allocator_type; |
|
typedef typename tree_t::stored_allocator_type stored_allocator_type; |
|
|
|
//! <b>Effects</b>: Constructs an empty flat_map using the specified |
|
//! comparison object and allocator. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
explicit flat_set(const Pred& comp = Pred(), |
|
const allocator_type& a = allocator_type()) |
|
: m_flat_tree(comp, a) |
|
{} |
|
|
|
//! <b>Effects</b>: Constructs an empty map using the specified comparison object and |
|
//! allocator, and inserts elements from the range [first ,last ). |
|
//! |
|
//! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using |
|
//! comp and otherwise N logN, where N is last - first. |
|
template <class InputIterator> |
|
flat_set(InputIterator first, InputIterator last, |
|
const Pred& comp = Pred(), |
|
const allocator_type& a = allocator_type()) |
|
: m_flat_tree(comp, a) |
|
{ m_flat_tree.insert_unique(first, last); } |
|
|
|
//! <b>Effects</b>: Constructs an empty flat_set using the specified comparison object and |
|
//! allocator, and inserts elements from the ordered unique range [first ,last). This function |
|
//! is more efficient than the normal range creation for ordered ranges. |
|
//! |
|
//! <b>Requires</b>: [first ,last) must be ordered according to the predicate and must be |
|
//! unique values. |
|
//! |
|
//! <b>Complexity</b>: Linear in N. |
|
template <class InputIterator> |
|
flat_set(ordered_unique_range_t, InputIterator first, InputIterator last, |
|
const Pred& comp = Pred(), |
|
const allocator_type& a = allocator_type()) |
|
: m_flat_tree(ordered_range, first, last, comp, a) |
|
{} |
|
|
|
//! <b>Effects</b>: Copy constructs a map. |
|
//! |
|
//! <b>Complexity</b>: Linear in x.size(). |
|
flat_set(const flat_set<T,Pred,A>& x) |
|
: m_flat_tree(x.m_flat_tree) {} |
|
|
|
//! <b>Effects</b>: Move constructs a map. Constructs *this using x's resources. |
|
//! |
|
//! <b>Complexity</b>: Construct. |
|
//! |
|
//! <b>Postcondition</b>: x is emptied. |
|
flat_set(BOOST_RV_REF(flat_set) mx) |
|
: m_flat_tree(boost::move(mx.m_flat_tree)) |
|
{} |
|
|
|
//! <b>Effects</b>: Makes *this a copy of x. |
|
//! |
|
//! <b>Complexity</b>: Linear in x.size(). |
|
flat_set<T,Pred,A>& operator=(BOOST_COPY_ASSIGN_REF(flat_set) x) |
|
{ m_flat_tree = x.m_flat_tree; return *this; } |
|
|
|
//! <b>Effects</b>: Makes *this a copy of x. |
|
//! |
|
//! <b>Complexity</b>: Linear in x.size(). |
|
flat_set<T,Pred,A>& operator=(BOOST_RV_REF(flat_set) mx) |
|
{ m_flat_tree = boost::move(mx.m_flat_tree); return *this; } |
|
|
|
//! <b>Effects</b>: Returns the comparison object out |
|
//! of which a was constructed. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
key_compare key_comp() const |
|
{ return m_flat_tree.key_comp(); } |
|
|
|
//! <b>Effects</b>: Returns an object of value_compare constructed out |
|
//! of the comparison object. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
value_compare value_comp() const |
|
{ return m_flat_tree.key_comp(); } |
|
|
|
//! <b>Effects</b>: Returns a copy of the Allocator that |
|
//! was passed to the object's constructor. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
allocator_type get_allocator() const |
|
{ return m_flat_tree.get_allocator(); } |
|
|
|
const stored_allocator_type &get_stored_allocator() const |
|
{ return m_flat_tree.get_stored_allocator(); } |
|
|
|
stored_allocator_type &get_stored_allocator() |
|
{ return m_flat_tree.get_stored_allocator(); } |
|
|
|
//! <b>Effects</b>: Returns an iterator to the first element contained in the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
iterator begin() |
|
{ return m_flat_tree.begin(); } |
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_iterator begin() const |
|
{ return m_flat_tree.begin(); } |
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_iterator cbegin() const |
|
{ return m_flat_tree.cbegin(); } |
|
|
|
//! <b>Effects</b>: Returns an iterator to the end of the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
iterator end() |
|
{ return m_flat_tree.end(); } |
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the end of the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_iterator end() const |
|
{ return m_flat_tree.end(); } |
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the end of the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_iterator cend() const |
|
{ return m_flat_tree.cend(); } |
|
|
|
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
reverse_iterator rbegin() |
|
{ return m_flat_tree.rbegin(); } |
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_reverse_iterator rbegin() const |
|
{ return m_flat_tree.rbegin(); } |
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_reverse_iterator crbegin() const |
|
{ return m_flat_tree.crbegin(); } |
|
|
|
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
reverse_iterator rend() |
|
{ return m_flat_tree.rend(); } |
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_reverse_iterator rend() const |
|
{ return m_flat_tree.rend(); } |
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_reverse_iterator crend() const |
|
{ return m_flat_tree.crend(); } |
|
|
|
//! <b>Effects</b>: Returns true if the container contains no elements. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
bool empty() const |
|
{ return m_flat_tree.empty(); } |
|
|
|
//! <b>Effects</b>: Returns the number of the elements contained in the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
size_type size() const |
|
{ return m_flat_tree.size(); } |
|
|
|
//! <b>Effects</b>: Returns the largest possible size of the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
size_type max_size() const |
|
{ return m_flat_tree.max_size(); } |
|
|
|
//! <b>Effects</b>: Swaps the contents of *this and x. |
|
//! If this->allocator_type() != x.allocator_type() allocators are also swapped. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
void swap(flat_set& x) |
|
{ m_flat_tree.swap(x.m_flat_tree); } |
|
|
|
//! <b>Effects</b>: Inserts x if and only if there is no element in the container |
|
//! with key equivalent to the key of x. |
|
//! |
|
//! <b>Returns</b>: The bool component of the returned pair is true if and only |
|
//! if the insertion takes place, and the iterator component of the pair |
|
//! points to the element with key equivalent to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time plus linear insertion |
|
//! to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
std::pair<iterator, bool> insert(insert_const_ref_type x) |
|
{ return priv_insert(x); } |
|
|
|
#if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) |
|
std::pair<iterator, bool> insert(T &x) |
|
{ return this->insert(const_cast<const T &>(x)); } |
|
|
|
template<class U> |
|
std::pair<iterator, bool> insert(const U &u, typename containers_detail::enable_if_c<containers_detail::is_same<T, U>::value && !::boost::has_move_emulation_enabled<U>::value >::type* =0) |
|
{ return priv_insert(u); } |
|
#endif |
|
|
|
//! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and |
|
//! only if there is no element in the container with key equivalent to the key of x. |
|
//! |
|
//! <b>Returns</b>: The bool component of the returned pair is true if and only |
|
//! if the insertion takes place, and the iterator component of the pair |
|
//! points to the element with key equivalent to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time plus linear insertion |
|
//! to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
std::pair<iterator,bool> insert(BOOST_RV_REF(value_type) x) |
|
{ return m_flat_tree.insert_unique(boost::move(x)); } |
|
|
|
//! <b>Effects</b>: Inserts a copy of x in the container if and only if there is |
|
//! no element in the container with key equivalent to the key of x. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent |
|
//! to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted |
|
//! right before p) plus insertion linear to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
iterator insert(const_iterator p, insert_const_ref_type x) |
|
{ return priv_insert(p, x); } |
|
|
|
#if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) |
|
iterator insert(const_iterator position, T &x) |
|
{ return this->insert(position, const_cast<const T &>(x)); } |
|
|
|
template<class U> |
|
iterator insert(const_iterator position, const U &u, typename containers_detail::enable_if_c<containers_detail::is_same<T, U>::value && !::boost::has_move_emulation_enabled<U>::value >::type* =0) |
|
{ return priv_insert(position, u); } |
|
#endif |
|
|
|
//! <b>Effects</b>: Inserts an element move constructed from x in the container. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted |
|
//! right before p) plus insertion linear to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
iterator insert(const_iterator position, BOOST_RV_REF(value_type) x) |
|
{ return m_flat_tree.insert_unique(position, boost::move(x)); } |
|
|
|
//! <b>Requires</b>: first, last are not iterators into *this. |
|
//! |
|
//! <b>Effects</b>: inserts each element from the range [first,last) if and only |
|
//! if there is no element with key equivalent to the key of that element. |
|
//! |
|
//! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last) |
|
//! search time plus N*size() insertion time. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
template <class InputIterator> |
|
void insert(InputIterator first, InputIterator last) |
|
{ m_flat_tree.insert_unique(first, last); } |
|
|
|
#if defined(BOOST_CONTAINERS_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) |
|
|
|
//! <b>Effects</b>: Inserts an object of type T constructed with |
|
//! std::forward<Args>(args)... if and only if there is no element in the container |
|
//! with key equivalent to the key of x. |
|
//! |
|
//! <b>Returns</b>: The bool component of the returned pair is true if and only |
|
//! if the insertion takes place, and the iterator component of the pair |
|
//! points to the element with key equivalent to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time plus linear insertion |
|
//! to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
template <class... Args> |
|
iterator emplace(Args&&... args) |
|
{ return m_flat_tree.emplace_unique(boost::forward<Args>(args)...); } |
|
|
|
//! <b>Effects</b>: Inserts an object of type T constructed with |
|
//! std::forward<Args>(args)... in the container if and only if there is |
|
//! no element in the container with key equivalent to the key of x. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent |
|
//! to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted |
|
//! right before p) plus insertion linear to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
template <class... Args> |
|
iterator emplace_hint(const_iterator hint, Args&&... args) |
|
{ return m_flat_tree.emplace_hint_unique(hint, boost::forward<Args>(args)...); } |
|
|
|
#else //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING |
|
|
|
iterator emplace() |
|
{ return m_flat_tree.emplace_unique(); } |
|
|
|
iterator emplace_hint(const_iterator hint) |
|
{ return m_flat_tree.emplace_hint_unique(hint); } |
|
|
|
#define BOOST_PP_LOCAL_MACRO(n) \ |
|
template<BOOST_PP_ENUM_PARAMS(n, class P)> \ |
|
iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ |
|
{ return m_flat_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); } \ |
|
\ |
|
template<BOOST_PP_ENUM_PARAMS(n, class P)> \ |
|
iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ |
|
{ return m_flat_tree.emplace_hint_unique(hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); }\ |
|
//! |
|
#define BOOST_PP_LOCAL_LIMITS (1, BOOST_CONTAINERS_MAX_CONSTRUCTOR_PARAMETERS) |
|
#include BOOST_PP_LOCAL_ITERATE() |
|
|
|
#endif //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING |
|
|
|
//! <b>Effects</b>: Erases the element pointed to by position. |
|
//! |
|
//! <b>Returns</b>: Returns an iterator pointing to the element immediately |
|
//! following q prior to the element being erased. If no such element exists, |
|
//! returns end(). |
|
//! |
|
//! <b>Complexity</b>: Linear to the elements with keys bigger than position |
|
//! |
|
//! <b>Note</b>: Invalidates elements with keys |
|
//! not less than the erased element. |
|
iterator erase(const_iterator position) |
|
{ return m_flat_tree.erase(position); } |
|
|
|
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x. |
|
//! |
|
//! <b>Returns</b>: Returns the number of erased elements. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time plus erasure time |
|
//! linear to the elements with bigger keys. |
|
size_type erase(const key_type& x) |
|
{ return m_flat_tree.erase(x); } |
|
|
|
//! <b>Effects</b>: Erases all the elements in the range [first, last). |
|
//! |
|
//! <b>Returns</b>: Returns last. |
|
//! |
|
//! <b>Complexity</b>: size()*N where N is the distance from first to last. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time plus erasure time |
|
//! linear to the elements with bigger keys. |
|
iterator erase(const_iterator first, const_iterator last) |
|
{ return m_flat_tree.erase(first, last); } |
|
|
|
//! <b>Effects</b>: erase(a.begin(),a.end()). |
|
//! |
|
//! <b>Postcondition</b>: size() == 0. |
|
//! |
|
//! <b>Complexity</b>: linear in size(). |
|
void clear() |
|
{ m_flat_tree.clear(); } |
|
|
|
//! <b>Effects</b>: Tries to deallocate the excess of memory created |
|
// with previous allocations. The size of the vector is unchanged |
|
//! |
|
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws. |
|
//! |
|
//! <b>Complexity</b>: Linear to size(). |
|
void shrink_to_fit() |
|
{ m_flat_tree.shrink_to_fit(); } |
|
|
|
//! <b>Returns</b>: An iterator pointing to an element with the key |
|
//! equivalent to x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
iterator find(const key_type& x) |
|
{ return m_flat_tree.find(x); } |
|
|
|
//! <b>Returns</b>: A const_iterator pointing to an element with the key |
|
//! equivalent to x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic.s |
|
const_iterator find(const key_type& x) const |
|
{ return m_flat_tree.find(x); } |
|
|
|
//! <b>Returns</b>: The number of elements with key equivalent to x. |
|
//! |
|
//! <b>Complexity</b>: log(size())+count(k) |
|
size_type count(const key_type& x) const |
|
{ return m_flat_tree.find(x) == m_flat_tree.end() ? 0 : 1; } |
|
|
|
//! <b>Returns</b>: An iterator pointing to the first element with key not less |
|
//! than k, or a.end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
iterator lower_bound(const key_type& x) |
|
{ return m_flat_tree.lower_bound(x); } |
|
|
|
//! <b>Returns</b>: A const iterator pointing to the first element with key not |
|
//! less than k, or a.end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
const_iterator lower_bound(const key_type& x) const |
|
{ return m_flat_tree.lower_bound(x); } |
|
|
|
//! <b>Returns</b>: An iterator pointing to the first element with key not less |
|
//! than x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
iterator upper_bound(const key_type& x) |
|
{ return m_flat_tree.upper_bound(x); } |
|
|
|
//! <b>Returns</b>: A const iterator pointing to the first element with key not |
|
//! less than x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
const_iterator upper_bound(const key_type& x) const |
|
{ return m_flat_tree.upper_bound(x); } |
|
|
|
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
std::pair<const_iterator, const_iterator> |
|
equal_range(const key_type& x) const |
|
{ return m_flat_tree.equal_range(x); } |
|
|
|
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
std::pair<iterator,iterator> |
|
equal_range(const key_type& x) |
|
{ return m_flat_tree.equal_range(x); } |
|
|
|
//! <b>Effects</b>: Number of elements for which memory has been allocated. |
|
//! capacity() is always greater than or equal to size(). |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
size_type capacity() const |
|
{ return m_flat_tree.capacity(); } |
|
|
|
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no |
|
//! effect. Otherwise, it is a request for allocation of additional memory. |
|
//! If the request is successful, then capacity() is greater than or equal to |
|
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. |
|
//! |
|
//! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws. |
|
//! |
|
//! <b>Note</b>: If capacity() is less than "count", iterators and references to |
|
//! to values might be invalidated. |
|
void reserve(size_type count) |
|
{ m_flat_tree.reserve(count); } |
|
|
|
/// @cond |
|
template <class K1, class C1, class A1> |
|
friend bool operator== (const flat_set<K1,C1,A1>&, const flat_set<K1,C1,A1>&); |
|
|
|
template <class K1, class C1, class A1> |
|
friend bool operator< (const flat_set<K1,C1,A1>&, const flat_set<K1,C1,A1>&); |
|
|
|
private: |
|
std::pair<iterator, bool> priv_insert(const T &x) |
|
{ return m_flat_tree.insert_unique(x); } |
|
|
|
iterator priv_insert(const_iterator p, const T &x) |
|
{ return m_flat_tree.insert_unique(p, x); } |
|
/// @endcond |
|
}; |
|
|
|
template <class T, class Pred, class A> |
|
inline bool operator==(const flat_set<T,Pred,A>& x, |
|
const flat_set<T,Pred,A>& y) |
|
{ return x.m_flat_tree == y.m_flat_tree; } |
|
|
|
template <class T, class Pred, class A> |
|
inline bool operator<(const flat_set<T,Pred,A>& x, |
|
const flat_set<T,Pred,A>& y) |
|
{ return x.m_flat_tree < y.m_flat_tree; } |
|
|
|
template <class T, class Pred, class A> |
|
inline bool operator!=(const flat_set<T,Pred,A>& x, |
|
const flat_set<T,Pred,A>& y) |
|
{ return !(x == y); } |
|
|
|
template <class T, class Pred, class A> |
|
inline bool operator>(const flat_set<T,Pred,A>& x, |
|
const flat_set<T,Pred,A>& y) |
|
{ return y < x; } |
|
|
|
template <class T, class Pred, class A> |
|
inline bool operator<=(const flat_set<T,Pred,A>& x, |
|
const flat_set<T,Pred,A>& y) |
|
{ return !(y < x); } |
|
|
|
template <class T, class Pred, class A> |
|
inline bool operator>=(const flat_set<T,Pred,A>& x, |
|
const flat_set<T,Pred,A>& y) |
|
{ return !(x < y); } |
|
|
|
template <class T, class Pred, class A> |
|
inline void swap(flat_set<T,Pred,A>& x, flat_set<T,Pred,A>& y) |
|
{ x.swap(y); } |
|
|
|
/// @cond |
|
|
|
} //namespace container { |
|
/* |
|
//!has_trivial_destructor_after_move<> == true_type |
|
//!specialization for optimizations |
|
template <class T, class C, class A> |
|
struct has_trivial_destructor_after_move<boost::container::flat_set<T, C, A> > |
|
{ |
|
static const bool value = has_trivial_destructor<A>::value &&has_trivial_destructor<C>::value; |
|
}; |
|
*/ |
|
namespace container { |
|
|
|
// Forward declaration of operators < and ==, needed for friend declaration. |
|
|
|
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED |
|
template <class T, class Pred = std::less<T>, class A = std::allocator<T> > |
|
#else |
|
template <class T, class Pred, class A> |
|
#endif |
|
class flat_multiset; |
|
|
|
template <class T, class Pred, class A> |
|
inline bool operator==(const flat_multiset<T,Pred,A>& x, |
|
const flat_multiset<T,Pred,A>& y); |
|
|
|
template <class T, class Pred, class A> |
|
inline bool operator<(const flat_multiset<T,Pred,A>& x, |
|
const flat_multiset<T,Pred,A>& y); |
|
/// @endcond |
|
|
|
//! flat_multiset is a Sorted Associative Container that stores objects of type Key. |
|
//! flat_multiset is a Simple Associative Container, meaning that its value type, |
|
//! as well as its key type, is Key. |
|
//! flat_Multiset can store multiple copies of the same key value. |
|
//! |
|
//! flat_multiset is similar to std::multiset but it's implemented like an ordered vector. |
|
//! This means that inserting a new element into a flat_multiset invalidates |
|
//! previous iterators and references |
|
//! |
|
//! Erasing an element of a flat_multiset invalidates iterators and references |
|
//! pointing to elements that come after (their keys are equal or bigger) the erased element. |
|
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED |
|
template <class T, class Pred = std::less<T>, class A = std::allocator<T> > |
|
#else |
|
template <class T, class Pred, class A> |
|
#endif |
|
class flat_multiset |
|
{ |
|
/// @cond |
|
private: |
|
BOOST_COPYABLE_AND_MOVABLE(flat_multiset) |
|
typedef containers_detail::flat_tree<T, T, containers_detail::identity<T>, Pred, A> tree_t; |
|
tree_t m_flat_tree; // flat tree representing flat_multiset |
|
typedef typename containers_detail:: |
|
move_const_ref_type<T>::type insert_const_ref_type; |
|
/// @endcond |
|
|
|
public: |
|
// typedefs: |
|
typedef typename tree_t::key_type key_type; |
|
typedef typename tree_t::value_type value_type; |
|
typedef typename tree_t::pointer pointer; |
|
typedef typename tree_t::const_pointer const_pointer; |
|
typedef typename tree_t::reference reference; |
|
typedef typename tree_t::const_reference const_reference; |
|
typedef typename tree_t::key_compare key_compare; |
|
typedef typename tree_t::value_compare value_compare; |
|
typedef typename tree_t::iterator iterator; |
|
typedef typename tree_t::const_iterator const_iterator; |
|
typedef typename tree_t::reverse_iterator reverse_iterator; |
|
typedef typename tree_t::const_reverse_iterator const_reverse_iterator; |
|
typedef typename tree_t::size_type size_type; |
|
typedef typename tree_t::difference_type difference_type; |
|
typedef typename tree_t::allocator_type allocator_type; |
|
typedef typename tree_t::stored_allocator_type stored_allocator_type; |
|
|
|
// allocation/deallocation |
|
explicit flat_multiset(const Pred& comp = Pred(), |
|
const allocator_type& a = allocator_type()) |
|
: m_flat_tree(comp, a) {} |
|
|
|
template <class InputIterator> |
|
flat_multiset(InputIterator first, InputIterator last, |
|
const Pred& comp = Pred(), |
|
const allocator_type& a = allocator_type()) |
|
: m_flat_tree(comp, a) |
|
{ m_flat_tree.insert_equal(first, last); } |
|
|
|
//! <b>Effects</b>: Constructs an empty flat_multiset using the specified comparison object and |
|
//! allocator, and inserts elements from the ordered range [first ,last ). This function |
|
//! is more efficient than the normal range creation for ordered ranges. |
|
//! |
|
//! <b>Requires</b>: [first ,last) must be ordered according to the predicate. |
|
//! |
|
//! <b>Complexity</b>: Linear in N. |
|
template <class InputIterator> |
|
flat_multiset(ordered_range_t, InputIterator first, InputIterator last, |
|
const Pred& comp = Pred(), |
|
const allocator_type& a = allocator_type()) |
|
: m_flat_tree(ordered_range, first, last, comp, a) |
|
{} |
|
|
|
flat_multiset(const flat_multiset<T,Pred,A>& x) |
|
: m_flat_tree(x.m_flat_tree) {} |
|
|
|
flat_multiset(BOOST_RV_REF(flat_multiset) x) |
|
: m_flat_tree(boost::move(x.m_flat_tree)) |
|
{} |
|
|
|
flat_multiset<T,Pred,A>& operator=(BOOST_COPY_ASSIGN_REF(flat_multiset) x) |
|
{ m_flat_tree = x.m_flat_tree; return *this; } |
|
|
|
flat_multiset<T,Pred,A>& operator=(BOOST_RV_REF(flat_multiset) mx) |
|
{ m_flat_tree = boost::move(mx.m_flat_tree); return *this; } |
|
|
|
//! <b>Effects</b>: Returns the comparison object out |
|
//! of which a was constructed. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
key_compare key_comp() const |
|
{ return m_flat_tree.key_comp(); } |
|
|
|
//! <b>Effects</b>: Returns an object of value_compare constructed out |
|
//! of the comparison object. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
value_compare value_comp() const |
|
{ return m_flat_tree.key_comp(); } |
|
|
|
//! <b>Effects</b>: Returns a copy of the Allocator that |
|
//! was passed to the object's constructor. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
allocator_type get_allocator() const |
|
{ return m_flat_tree.get_allocator(); } |
|
|
|
const stored_allocator_type &get_stored_allocator() const |
|
{ return m_flat_tree.get_stored_allocator(); } |
|
|
|
stored_allocator_type &get_stored_allocator() |
|
{ return m_flat_tree.get_stored_allocator(); } |
|
|
|
//! <b>Effects</b>: Returns an iterator to the first element contained in the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
iterator begin() |
|
{ return m_flat_tree.begin(); } |
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_iterator begin() const |
|
{ return m_flat_tree.begin(); } |
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_iterator cbegin() const |
|
{ return m_flat_tree.cbegin(); } |
|
|
|
//! <b>Effects</b>: Returns an iterator to the end of the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
iterator end() |
|
{ return m_flat_tree.end(); } |
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the end of the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_iterator end() const |
|
{ return m_flat_tree.end(); } |
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the end of the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_iterator cend() const |
|
{ return m_flat_tree.cend(); } |
|
|
|
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
reverse_iterator rbegin() |
|
{ return m_flat_tree.rbegin(); } |
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_reverse_iterator rbegin() const |
|
{ return m_flat_tree.rbegin(); } |
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_reverse_iterator crbegin() const |
|
{ return m_flat_tree.crbegin(); } |
|
|
|
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
reverse_iterator rend() |
|
{ return m_flat_tree.rend(); } |
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_reverse_iterator rend() const |
|
{ return m_flat_tree.rend(); } |
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_reverse_iterator crend() const |
|
{ return m_flat_tree.crend(); } |
|
|
|
//! <b>Effects</b>: Returns true if the container contains no elements. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
bool empty() const |
|
{ return m_flat_tree.empty(); } |
|
|
|
//! <b>Effects</b>: Returns the number of the elements contained in the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
size_type size() const |
|
{ return m_flat_tree.size(); } |
|
|
|
//! <b>Effects</b>: Returns the largest possible size of the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
size_type max_size() const |
|
{ return m_flat_tree.max_size(); } |
|
|
|
//! <b>Effects</b>: Swaps the contents of *this and x. |
|
//! If this->allocator_type() != x.allocator_type() allocators are also swapped. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
void swap(flat_multiset& x) |
|
{ m_flat_tree.swap(x.m_flat_tree); } |
|
|
|
//! <b>Effects</b>: Inserts x and returns the iterator pointing to the |
|
//! newly inserted element. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time plus linear insertion |
|
//! to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
iterator insert(insert_const_ref_type x) |
|
{ return priv_insert(x); } |
|
|
|
#if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) |
|
iterator insert(T &x) |
|
{ return this->insert(const_cast<const T &>(x)); } |
|
|
|
template<class U> |
|
iterator insert(const U &u, typename containers_detail::enable_if_c<containers_detail::is_same<T, U>::value && !::boost::has_move_emulation_enabled<U>::value >::type* =0) |
|
{ return priv_insert(u); } |
|
#endif |
|
|
|
//! <b>Effects</b>: Inserts a new value_type move constructed from x |
|
//! and returns the iterator pointing to the newly inserted element. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time plus linear insertion |
|
//! to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
iterator insert(BOOST_RV_REF(value_type) x) |
|
{ return m_flat_tree.insert_equal(boost::move(x)); } |
|
|
|
//! <b>Effects</b>: Inserts a copy of x in the container. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent |
|
//! to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted |
|
//! right before p) plus insertion linear to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
iterator insert(const_iterator p, insert_const_ref_type x) |
|
{ return priv_insert(p, x); } |
|
|
|
#if defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) |
|
iterator insert(const_iterator position, T &x) |
|
{ return this->insert(position, const_cast<const T &>(x)); } |
|
|
|
template<class U> |
|
iterator insert(const_iterator position, const U &u, typename containers_detail::enable_if_c<containers_detail::is_same<T, U>::value && !::boost::has_move_emulation_enabled<U>::value >::type* =0) |
|
{ return priv_insert(position, u); } |
|
#endif |
|
|
|
//! <b>Effects</b>: Inserts a new value move constructed from x in the container. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent |
|
//! to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted |
|
//! right before p) plus insertion linear to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
iterator insert(const_iterator position, BOOST_RV_REF(value_type) x) |
|
{ return m_flat_tree.insert_equal(position, boost::move(x)); } |
|
|
|
//! <b>Requires</b>: first, last are not iterators into *this. |
|
//! |
|
//! <b>Effects</b>: inserts each element from the range [first,last) . |
|
//! |
|
//! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last) |
|
//! search time plus N*size() insertion time. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
template <class InputIterator> |
|
void insert(InputIterator first, InputIterator last) |
|
{ m_flat_tree.insert_equal(first, last); } |
|
|
|
#if defined(BOOST_CONTAINERS_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) |
|
|
|
//! <b>Effects</b>: Inserts an object of type T constructed with |
|
//! std::forward<Args>(args)... and returns the iterator pointing to the |
|
//! newly inserted element. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time plus linear insertion |
|
//! to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
template <class... Args> |
|
iterator emplace(Args&&... args) |
|
{ return m_flat_tree.emplace_equal(boost::forward<Args>(args)...); } |
|
|
|
//! <b>Effects</b>: Inserts an object of type T constructed with |
|
//! std::forward<Args>(args)... in the container. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent |
|
//! to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted |
|
//! right before p) plus insertion linear to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
template <class... Args> |
|
iterator emplace_hint(const_iterator hint, Args&&... args) |
|
{ return m_flat_tree.emplace_hint_equal(hint, boost::forward<Args>(args)...); } |
|
|
|
#else //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING |
|
|
|
iterator emplace() |
|
{ return m_flat_tree.emplace_equal(); } |
|
|
|
iterator emplace_hint(const_iterator hint) |
|
{ return m_flat_tree.emplace_hint_equal(hint); } |
|
|
|
#define BOOST_PP_LOCAL_MACRO(n) \ |
|
template<BOOST_PP_ENUM_PARAMS(n, class P)> \ |
|
iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ |
|
{ return m_flat_tree.emplace_equal(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); } \ |
|
\ |
|
template<BOOST_PP_ENUM_PARAMS(n, class P)> \ |
|
iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ |
|
{ return m_flat_tree.emplace_hint_equal(hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _)); } \ |
|
//! |
|
#define BOOST_PP_LOCAL_LIMITS (1, BOOST_CONTAINERS_MAX_CONSTRUCTOR_PARAMETERS) |
|
#include BOOST_PP_LOCAL_ITERATE() |
|
|
|
#endif //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING |
|
|
|
//! <b>Effects</b>: Erases the element pointed to by position. |
|
//! |
|
//! <b>Returns</b>: Returns an iterator pointing to the element immediately |
|
//! following q prior to the element being erased. If no such element exists, |
|
//! returns end(). |
|
//! |
|
//! <b>Complexity</b>: Linear to the elements with keys bigger than position |
|
//! |
|
//! <b>Note</b>: Invalidates elements with keys |
|
//! not less than the erased element. |
|
iterator erase(const_iterator position) |
|
{ return m_flat_tree.erase(position); } |
|
|
|
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x. |
|
//! |
|
//! <b>Returns</b>: Returns the number of erased elements. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time plus erasure time |
|
//! linear to the elements with bigger keys. |
|
size_type erase(const key_type& x) |
|
{ return m_flat_tree.erase(x); } |
|
|
|
//! <b>Effects</b>: Erases all the elements in the range [first, last). |
|
//! |
|
//! <b>Returns</b>: Returns last. |
|
//! |
|
//! <b>Complexity</b>: size()*N where N is the distance from first to last. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time plus erasure time |
|
//! linear to the elements with bigger keys. |
|
iterator erase(const_iterator first, const_iterator last) |
|
{ return m_flat_tree.erase(first, last); } |
|
|
|
//! <b>Effects</b>: erase(a.begin(),a.end()). |
|
//! |
|
//! <b>Postcondition</b>: size() == 0. |
|
//! |
|
//! <b>Complexity</b>: linear in size(). |
|
void clear() |
|
{ m_flat_tree.clear(); } |
|
|
|
//! <b>Effects</b>: Tries to deallocate the excess of memory created |
|
// with previous allocations. The size of the vector is unchanged |
|
//! |
|
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws. |
|
//! |
|
//! <b>Complexity</b>: Linear to size(). |
|
void shrink_to_fit() |
|
{ m_flat_tree.shrink_to_fit(); } |
|
|
|
//! <b>Returns</b>: An iterator pointing to an element with the key |
|
//! equivalent to x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
iterator find(const key_type& x) |
|
{ return m_flat_tree.find(x); } |
|
|
|
//! <b>Returns</b>: A const_iterator pointing to an element with the key |
|
//! equivalent to x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic.s |
|
const_iterator find(const key_type& x) const |
|
{ return m_flat_tree.find(x); } |
|
|
|
//! <b>Returns</b>: The number of elements with key equivalent to x. |
|
//! |
|
//! <b>Complexity</b>: log(size())+count(k) |
|
size_type count(const key_type& x) const |
|
{ return m_flat_tree.count(x); } |
|
|
|
//! <b>Returns</b>: An iterator pointing to the first element with key not less |
|
//! than k, or a.end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
iterator lower_bound(const key_type& x) |
|
{ return m_flat_tree.lower_bound(x); } |
|
|
|
//! <b>Returns</b>: A const iterator pointing to the first element with key not |
|
//! less than k, or a.end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
const_iterator lower_bound(const key_type& x) const |
|
{ return m_flat_tree.lower_bound(x); } |
|
|
|
//! <b>Returns</b>: An iterator pointing to the first element with key not less |
|
//! than x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
iterator upper_bound(const key_type& x) |
|
{ return m_flat_tree.upper_bound(x); } |
|
|
|
//! <b>Returns</b>: A const iterator pointing to the first element with key not |
|
//! less than x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
const_iterator upper_bound(const key_type& x) const |
|
{ return m_flat_tree.upper_bound(x); } |
|
|
|
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
std::pair<const_iterator, const_iterator> |
|
equal_range(const key_type& x) const |
|
{ return m_flat_tree.equal_range(x); } |
|
|
|
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
std::pair<iterator,iterator> |
|
equal_range(const key_type& x) |
|
{ return m_flat_tree.equal_range(x); } |
|
|
|
//! <b>Effects</b>: Number of elements for which memory has been allocated. |
|
//! capacity() is always greater than or equal to size(). |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
size_type capacity() const |
|
{ return m_flat_tree.capacity(); } |
|
|
|
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no |
|
//! effect. Otherwise, it is a request for allocation of additional memory. |
|
//! If the request is successful, then capacity() is greater than or equal to |
|
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. |
|
//! |
|
//! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws. |
|
//! |
|
//! <b>Note</b>: If capacity() is less than "count", iterators and references to |
|
//! to values might be invalidated. |
|
void reserve(size_type count) |
|
{ m_flat_tree.reserve(count); } |
|
|
|
/// @cond |
|
template <class K1, class C1, class A1> |
|
friend bool operator== (const flat_multiset<K1,C1,A1>&, |
|
const flat_multiset<K1,C1,A1>&); |
|
template <class K1, class C1, class A1> |
|
friend bool operator< (const flat_multiset<K1,C1,A1>&, |
|
const flat_multiset<K1,C1,A1>&); |
|
private: |
|
iterator priv_insert(const T &x) |
|
{ return m_flat_tree.insert_equal(x); } |
|
|
|
iterator priv_insert(const_iterator p, const T &x) |
|
{ return m_flat_tree.insert_equal(p, x); } |
|
/// @endcond |
|
}; |
|
|
|
template <class T, class Pred, class A> |
|
inline bool operator==(const flat_multiset<T,Pred,A>& x, |
|
const flat_multiset<T,Pred,A>& y) |
|
{ return x.m_flat_tree == y.m_flat_tree; } |
|
|
|
template <class T, class Pred, class A> |
|
inline bool operator<(const flat_multiset<T,Pred,A>& x, |
|
const flat_multiset<T,Pred,A>& y) |
|
{ return x.m_flat_tree < y.m_flat_tree; } |
|
|
|
template <class T, class Pred, class A> |
|
inline bool operator!=(const flat_multiset<T,Pred,A>& x, |
|
const flat_multiset<T,Pred,A>& y) |
|
{ return !(x == y); } |
|
|
|
template <class T, class Pred, class A> |
|
inline bool operator>(const flat_multiset<T,Pred,A>& x, |
|
const flat_multiset<T,Pred,A>& y) |
|
{ return y < x; } |
|
|
|
template <class T, class Pred, class A> |
|
inline bool operator<=(const flat_multiset<T,Pred,A>& x, |
|
const flat_multiset<T,Pred,A>& y) |
|
{ return !(y < x); } |
|
|
|
template <class T, class Pred, class A> |
|
inline bool operator>=(const flat_multiset<T,Pred,A>& x, |
|
const flat_multiset<T,Pred,A>& y) |
|
{ return !(x < y); } |
|
|
|
template <class T, class Pred, class A> |
|
inline void swap(flat_multiset<T,Pred,A>& x, flat_multiset<T,Pred,A>& y) |
|
{ x.swap(y); } |
|
|
|
/// @cond |
|
|
|
} //namespace container { |
|
/* |
|
//!has_trivial_destructor_after_move<> == true_type |
|
//!specialization for optimizations |
|
template <class T, class C, class A> |
|
struct has_trivial_destructor_after_move<boost::container::flat_multiset<T, C, A> > |
|
{ |
|
static const bool value = has_trivial_destructor<A>::value && has_trivial_destructor<C>::value; |
|
}; |
|
*/ |
|
namespace container { |
|
|
|
/// @endcond |
|
|
|
}} |
|
|
|
#include <boost/container/detail/config_end.hpp> |
|
|
|
#endif /* BOOST_CONTAINERS_FLAT_SET_HPP */
|
|
|