You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
1443 lines
60 KiB
1443 lines
60 KiB
////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// (C) Copyright Ion Gaztanaga 2005-2011. Distributed under the Boost |
|
// Software License, Version 1.0. (See accompanying file |
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
// |
|
// See http://www.boost.org/libs/container for documentation. |
|
// |
|
////////////////////////////////////////////////////////////////////////////// |
|
|
|
#ifndef BOOST_CONTAINERS_FLAT_MAP_HPP |
|
#define BOOST_CONTAINERS_FLAT_MAP_HPP |
|
|
|
#if (defined _MSC_VER) && (_MSC_VER >= 1200) |
|
# pragma once |
|
#endif |
|
|
|
#include <boost/container/detail/config_begin.hpp> |
|
#include <boost/container/detail/workaround.hpp> |
|
|
|
#include <boost/container/container_fwd.hpp> |
|
#include <utility> |
|
#include <functional> |
|
#include <memory> |
|
#include <stdexcept> |
|
#include <boost/container/detail/flat_tree.hpp> |
|
#include <boost/type_traits/has_trivial_destructor.hpp> |
|
#include <boost/container/detail/mpl.hpp> |
|
#include <boost/move/move.hpp> |
|
|
|
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED |
|
namespace boost { |
|
namespace container { |
|
#else |
|
namespace boost { |
|
namespace container { |
|
#endif |
|
|
|
/// @cond |
|
// Forward declarations of operators == and <, needed for friend declarations. |
|
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED |
|
template <class Key, class T, class Pred = std::less< std::pair< Key, T> >, class A = std::allocator<T> > |
|
#else |
|
template <class Key, class T, class Pred, class A> |
|
#endif |
|
class flat_map; |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator==(const flat_map<Key,T,Pred,A>& x, |
|
const flat_map<Key,T,Pred,A>& y); |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator<(const flat_map<Key,T,Pred,A>& x, |
|
const flat_map<Key,T,Pred,A>& y); |
|
/// @endcond |
|
|
|
//! A flat_map is a kind of associative container that supports unique keys (contains at |
|
//! most one of each key value) and provides for fast retrieval of values of another |
|
//! type T based on the keys. The flat_map class supports random-access iterators. |
|
//! |
|
//! A flat_map satisfies all of the requirements of a container and of a reversible |
|
//! container and of an associative container. A flat_map also provides |
|
//! most operations described for unique keys. For a |
|
//! flat_map<Key,T> the key_type is Key and the value_type is std::pair<Key,T> |
|
//! (unlike std::map<Key, T> which value_type is std::pair<<b>const</b> Key, T>). |
|
//! |
|
//! Pred is the ordering function for Keys (e.g. <i>std::less<Key></i>). |
|
//! |
|
//! A is the allocator to allocate the value_types |
|
//! (e.g. <i>allocator< std::pair<Key, T> ></i>). |
|
//! |
|
//! flat_map is similar to std::map but it's implemented like an ordered vector. |
|
//! This means that inserting a new element into a flat_map invalidates |
|
//! previous iterators and references |
|
//! |
|
//! Erasing an element of a flat_map invalidates iterators and references |
|
//! pointing to elements that come after (their keys are bigger) the erased element. |
|
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED |
|
template <class Key, class T, class Pred = std::less< std::pair< Key, T> >, class A = std::allocator<T> > |
|
#else |
|
template <class Key, class T, class Pred, class A> |
|
#endif |
|
class flat_map |
|
{ |
|
/// @cond |
|
private: |
|
BOOST_COPYABLE_AND_MOVABLE(flat_map) |
|
//This is the tree that we should store if pair was movable |
|
typedef containers_detail::flat_tree<Key, |
|
std::pair<Key, T>, |
|
containers_detail::select1st< std::pair<Key, T> >, |
|
Pred, |
|
A> tree_t; |
|
|
|
//This is the real tree stored here. It's based on a movable pair |
|
typedef containers_detail::flat_tree<Key, |
|
containers_detail::pair<Key, T>, |
|
containers_detail::select1st<containers_detail::pair<Key, T> >, |
|
Pred, |
|
typename A::template |
|
rebind<containers_detail::pair<Key, T> >::other> impl_tree_t; |
|
impl_tree_t m_flat_tree; // flat tree representing flat_map |
|
|
|
typedef typename impl_tree_t::value_type impl_value_type; |
|
typedef typename impl_tree_t::pointer impl_pointer; |
|
typedef typename impl_tree_t::const_pointer impl_const_pointer; |
|
typedef typename impl_tree_t::reference impl_reference; |
|
typedef typename impl_tree_t::const_reference impl_const_reference; |
|
typedef typename impl_tree_t::value_compare impl_value_compare; |
|
typedef typename impl_tree_t::iterator impl_iterator; |
|
typedef typename impl_tree_t::const_iterator impl_const_iterator; |
|
typedef typename impl_tree_t::reverse_iterator impl_reverse_iterator; |
|
typedef typename impl_tree_t::const_reverse_iterator impl_const_reverse_iterator; |
|
typedef typename impl_tree_t::allocator_type impl_allocator_type; |
|
|
|
template<class D, class S> |
|
static D &force(const S &s) |
|
{ return *const_cast<D*>(reinterpret_cast<const D*>(&s)); } |
|
|
|
template<class D, class S> |
|
static D force_copy(S s) |
|
{ |
|
value_type *vp = reinterpret_cast<value_type *>(&*s); |
|
return D(vp); |
|
} |
|
|
|
/// @endcond |
|
|
|
public: |
|
|
|
// typedefs: |
|
typedef typename impl_tree_t::key_type key_type; |
|
typedef T mapped_type; |
|
typedef typename std::pair<key_type, mapped_type> value_type; |
|
typedef typename A::pointer pointer; |
|
typedef typename A::const_pointer const_pointer; |
|
typedef typename A::reference reference; |
|
typedef typename A::const_reference const_reference; |
|
typedef containers_detail::flat_tree_value_compare |
|
< Pred |
|
, containers_detail::select1st< std::pair<Key, T> > |
|
, std::pair<Key, T> > value_compare; |
|
typedef Pred key_compare; |
|
typedef typename containers_detail:: |
|
get_flat_tree_iterators<pointer>::iterator iterator; |
|
typedef typename containers_detail:: |
|
get_flat_tree_iterators<pointer>::const_iterator const_iterator; |
|
typedef typename containers_detail:: |
|
get_flat_tree_iterators |
|
<pointer>::reverse_iterator reverse_iterator; |
|
typedef typename containers_detail:: |
|
get_flat_tree_iterators |
|
<pointer>::const_reverse_iterator const_reverse_iterator; |
|
typedef typename impl_tree_t::size_type size_type; |
|
typedef typename impl_tree_t::difference_type difference_type; |
|
typedef A allocator_type; |
|
typedef A stored_allocator_type; |
|
|
|
//! <b>Effects</b>: Constructs an empty flat_map using the specified |
|
//! comparison object and allocator. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
explicit flat_map(const Pred& comp = Pred(), const allocator_type& a = allocator_type()) |
|
: m_flat_tree(comp, force<impl_allocator_type>(a)) {} |
|
|
|
//! <b>Effects</b>: Constructs an empty flat_map using the specified comparison object and |
|
//! allocator, and inserts elements from the range [first ,last ). |
|
//! |
|
//! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using |
|
//! comp and otherwise N logN, where N is last - first. |
|
template <class InputIterator> |
|
flat_map(InputIterator first, InputIterator last, const Pred& comp = Pred(), |
|
const allocator_type& a = allocator_type()) |
|
: m_flat_tree(comp, force<impl_allocator_type>(a)) |
|
{ m_flat_tree.insert_unique(first, last); } |
|
|
|
//! <b>Effects</b>: Constructs an empty flat_map using the specified comparison object and |
|
//! allocator, and inserts elements from the ordered unique range [first ,last). This function |
|
//! is more efficient than the normal range creation for ordered ranges. |
|
//! |
|
//! <b>Requires</b>: [first ,last) must be ordered according to the predicate and must be |
|
//! unique values. |
|
//! |
|
//! <b>Complexity</b>: Linear in N. |
|
template <class InputIterator> |
|
flat_map( ordered_unique_range_t, InputIterator first, InputIterator last |
|
, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) |
|
: m_flat_tree(ordered_range, first, last, comp, a) |
|
{} |
|
|
|
//! <b>Effects</b>: Copy constructs a flat_map. |
|
//! |
|
//! <b>Complexity</b>: Linear in x.size(). |
|
flat_map(const flat_map<Key,T,Pred,A>& x) |
|
: m_flat_tree(x.m_flat_tree) {} |
|
|
|
//! <b>Effects</b>: Move constructs a flat_map. |
|
//! Constructs *this using x's resources. |
|
//! |
|
//! <b>Complexity</b>: Construct. |
|
//! |
|
//! <b>Postcondition</b>: x is emptied. |
|
flat_map(BOOST_RV_REF(flat_map) x) |
|
: m_flat_tree(boost::move(x.m_flat_tree)) |
|
{} |
|
|
|
//! <b>Effects</b>: Makes *this a copy of x. |
|
//! |
|
//! <b>Complexity</b>: Linear in x.size(). |
|
flat_map<Key,T,Pred,A>& operator=(BOOST_COPY_ASSIGN_REF(flat_map) x) |
|
{ m_flat_tree = x.m_flat_tree; return *this; } |
|
|
|
//! <b>Effects</b>: Move constructs a flat_map. |
|
//! Constructs *this using x's resources. |
|
//! |
|
//! <b>Complexity</b>: Construct. |
|
//! |
|
//! <b>Postcondition</b>: x is emptied. |
|
flat_map<Key,T,Pred,A>& operator=(BOOST_RV_REF(flat_map) mx) |
|
{ m_flat_tree = boost::move(mx.m_flat_tree); return *this; } |
|
|
|
//! <b>Effects</b>: Returns the comparison object out |
|
//! of which a was constructed. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
key_compare key_comp() const |
|
{ return force<key_compare>(m_flat_tree.key_comp()); } |
|
|
|
//! <b>Effects</b>: Returns an object of value_compare constructed out |
|
//! of the comparison object. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
value_compare value_comp() const |
|
{ return value_compare(force<key_compare>(m_flat_tree.key_comp())); } |
|
|
|
//! <b>Effects</b>: Returns a copy of the Allocator that |
|
//! was passed to the object's constructor. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
allocator_type get_allocator() const |
|
{ return force<allocator_type>(m_flat_tree.get_allocator()); } |
|
|
|
const stored_allocator_type &get_stored_allocator() const |
|
{ return force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); } |
|
|
|
stored_allocator_type &get_stored_allocator() |
|
{ return force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); } |
|
|
|
//! <b>Effects</b>: Returns an iterator to the first element contained in the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
iterator begin() |
|
{ return force_copy<iterator>(m_flat_tree.begin()); } |
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_iterator begin() const |
|
{ return force<const_iterator>(m_flat_tree.begin()); } |
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_iterator cbegin() const |
|
{ return force<const_iterator>(m_flat_tree.cbegin()); } |
|
|
|
//! <b>Effects</b>: Returns an iterator to the end of the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
iterator end() |
|
{ return force_copy<iterator>(m_flat_tree.end()); } |
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the end of the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_iterator end() const |
|
{ return force<const_iterator>(m_flat_tree.end()); } |
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the end of the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_iterator cend() const |
|
{ return force<const_iterator>(m_flat_tree.cend()); } |
|
|
|
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
reverse_iterator rbegin() |
|
{ return force<reverse_iterator>(m_flat_tree.rbegin()); } |
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_reverse_iterator rbegin() const |
|
{ return force<const_reverse_iterator>(m_flat_tree.rbegin()); } |
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_reverse_iterator crbegin() const |
|
{ return force<const_reverse_iterator>(m_flat_tree.crbegin()); } |
|
|
|
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
reverse_iterator rend() |
|
{ return force<reverse_iterator>(m_flat_tree.rend()); } |
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_reverse_iterator rend() const |
|
{ return force<const_reverse_iterator>(m_flat_tree.rend()); } |
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_reverse_iterator crend() const |
|
{ return force<const_reverse_iterator>(m_flat_tree.crend()); } |
|
|
|
//! <b>Effects</b>: Returns true if the container contains no elements. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
bool empty() const |
|
{ return m_flat_tree.empty(); } |
|
|
|
//! <b>Effects</b>: Returns the number of the elements contained in the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
size_type size() const |
|
{ return m_flat_tree.size(); } |
|
|
|
//! <b>Effects</b>: Returns the largest possible size of the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
size_type max_size() const |
|
{ return m_flat_tree.max_size(); } |
|
|
|
//! Effects: If there is no key equivalent to x in the flat_map, inserts |
|
//! value_type(x, T()) into the flat_map. |
|
//! |
|
//! Returns: A reference to the mapped_type corresponding to x in *this. |
|
//! |
|
//! Complexity: Logarithmic. |
|
T &operator[](const key_type& k) |
|
{ |
|
iterator i = lower_bound(k); |
|
// i->first is greater than or equivalent to k. |
|
if (i == end() || key_comp()(k, (*i).first)) |
|
i = insert(i, value_type(k, T())); |
|
return (*i).second; |
|
} |
|
|
|
//! Effects: If there is no key equivalent to x in the flat_map, inserts |
|
//! value_type(move(x), T()) into the flat_map (the key is move-constructed) |
|
//! |
|
//! Returns: A reference to the mapped_type corresponding to x in *this. |
|
//! |
|
//! Complexity: Logarithmic. |
|
T &operator[](BOOST_RV_REF(key_type) mk) |
|
{ |
|
key_type &k = mk; |
|
iterator i = lower_bound(k); |
|
// i->first is greater than or equivalent to k. |
|
if (i == end() || key_comp()(k, (*i).first)) |
|
i = insert(i, value_type(boost::move(k), boost::move(T()))); |
|
return (*i).second; |
|
} |
|
|
|
//! Returns: A reference to the element whose key is equivalent to x. |
|
//! Throws: An exception object of type out_of_range if no such element is present. |
|
//! Complexity: logarithmic. |
|
T& at(const key_type& k) |
|
{ |
|
iterator i = this->find(k); |
|
if(i == this->end()){ |
|
throw std::out_of_range("key not found"); |
|
} |
|
return i->second; |
|
} |
|
|
|
//! Returns: A reference to the element whose key is equivalent to x. |
|
//! Throws: An exception object of type out_of_range if no such element is present. |
|
//! Complexity: logarithmic. |
|
const T& at(const key_type& k) const |
|
{ |
|
const_iterator i = this->find(k); |
|
if(i == this->end()){ |
|
throw std::out_of_range("key not found"); |
|
} |
|
return i->second; |
|
} |
|
|
|
//! <b>Effects</b>: Swaps the contents of *this and x. |
|
//! If this->allocator_type() != x.allocator_type() allocators are also swapped. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
void swap(flat_map& x) |
|
{ m_flat_tree.swap(x.m_flat_tree); } |
|
|
|
//! <b>Effects</b>: Inserts x if and only if there is no element in the container |
|
//! with key equivalent to the key of x. |
|
//! |
|
//! <b>Returns</b>: The bool component of the returned pair is true if and only |
|
//! if the insertion takes place, and the iterator component of the pair |
|
//! points to the element with key equivalent to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time plus linear insertion |
|
//! to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
std::pair<iterator,bool> insert(const value_type& x) |
|
{ return force<std::pair<iterator,bool> >( |
|
m_flat_tree.insert_unique(force<impl_value_type>(x))); } |
|
|
|
//! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and |
|
//! only if there is no element in the container with key equivalent to the key of x. |
|
//! |
|
//! <b>Returns</b>: The bool component of the returned pair is true if and only |
|
//! if the insertion takes place, and the iterator component of the pair |
|
//! points to the element with key equivalent to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time plus linear insertion |
|
//! to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
std::pair<iterator,bool> insert(BOOST_RV_REF(value_type) x) |
|
{ return force<std::pair<iterator,bool> >( |
|
m_flat_tree.insert_unique(boost::move(force<impl_value_type>(x)))); } |
|
|
|
//! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and |
|
//! only if there is no element in the container with key equivalent to the key of x. |
|
//! |
|
//! <b>Returns</b>: The bool component of the returned pair is true if and only |
|
//! if the insertion takes place, and the iterator component of the pair |
|
//! points to the element with key equivalent to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time plus linear insertion |
|
//! to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
std::pair<iterator,bool> insert(BOOST_RV_REF(impl_value_type) x) |
|
{ |
|
return force<std::pair<iterator,bool> > |
|
(m_flat_tree.insert_unique(boost::move(x))); |
|
} |
|
|
|
//! <b>Effects</b>: Inserts a copy of x in the container if and only if there is |
|
//! no element in the container with key equivalent to the key of x. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent |
|
//! to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted |
|
//! right before p) plus insertion linear to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
iterator insert(const_iterator position, const value_type& x) |
|
{ return force_copy<iterator>( |
|
m_flat_tree.insert_unique(force<impl_const_iterator>(position), force<impl_value_type>(x))); } |
|
|
|
//! <b>Effects</b>: Inserts an element move constructed from x in the container. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted |
|
//! right before p) plus insertion linear to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
iterator insert(const_iterator position, BOOST_RV_REF(value_type) x) |
|
{ return force_copy<iterator>( |
|
m_flat_tree.insert_unique(force<impl_const_iterator>(position), boost::move(force<impl_value_type>(x)))); } |
|
|
|
//! <b>Effects</b>: Inserts an element move constructed from x in the container. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted |
|
//! right before p) plus insertion linear to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
iterator insert(const_iterator position, BOOST_RV_REF(impl_value_type) x) |
|
{ |
|
return force_copy<iterator>( |
|
m_flat_tree.insert_unique(force<impl_const_iterator>(position), boost::move(x))); |
|
} |
|
|
|
//! <b>Requires</b>: first, last are not iterators into *this. |
|
//! |
|
//! <b>Effects</b>: inserts each element from the range [first,last) if and only |
|
//! if there is no element with key equivalent to the key of that element. |
|
//! |
|
//! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last) |
|
//! search time plus N*size() insertion time. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
template <class InputIterator> |
|
void insert(InputIterator first, InputIterator last) |
|
{ m_flat_tree.insert_unique(first, last); } |
|
|
|
#if defined(BOOST_CONTAINERS_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) |
|
|
|
//! <b>Effects</b>: Inserts an object of type T constructed with |
|
//! std::forward<Args>(args)... if and only if there is no element in the container |
|
//! with key equivalent to the key of x. |
|
//! |
|
//! <b>Returns</b>: The bool component of the returned pair is true if and only |
|
//! if the insertion takes place, and the iterator component of the pair |
|
//! points to the element with key equivalent to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time plus linear insertion |
|
//! to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
template <class... Args> |
|
iterator emplace(Args&&... args) |
|
{ return force_copy<iterator>(m_flat_tree.emplace_unique(boost::forward<Args>(args)...)); } |
|
|
|
//! <b>Effects</b>: Inserts an object of type T constructed with |
|
//! std::forward<Args>(args)... in the container if and only if there is |
|
//! no element in the container with key equivalent to the key of x. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent |
|
//! to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted |
|
//! right before p) plus insertion linear to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
template <class... Args> |
|
iterator emplace_hint(const_iterator hint, Args&&... args) |
|
{ return force_copy<iterator>(m_flat_tree.emplace_hint_unique(force<impl_const_iterator>(hint), boost::forward<Args>(args)...)); } |
|
|
|
#else //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING |
|
|
|
iterator emplace() |
|
{ return force_copy<iterator>(m_flat_tree.emplace_unique()); } |
|
|
|
iterator emplace_hint(const_iterator hint) |
|
{ return force_copy<iterator>(m_flat_tree.emplace_hint_unique(force<impl_const_iterator>(hint))); } |
|
|
|
#define BOOST_PP_LOCAL_MACRO(n) \ |
|
template<BOOST_PP_ENUM_PARAMS(n, class P)> \ |
|
iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ |
|
{ \ |
|
return force_copy<iterator>(m_flat_tree.emplace_unique \ |
|
(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _))); \ |
|
} \ |
|
\ |
|
template<BOOST_PP_ENUM_PARAMS(n, class P)> \ |
|
iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ |
|
{ \ |
|
return force_copy<iterator>(m_flat_tree.emplace_hint_unique \ |
|
(force<impl_const_iterator>(hint), \ |
|
BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _))); \ |
|
} \ |
|
//! |
|
#define BOOST_PP_LOCAL_LIMITS (1, BOOST_CONTAINERS_MAX_CONSTRUCTOR_PARAMETERS) |
|
#include BOOST_PP_LOCAL_ITERATE() |
|
|
|
#endif //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING |
|
|
|
//! <b>Effects</b>: Erases the element pointed to by position. |
|
//! |
|
//! <b>Returns</b>: Returns an iterator pointing to the element immediately |
|
//! following q prior to the element being erased. If no such element exists, |
|
//! returns end(). |
|
//! |
|
//! <b>Complexity</b>: Linear to the elements with keys bigger than position |
|
//! |
|
//! <b>Note</b>: Invalidates elements with keys |
|
//! not less than the erased element. |
|
iterator erase(const_iterator position) |
|
{ return force_copy<iterator>(m_flat_tree.erase(force<impl_const_iterator>(position))); } |
|
|
|
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x. |
|
//! |
|
//! <b>Returns</b>: Returns the number of erased elements. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time plus erasure time |
|
//! linear to the elements with bigger keys. |
|
size_type erase(const key_type& x) |
|
{ return m_flat_tree.erase(x); } |
|
|
|
//! <b>Effects</b>: Erases all the elements in the range [first, last). |
|
//! |
|
//! <b>Returns</b>: Returns last. |
|
//! |
|
//! <b>Complexity</b>: size()*N where N is the distance from first to last. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time plus erasure time |
|
//! linear to the elements with bigger keys. |
|
iterator erase(const_iterator first, const_iterator last) |
|
{ return force_copy<iterator>(m_flat_tree.erase(force<impl_const_iterator>(first), force<impl_const_iterator>(last))); } |
|
|
|
//! <b>Effects</b>: erase(a.begin(),a.end()). |
|
//! |
|
//! <b>Postcondition</b>: size() == 0. |
|
//! |
|
//! <b>Complexity</b>: linear in size(). |
|
void clear() |
|
{ m_flat_tree.clear(); } |
|
|
|
//! <b>Effects</b>: Tries to deallocate the excess of memory created |
|
// with previous allocations. The size of the vector is unchanged |
|
//! |
|
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws. |
|
//! |
|
//! <b>Complexity</b>: Linear to size(). |
|
void shrink_to_fit() |
|
{ m_flat_tree.shrink_to_fit(); } |
|
|
|
//! <b>Returns</b>: An iterator pointing to an element with the key |
|
//! equivalent to x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
iterator find(const key_type& x) |
|
{ return force_copy<iterator>(m_flat_tree.find(x)); } |
|
|
|
//! <b>Returns</b>: A const_iterator pointing to an element with the key |
|
//! equivalent to x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic.s |
|
const_iterator find(const key_type& x) const |
|
{ return force<const_iterator>(m_flat_tree.find(x)); } |
|
|
|
//! <b>Returns</b>: The number of elements with key equivalent to x. |
|
//! |
|
//! <b>Complexity</b>: log(size())+count(k) |
|
size_type count(const key_type& x) const |
|
{ return m_flat_tree.find(x) == m_flat_tree.end() ? 0 : 1; } |
|
|
|
//! <b>Returns</b>: An iterator pointing to the first element with key not less |
|
//! than k, or a.end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
iterator lower_bound(const key_type& x) |
|
{ return force_copy<iterator>(m_flat_tree.lower_bound(x)); } |
|
|
|
//! <b>Returns</b>: A const iterator pointing to the first element with key not |
|
//! less than k, or a.end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
const_iterator lower_bound(const key_type& x) const |
|
{ return force<const_iterator>(m_flat_tree.lower_bound(x)); } |
|
|
|
//! <b>Returns</b>: An iterator pointing to the first element with key not less |
|
//! than x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
iterator upper_bound(const key_type& x) |
|
{ return force_copy<iterator>(m_flat_tree.upper_bound(x)); } |
|
|
|
//! <b>Returns</b>: A const iterator pointing to the first element with key not |
|
//! less than x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
const_iterator upper_bound(const key_type& x) const |
|
{ return force<const_iterator>(m_flat_tree.upper_bound(x)); } |
|
|
|
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
std::pair<iterator,iterator> equal_range(const key_type& x) |
|
{ return force<std::pair<iterator,iterator> >(m_flat_tree.equal_range(x)); } |
|
|
|
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
std::pair<const_iterator,const_iterator> equal_range(const key_type& x) const |
|
{ return force<std::pair<const_iterator,const_iterator> >(m_flat_tree.equal_range(x)); } |
|
|
|
//! <b>Effects</b>: Number of elements for which memory has been allocated. |
|
//! capacity() is always greater than or equal to size(). |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
size_type capacity() const |
|
{ return m_flat_tree.capacity(); } |
|
|
|
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no |
|
//! effect. Otherwise, it is a request for allocation of additional memory. |
|
//! If the request is successful, then capacity() is greater than or equal to |
|
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. |
|
//! |
|
//! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws. |
|
//! |
|
//! <b>Note</b>: If capacity() is less than "count", iterators and references to |
|
//! to values might be invalidated. |
|
void reserve(size_type count) |
|
{ m_flat_tree.reserve(count); } |
|
|
|
/// @cond |
|
template <class K1, class T1, class C1, class A1> |
|
friend bool operator== (const flat_map<K1, T1, C1, A1>&, |
|
const flat_map<K1, T1, C1, A1>&); |
|
template <class K1, class T1, class C1, class A1> |
|
friend bool operator< (const flat_map<K1, T1, C1, A1>&, |
|
const flat_map<K1, T1, C1, A1>&); |
|
/// @endcond |
|
}; |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator==(const flat_map<Key,T,Pred,A>& x, |
|
const flat_map<Key,T,Pred,A>& y) |
|
{ return x.m_flat_tree == y.m_flat_tree; } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator<(const flat_map<Key,T,Pred,A>& x, |
|
const flat_map<Key,T,Pred,A>& y) |
|
{ return x.m_flat_tree < y.m_flat_tree; } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator!=(const flat_map<Key,T,Pred,A>& x, |
|
const flat_map<Key,T,Pred,A>& y) |
|
{ return !(x == y); } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator>(const flat_map<Key,T,Pred,A>& x, |
|
const flat_map<Key,T,Pred,A>& y) |
|
{ return y < x; } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator<=(const flat_map<Key,T,Pred,A>& x, |
|
const flat_map<Key,T,Pred,A>& y) |
|
{ return !(y < x); } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator>=(const flat_map<Key,T,Pred,A>& x, |
|
const flat_map<Key,T,Pred,A>& y) |
|
{ return !(x < y); } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline void swap(flat_map<Key,T,Pred,A>& x, |
|
flat_map<Key,T,Pred,A>& y) |
|
{ x.swap(y); } |
|
|
|
/// @cond |
|
|
|
} //namespace container { |
|
/* |
|
//!has_trivial_destructor_after_move<> == true_type |
|
//!specialization for optimizations |
|
template <class K, class T, class C, class A> |
|
struct has_trivial_destructor_after_move<boost::container::flat_map<K, T, C, A> > |
|
{ |
|
static const bool value = has_trivial_destructor<A>::value && has_trivial_destructor<C>::value; |
|
}; |
|
*/ |
|
namespace container { |
|
|
|
// Forward declaration of operators < and ==, needed for friend declaration. |
|
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED |
|
template <class Key, class T, class Pred = std::less< std::pair< Key, T> >, class A = std::allocator<T> > |
|
#else |
|
template <class Key, class T, class Pred, class A> |
|
#endif |
|
class flat_multimap; |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator==(const flat_multimap<Key,T,Pred,A>& x, |
|
const flat_multimap<Key,T,Pred,A>& y); |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator<(const flat_multimap<Key,T,Pred,A>& x, |
|
const flat_multimap<Key,T,Pred,A>& y); |
|
/// @endcond |
|
|
|
//! A flat_multimap is a kind of associative container that supports equivalent keys |
|
//! (possibly containing multiple copies of the same key value) and provides for |
|
//! fast retrieval of values of another type T based on the keys. The flat_multimap |
|
//! class supports random-access iterators. |
|
//! |
|
//! A flat_multimap satisfies all of the requirements of a container and of a reversible |
|
//! container and of an associative container. For a |
|
//! flat_multimap<Key,T> the key_type is Key and the value_type is std::pair<Key,T> |
|
//! (unlike std::multimap<Key, T> which value_type is std::pair<<b>const</b> Key, T>). |
|
//! |
|
//! Pred is the ordering function for Keys (e.g. <i>std::less<Key></i>). |
|
//! |
|
//! A is the allocator to allocate the value_types |
|
//! (e.g. <i>allocator< std::pair<Key, T> ></i>). |
|
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED |
|
template <class Key, class T, class Pred = std::less< std::pair< Key, T> >, class A = std::allocator<T> > |
|
#else |
|
template <class Key, class T, class Pred, class A> |
|
#endif |
|
class flat_multimap |
|
{ |
|
/// @cond |
|
private: |
|
BOOST_COPYABLE_AND_MOVABLE(flat_multimap) |
|
typedef containers_detail::flat_tree<Key, |
|
std::pair<Key, T>, |
|
containers_detail::select1st< std::pair<Key, T> >, |
|
Pred, |
|
A> tree_t; |
|
//This is the real tree stored here. It's based on a movable pair |
|
typedef containers_detail::flat_tree<Key, |
|
containers_detail::pair<Key, T>, |
|
containers_detail::select1st<containers_detail::pair<Key, T> >, |
|
Pred, |
|
typename A::template |
|
rebind<containers_detail::pair<Key, T> >::other> impl_tree_t; |
|
impl_tree_t m_flat_tree; // flat tree representing flat_map |
|
|
|
typedef typename impl_tree_t::value_type impl_value_type; |
|
typedef typename impl_tree_t::pointer impl_pointer; |
|
typedef typename impl_tree_t::const_pointer impl_const_pointer; |
|
typedef typename impl_tree_t::reference impl_reference; |
|
typedef typename impl_tree_t::const_reference impl_const_reference; |
|
typedef typename impl_tree_t::value_compare impl_value_compare; |
|
typedef typename impl_tree_t::iterator impl_iterator; |
|
typedef typename impl_tree_t::const_iterator impl_const_iterator; |
|
typedef typename impl_tree_t::reverse_iterator impl_reverse_iterator; |
|
typedef typename impl_tree_t::const_reverse_iterator impl_const_reverse_iterator; |
|
typedef typename impl_tree_t::allocator_type impl_allocator_type; |
|
|
|
template<class D, class S> |
|
static D &force(const S &s) |
|
{ return *const_cast<D*>((reinterpret_cast<const D*>(&s))); } |
|
|
|
template<class D, class S> |
|
static D force_copy(S s) |
|
{ |
|
value_type *vp = reinterpret_cast<value_type *>(&*s); |
|
return D(vp); |
|
} |
|
/// @endcond |
|
|
|
public: |
|
|
|
// typedefs: |
|
typedef typename impl_tree_t::key_type key_type; |
|
typedef T mapped_type; |
|
typedef typename std::pair<key_type, mapped_type> value_type; |
|
typedef typename A::pointer pointer; |
|
typedef typename A::const_pointer const_pointer; |
|
typedef typename A::reference reference; |
|
typedef typename A::const_reference const_reference; |
|
typedef containers_detail::flat_tree_value_compare |
|
< Pred |
|
, containers_detail::select1st< std::pair<Key, T> > |
|
, std::pair<Key, T> > value_compare; |
|
typedef Pred key_compare; |
|
typedef typename containers_detail:: |
|
get_flat_tree_iterators<pointer>::iterator iterator; |
|
typedef typename containers_detail:: |
|
get_flat_tree_iterators<pointer>::const_iterator const_iterator; |
|
typedef typename containers_detail:: |
|
get_flat_tree_iterators |
|
<pointer>::reverse_iterator reverse_iterator; |
|
typedef typename containers_detail:: |
|
get_flat_tree_iterators |
|
<pointer>::const_reverse_iterator const_reverse_iterator; |
|
typedef typename impl_tree_t::size_type size_type; |
|
typedef typename impl_tree_t::difference_type difference_type; |
|
typedef A allocator_type; |
|
typedef A stored_allocator_type; |
|
|
|
//! <b>Effects</b>: Constructs an empty flat_multimap using the specified comparison |
|
//! object and allocator. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
explicit flat_multimap(const Pred& comp = Pred(), |
|
const allocator_type& a = allocator_type()) |
|
: m_flat_tree(comp, force<impl_allocator_type>(a)) { } |
|
|
|
//! <b>Effects</b>: Constructs an empty flat_multimap using the specified comparison object |
|
//! and allocator, and inserts elements from the range [first ,last ). |
|
//! |
|
//! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using |
|
//! comp and otherwise N logN, where N is last - first. |
|
template <class InputIterator> |
|
flat_multimap(InputIterator first, InputIterator last, |
|
const Pred& comp = Pred(), |
|
const allocator_type& a = allocator_type()) |
|
: m_flat_tree(comp, force<impl_allocator_type>(a)) |
|
{ m_flat_tree.insert_equal(first, last); } |
|
|
|
//! <b>Effects</b>: Constructs an empty flat_multimap using the specified comparison object and |
|
//! allocator, and inserts elements from the ordered range [first ,last). This function |
|
//! is more efficient than the normal range creation for ordered ranges. |
|
//! |
|
//! <b>Requires</b>: [first ,last) must be ordered according to the predicate. |
|
//! |
|
//! <b>Complexity</b>: Linear in N. |
|
template <class InputIterator> |
|
flat_multimap(ordered_range_t, InputIterator first, InputIterator last, |
|
const Pred& comp = Pred(), |
|
const allocator_type& a = allocator_type()) |
|
: m_flat_tree(ordered_range, first, last, comp, a) |
|
{} |
|
|
|
//! <b>Effects</b>: Copy constructs a flat_multimap. |
|
//! |
|
//! <b>Complexity</b>: Linear in x.size(). |
|
flat_multimap(const flat_multimap<Key,T,Pred,A>& x) |
|
: m_flat_tree(x.m_flat_tree) { } |
|
|
|
//! <b>Effects</b>: Move constructs a flat_multimap. Constructs *this using x's resources. |
|
//! |
|
//! <b>Complexity</b>: Construct. |
|
//! |
|
//! <b>Postcondition</b>: x is emptied. |
|
flat_multimap(BOOST_RV_REF(flat_multimap) x) |
|
: m_flat_tree(boost::move(x.m_flat_tree)) |
|
{ } |
|
|
|
//! <b>Effects</b>: Makes *this a copy of x. |
|
//! |
|
//! <b>Complexity</b>: Linear in x.size(). |
|
flat_multimap<Key,T,Pred,A>& operator=(BOOST_COPY_ASSIGN_REF(flat_multimap) x) |
|
{ m_flat_tree = x.m_flat_tree; return *this; } |
|
|
|
//! <b>Effects</b>: this->swap(x.get()). |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
flat_multimap<Key,T,Pred,A>& operator=(BOOST_RV_REF(flat_multimap) mx) |
|
{ m_flat_tree = boost::move(mx.m_flat_tree); return *this; } |
|
|
|
//! <b>Effects</b>: Returns the comparison object out |
|
//! of which a was constructed. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
key_compare key_comp() const |
|
{ return force<key_compare>(m_flat_tree.key_comp()); } |
|
|
|
//! <b>Effects</b>: Returns an object of value_compare constructed out |
|
//! of the comparison object. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
value_compare value_comp() const |
|
{ return value_compare(force<key_compare>(m_flat_tree.key_comp())); } |
|
|
|
//! <b>Effects</b>: Returns a copy of the Allocator that |
|
//! was passed to the object's constructor. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
allocator_type get_allocator() const |
|
{ return force<allocator_type>(m_flat_tree.get_allocator()); } |
|
|
|
const stored_allocator_type &get_stored_allocator() const |
|
{ return force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); } |
|
|
|
stored_allocator_type &get_stored_allocator() |
|
{ return force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); } |
|
|
|
//! <b>Effects</b>: Returns an iterator to the first element contained in the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
iterator begin() |
|
{ return force_copy<iterator>(m_flat_tree.begin()); } |
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_iterator begin() const |
|
{ return force<const_iterator>(m_flat_tree.begin()); } |
|
|
|
//! <b>Effects</b>: Returns an iterator to the end of the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
iterator end() |
|
{ return force_copy<iterator>(m_flat_tree.end()); } |
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the end of the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_iterator end() const |
|
{ return force<const_iterator>(m_flat_tree.end()); } |
|
|
|
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
reverse_iterator rbegin() |
|
{ return force<reverse_iterator>(m_flat_tree.rbegin()); } |
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_reverse_iterator rbegin() const |
|
{ return force<const_reverse_iterator>(m_flat_tree.rbegin()); } |
|
|
|
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
reverse_iterator rend() |
|
{ return force<reverse_iterator>(m_flat_tree.rend()); } |
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end |
|
//! of the reversed container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
const_reverse_iterator rend() const |
|
{ return force<const_reverse_iterator>(m_flat_tree.rend()); } |
|
|
|
//! <b>Effects</b>: Returns true if the container contains no elements. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
bool empty() const |
|
{ return m_flat_tree.empty(); } |
|
|
|
//! <b>Effects</b>: Returns the number of the elements contained in the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
size_type size() const |
|
{ return m_flat_tree.size(); } |
|
|
|
//! <b>Effects</b>: Returns the largest possible size of the container. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
size_type max_size() const |
|
{ return m_flat_tree.max_size(); } |
|
|
|
//! <b>Effects</b>: Swaps the contents of *this and x. |
|
//! If this->allocator_type() != x.allocator_type() allocators are also swapped. |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
void swap(flat_multimap& x) |
|
{ m_flat_tree.swap(x.m_flat_tree); } |
|
|
|
//! <b>Effects</b>: Inserts x and returns the iterator pointing to the |
|
//! newly inserted element. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time plus linear insertion |
|
//! to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
iterator insert(const value_type& x) |
|
{ return force_copy<iterator>(m_flat_tree.insert_equal(force<impl_value_type>(x))); } |
|
|
|
//! <b>Effects</b>: Inserts a new value move-constructed from x and returns |
|
//! the iterator pointing to the newly inserted element. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time plus linear insertion |
|
//! to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
iterator insert(BOOST_RV_REF(value_type) x) |
|
{ return force_copy<iterator>(m_flat_tree.insert_equal(boost::move(x))); } |
|
|
|
//! <b>Effects</b>: Inserts a new value move-constructed from x and returns |
|
//! the iterator pointing to the newly inserted element. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time plus linear insertion |
|
//! to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
iterator insert(BOOST_RV_REF(impl_value_type) x) |
|
{ return force_copy<iterator>(m_flat_tree.insert_equal(boost::move(x))); } |
|
|
|
//! <b>Effects</b>: Inserts a copy of x in the container. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent |
|
//! to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time (constant time if the value |
|
//! is to be inserted before p) plus linear insertion |
|
//! to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
iterator insert(const_iterator position, const value_type& x) |
|
{ return force_copy<iterator>(m_flat_tree.insert_equal(force<impl_const_iterator>(position), force<impl_value_type>(x))); } |
|
|
|
//! <b>Effects</b>: Inserts a value move constructed from x in the container. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent |
|
//! to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time (constant time if the value |
|
//! is to be inserted before p) plus linear insertion |
|
//! to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
iterator insert(const_iterator position, BOOST_RV_REF(value_type) x) |
|
{ |
|
return force_copy<iterator> |
|
(m_flat_tree.insert_equal(force<impl_const_iterator>(position) |
|
, boost::move(x))); |
|
} |
|
|
|
//! <b>Effects</b>: Inserts a value move constructed from x in the container. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent |
|
//! to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time (constant time if the value |
|
//! is to be inserted before p) plus linear insertion |
|
//! to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
iterator insert(const_iterator position, BOOST_RV_REF(impl_value_type) x) |
|
{ |
|
return force_copy<iterator>( |
|
m_flat_tree.insert_equal(force<impl_const_iterator>(position), boost::move(x))); |
|
} |
|
|
|
//! <b>Requires</b>: first, last are not iterators into *this. |
|
//! |
|
//! <b>Effects</b>: inserts each element from the range [first,last) . |
|
//! |
|
//! <b>Complexity</b>: At most N log(size()+N) (N is the distance from first to last) |
|
//! search time plus N*size() insertion time. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
template <class InputIterator> |
|
void insert(InputIterator first, InputIterator last) |
|
{ m_flat_tree.insert_equal(first, last); } |
|
|
|
#if defined(BOOST_CONTAINERS_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) |
|
|
|
//! <b>Effects</b>: Inserts an object of type T constructed with |
|
//! std::forward<Args>(args)... and returns the iterator pointing to the |
|
//! newly inserted element. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time plus linear insertion |
|
//! to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
template <class... Args> |
|
iterator emplace(Args&&... args) |
|
{ return force_copy<iterator>(m_flat_tree.emplace_equal(boost::forward<Args>(args)...)); } |
|
|
|
//! <b>Effects</b>: Inserts an object of type T constructed with |
|
//! std::forward<Args>(args)... in the container. |
|
//! p is a hint pointing to where the insert should start to search. |
|
//! |
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent |
|
//! to the key of x. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time (constant time if the value |
|
//! is to be inserted before p) plus linear insertion |
|
//! to the elements with bigger keys than x. |
|
//! |
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements. |
|
template <class... Args> |
|
iterator emplace_hint(const_iterator hint, Args&&... args) |
|
{ |
|
return force_copy<iterator>(m_flat_tree.emplace_hint_equal |
|
(force<impl_const_iterator>(hint), boost::forward<Args>(args)...)); |
|
} |
|
|
|
#else //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING |
|
|
|
iterator emplace() |
|
{ return force_copy<iterator>(m_flat_tree.emplace_equal()); } |
|
|
|
iterator emplace_hint(const_iterator hint) |
|
{ return force_copy<iterator>(m_flat_tree.emplace_hint_equal(force<impl_const_iterator>(hint))); } |
|
|
|
#define BOOST_PP_LOCAL_MACRO(n) \ |
|
template<BOOST_PP_ENUM_PARAMS(n, class P)> \ |
|
iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ |
|
{ \ |
|
return force_copy<iterator>(m_flat_tree.emplace_equal \ |
|
(BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _))); \ |
|
} \ |
|
\ |
|
template<BOOST_PP_ENUM_PARAMS(n, class P)> \ |
|
iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_LIST, _)) \ |
|
{ \ |
|
return force_copy<iterator>(m_flat_tree.emplace_hint_equal \ |
|
(force<impl_const_iterator>(hint), \ |
|
BOOST_PP_ENUM(n, BOOST_CONTAINERS_PP_PARAM_FORWARD, _))); \ |
|
} \ |
|
//! |
|
#define BOOST_PP_LOCAL_LIMITS (1, BOOST_CONTAINERS_MAX_CONSTRUCTOR_PARAMETERS) |
|
#include BOOST_PP_LOCAL_ITERATE() |
|
|
|
#endif //#ifdef BOOST_CONTAINERS_PERFECT_FORWARDING |
|
|
|
//! <b>Effects</b>: Erases the element pointed to by position. |
|
//! |
|
//! <b>Returns</b>: Returns an iterator pointing to the element immediately |
|
//! following q prior to the element being erased. If no such element exists, |
|
//! returns end(). |
|
//! |
|
//! <b>Complexity</b>: Linear to the elements with keys bigger than position |
|
//! |
|
//! <b>Note</b>: Invalidates elements with keys |
|
//! not less than the erased element. |
|
iterator erase(const_iterator position) |
|
{ return force_copy<iterator>(m_flat_tree.erase(force<impl_const_iterator>(position))); } |
|
|
|
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x. |
|
//! |
|
//! <b>Returns</b>: Returns the number of erased elements. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time plus erasure time |
|
//! linear to the elements with bigger keys. |
|
size_type erase(const key_type& x) |
|
{ return m_flat_tree.erase(x); } |
|
|
|
//! <b>Effects</b>: Erases all the elements in the range [first, last). |
|
//! |
|
//! <b>Returns</b>: Returns last. |
|
//! |
|
//! <b>Complexity</b>: size()*N where N is the distance from first to last. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic search time plus erasure time |
|
//! linear to the elements with bigger keys. |
|
iterator erase(const_iterator first, const_iterator last) |
|
{ return force_copy<iterator>(m_flat_tree.erase(force<impl_const_iterator>(first), force<impl_const_iterator>(last))); } |
|
|
|
//! <b>Effects</b>: erase(a.begin(),a.end()). |
|
//! |
|
//! <b>Postcondition</b>: size() == 0. |
|
//! |
|
//! <b>Complexity</b>: linear in size(). |
|
void clear() |
|
{ m_flat_tree.clear(); } |
|
|
|
//! <b>Effects</b>: Tries to deallocate the excess of memory created |
|
// with previous allocations. The size of the vector is unchanged |
|
//! |
|
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws. |
|
//! |
|
//! <b>Complexity</b>: Linear to size(). |
|
void shrink_to_fit() |
|
{ m_flat_tree.shrink_to_fit(); } |
|
|
|
//! <b>Returns</b>: An iterator pointing to an element with the key |
|
//! equivalent to x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
iterator find(const key_type& x) |
|
{ return force_copy<iterator>(m_flat_tree.find(x)); } |
|
|
|
//! <b>Returns</b>: An const_iterator pointing to an element with the key |
|
//! equivalent to x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic. |
|
const_iterator find(const key_type& x) const |
|
{ return force<const_iterator>(m_flat_tree.find(x)); } |
|
|
|
//! <b>Returns</b>: The number of elements with key equivalent to x. |
|
//! |
|
//! <b>Complexity</b>: log(size())+count(k) |
|
size_type count(const key_type& x) const |
|
{ return m_flat_tree.count(x); } |
|
|
|
//! <b>Returns</b>: An iterator pointing to the first element with key not less |
|
//! than k, or a.end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
iterator lower_bound(const key_type& x) |
|
{return force_copy<iterator>(m_flat_tree.lower_bound(x)); } |
|
|
|
//! <b>Returns</b>: A const iterator pointing to the first element with key |
|
//! not less than k, or a.end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
const_iterator lower_bound(const key_type& x) const |
|
{ return force<const_iterator>(m_flat_tree.lower_bound(x)); } |
|
|
|
//! <b>Returns</b>: An iterator pointing to the first element with key not less |
|
//! than x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
iterator upper_bound(const key_type& x) |
|
{return force_copy<iterator>(m_flat_tree.upper_bound(x)); } |
|
|
|
//! <b>Returns</b>: A const iterator pointing to the first element with key |
|
//! not less than x, or end() if such an element is not found. |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
const_iterator upper_bound(const key_type& x) const |
|
{ return force<const_iterator>(m_flat_tree.upper_bound(x)); } |
|
|
|
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
std::pair<iterator,iterator> equal_range(const key_type& x) |
|
{ return force_copy<std::pair<iterator,iterator> >(m_flat_tree.equal_range(x)); } |
|
|
|
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). |
|
//! |
|
//! <b>Complexity</b>: Logarithmic |
|
std::pair<const_iterator,const_iterator> |
|
equal_range(const key_type& x) const |
|
{ return force_copy<std::pair<const_iterator,const_iterator> >(m_flat_tree.equal_range(x)); } |
|
|
|
//! <b>Effects</b>: Number of elements for which memory has been allocated. |
|
//! capacity() is always greater than or equal to size(). |
|
//! |
|
//! <b>Throws</b>: Nothing. |
|
//! |
|
//! <b>Complexity</b>: Constant. |
|
size_type capacity() const |
|
{ return m_flat_tree.capacity(); } |
|
|
|
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no |
|
//! effect. Otherwise, it is a request for allocation of additional memory. |
|
//! If the request is successful, then capacity() is greater than or equal to |
|
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. |
|
//! |
|
//! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws. |
|
//! |
|
//! <b>Note</b>: If capacity() is less than "count", iterators and references to |
|
//! to values might be invalidated. |
|
void reserve(size_type count) |
|
{ m_flat_tree.reserve(count); } |
|
|
|
/// @cond |
|
template <class K1, class T1, class C1, class A1> |
|
friend bool operator== (const flat_multimap<K1, T1, C1, A1>& x, |
|
const flat_multimap<K1, T1, C1, A1>& y); |
|
|
|
template <class K1, class T1, class C1, class A1> |
|
friend bool operator< (const flat_multimap<K1, T1, C1, A1>& x, |
|
const flat_multimap<K1, T1, C1, A1>& y); |
|
/// @endcond |
|
}; |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator==(const flat_multimap<Key,T,Pred,A>& x, |
|
const flat_multimap<Key,T,Pred,A>& y) |
|
{ return x.m_flat_tree == y.m_flat_tree; } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator<(const flat_multimap<Key,T,Pred,A>& x, |
|
const flat_multimap<Key,T,Pred,A>& y) |
|
{ return x.m_flat_tree < y.m_flat_tree; } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator!=(const flat_multimap<Key,T,Pred,A>& x, |
|
const flat_multimap<Key,T,Pred,A>& y) |
|
{ return !(x == y); } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator>(const flat_multimap<Key,T,Pred,A>& x, |
|
const flat_multimap<Key,T,Pred,A>& y) |
|
{ return y < x; } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator<=(const flat_multimap<Key,T,Pred,A>& x, |
|
const flat_multimap<Key,T,Pred,A>& y) |
|
{ return !(y < x); } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline bool operator>=(const flat_multimap<Key,T,Pred,A>& x, |
|
const flat_multimap<Key,T,Pred,A>& y) |
|
{ return !(x < y); } |
|
|
|
template <class Key, class T, class Pred, class A> |
|
inline void swap(flat_multimap<Key,T,Pred,A>& x, flat_multimap<Key,T,Pred,A>& y) |
|
{ x.swap(y); } |
|
|
|
}} |
|
|
|
/// @cond |
|
|
|
namespace boost { |
|
/* |
|
//!has_trivial_destructor_after_move<> == true_type |
|
//!specialization for optimizations |
|
template <class K, class T, class C, class A> |
|
struct has_trivial_destructor_after_move< boost::container::flat_multimap<K, T, C, A> > |
|
{ |
|
static const bool value = has_trivial_destructor<A>::value && has_trivial_destructor<C>::value; |
|
}; |
|
*/ |
|
} //namespace boost { |
|
|
|
/// @endcond |
|
|
|
#include <boost/container/detail/config_end.hpp> |
|
|
|
#endif /* BOOST_CONTAINERS_FLAT_MAP_HPP */
|
|
|