You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
2821 lines
130 KiB
2821 lines
130 KiB
// Implementation of the base circular buffer. |
|
|
|
// Copyright (c) 2003-2008 Jan Gaspar |
|
|
|
// Use, modification, and distribution is subject to the Boost Software |
|
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at |
|
// http://www.boost.org/LICENSE_1_0.txt) |
|
|
|
#if !defined(BOOST_CIRCULAR_BUFFER_BASE_HPP) |
|
#define BOOST_CIRCULAR_BUFFER_BASE_HPP |
|
|
|
#if defined(_MSC_VER) && _MSC_VER >= 1200 |
|
#pragma once |
|
#endif |
|
|
|
#include <boost/call_traits.hpp> |
|
#include <boost/concept_check.hpp> |
|
#include <boost/limits.hpp> |
|
#include <boost/iterator/reverse_iterator.hpp> |
|
#include <boost/iterator/iterator_traits.hpp> |
|
#include <boost/type_traits/is_stateless.hpp> |
|
#include <boost/type_traits/is_integral.hpp> |
|
#include <boost/type_traits/is_scalar.hpp> |
|
#include <algorithm> |
|
#include <utility> |
|
#include <deque> |
|
#if !defined(BOOST_NO_EXCEPTIONS) |
|
#include <stdexcept> |
|
#endif |
|
#if BOOST_CB_ENABLE_DEBUG |
|
#include <cstring> |
|
#endif |
|
#if BOOST_WORKAROUND(__MWERKS__, BOOST_TESTED_AT(0x3205)) |
|
#include <stddef.h> |
|
#endif |
|
|
|
#if defined(BOOST_NO_STDC_NAMESPACE) |
|
namespace std { |
|
using ::memset; |
|
} |
|
#endif |
|
|
|
namespace boost { |
|
|
|
/*! |
|
\class circular_buffer |
|
\brief Circular buffer - a STL compliant container. |
|
\param T The type of the elements stored in the <code>circular_buffer</code>. |
|
\par Type Requirements T |
|
The <code>T</code> has to be <a href="http://www.sgi.com/tech/stl/Assignable.html"> |
|
SGIAssignable</a> (SGI STL defined combination of <a href="../../utility/Assignable.html"> |
|
Assignable</a> and <a href="../../utility/CopyConstructible.html">CopyConstructible</a>). |
|
Moreover <code>T</code> has to be <a href="http://www.sgi.com/tech/stl/DefaultConstructible.html"> |
|
DefaultConstructible</a> if supplied as a default parameter when invoking some of the |
|
<code>circular_buffer</code>'s methods e.g. |
|
<code>insert(iterator pos, const value_type& item = %value_type())</code>. And |
|
<a href="http://www.sgi.com/tech/stl/EqualityComparable.html">EqualityComparable</a> and/or |
|
<a href="../../utility/LessThanComparable.html">LessThanComparable</a> if the <code>circular_buffer</code> |
|
will be compared with another container. |
|
\param Alloc The allocator type used for all internal memory management. |
|
\par Type Requirements Alloc |
|
The <code>Alloc</code> has to meet the allocator requirements imposed by STL. |
|
\par Default Alloc |
|
std::allocator<T> |
|
|
|
For detailed documentation of the circular_buffer visit: |
|
http://www.boost.org/libs/circular_buffer/doc/circular_buffer.html |
|
*/ |
|
template <class T, class Alloc> |
|
class circular_buffer |
|
/*! \cond */ |
|
#if BOOST_CB_ENABLE_DEBUG |
|
: public cb_details::debug_iterator_registry |
|
#endif |
|
/*! \endcond */ |
|
{ |
|
|
|
// Requirements |
|
BOOST_CLASS_REQUIRE(T, boost, SGIAssignableConcept); |
|
|
|
public: |
|
// Basic types |
|
|
|
//! The type of elements stored in the <code>circular_buffer</code>. |
|
typedef typename Alloc::value_type value_type; |
|
|
|
//! A pointer to an element. |
|
typedef typename Alloc::pointer pointer; |
|
|
|
//! A const pointer to the element. |
|
typedef typename Alloc::const_pointer const_pointer; |
|
|
|
//! A reference to an element. |
|
typedef typename Alloc::reference reference; |
|
|
|
//! A const reference to an element. |
|
typedef typename Alloc::const_reference const_reference; |
|
|
|
//! The distance type. |
|
/*! |
|
(A signed integral type used to represent the distance between two iterators.) |
|
*/ |
|
typedef typename Alloc::difference_type difference_type; |
|
|
|
//! The size type. |
|
/*! |
|
(An unsigned integral type that can represent any non-negative value of the container's distance type.) |
|
*/ |
|
typedef typename Alloc::size_type size_type; |
|
|
|
//! The type of an allocator used in the <code>circular_buffer</code>. |
|
typedef Alloc allocator_type; |
|
|
|
// Iterators |
|
|
|
//! A const (random access) iterator used to iterate through the <code>circular_buffer</code>. |
|
typedef cb_details::iterator< circular_buffer<T, Alloc>, cb_details::const_traits<Alloc> > const_iterator; |
|
|
|
//! A (random access) iterator used to iterate through the <code>circular_buffer</code>. |
|
typedef cb_details::iterator< circular_buffer<T, Alloc>, cb_details::nonconst_traits<Alloc> > iterator; |
|
|
|
//! A const iterator used to iterate backwards through a <code>circular_buffer</code>. |
|
typedef boost::reverse_iterator<const_iterator> const_reverse_iterator; |
|
|
|
//! An iterator used to iterate backwards through a <code>circular_buffer</code>. |
|
typedef boost::reverse_iterator<iterator> reverse_iterator; |
|
|
|
// Container specific types |
|
|
|
//! An array range. |
|
/*! |
|
(A typedef for the <a href="http://www.sgi.com/tech/stl/pair.html"><code>std::pair</code></a> where |
|
its first element is a pointer to a beginning of an array and its second element represents |
|
a size of the array.) |
|
*/ |
|
typedef std::pair<pointer, size_type> array_range; |
|
|
|
//! A range of a const array. |
|
/*! |
|
(A typedef for the <a href="http://www.sgi.com/tech/stl/pair.html"><code>std::pair</code></a> where |
|
its first element is a pointer to a beginning of a const array and its second element represents |
|
a size of the const array.) |
|
*/ |
|
typedef std::pair<const_pointer, size_type> const_array_range; |
|
|
|
//! The capacity type. |
|
/*! |
|
(Same as <code>size_type</code> - defined for consistency with the |
|
<a href="space_optimized.html"><code>circular_buffer_space_optimized</code></a>.) |
|
*/ |
|
typedef size_type capacity_type; |
|
|
|
// Helper types |
|
|
|
// A type representing the "best" way to pass the value_type to a method. |
|
typedef typename call_traits<value_type>::param_type param_value_type; |
|
|
|
// A type representing the "best" way to return the value_type from a const method. |
|
typedef typename call_traits<value_type>::param_type return_value_type; |
|
|
|
private: |
|
// Member variables |
|
|
|
//! The internal buffer used for storing elements in the circular buffer. |
|
pointer m_buff; |
|
|
|
//! The internal buffer's end (end of the storage space). |
|
pointer m_end; |
|
|
|
//! The virtual beginning of the circular buffer. |
|
pointer m_first; |
|
|
|
//! The virtual end of the circular buffer (one behind the last element). |
|
pointer m_last; |
|
|
|
//! The number of items currently stored in the circular buffer. |
|
size_type m_size; |
|
|
|
//! The allocator. |
|
allocator_type m_alloc; |
|
|
|
// Friends |
|
#if defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS) |
|
friend iterator; |
|
friend const_iterator; |
|
#else |
|
template <class Buff, class Traits> friend struct cb_details::iterator; |
|
#endif |
|
|
|
public: |
|
// Allocator |
|
|
|
//! Get the allocator. |
|
/*! |
|
\return The allocator. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>get_allocator()</code> for obtaining an allocator %reference. |
|
*/ |
|
allocator_type get_allocator() const { return m_alloc; } |
|
|
|
//! Get the allocator reference. |
|
/*! |
|
\return A reference to the allocator. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\note This method was added in order to optimize obtaining of the allocator with a state, |
|
although use of stateful allocators in STL is discouraged. |
|
\sa <code>get_allocator() const</code> |
|
*/ |
|
allocator_type& get_allocator() { return m_alloc; } |
|
|
|
// Element access |
|
|
|
//! Get the iterator pointing to the beginning of the <code>circular_buffer</code>. |
|
/*! |
|
\return A random access iterator pointing to the first element of the <code>circular_buffer</code>. If the |
|
<code>circular_buffer</code> is empty it returns an iterator equal to the one returned by |
|
<code>end()</code>. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>end()</code>, <code>rbegin()</code>, <code>rend()</code> |
|
*/ |
|
iterator begin() { return iterator(this, empty() ? 0 : m_first); } |
|
|
|
//! Get the iterator pointing to the end of the <code>circular_buffer</code>. |
|
/*! |
|
\return A random access iterator pointing to the element "one behind" the last element of the <code> |
|
circular_buffer</code>. If the <code>circular_buffer</code> is empty it returns an iterator equal to |
|
the one returned by <code>begin()</code>. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>begin()</code>, <code>rbegin()</code>, <code>rend()</code> |
|
*/ |
|
iterator end() { return iterator(this, 0); } |
|
|
|
//! Get the const iterator pointing to the beginning of the <code>circular_buffer</code>. |
|
/*! |
|
\return A const random access iterator pointing to the first element of the <code>circular_buffer</code>. If |
|
the <code>circular_buffer</code> is empty it returns an iterator equal to the one returned by |
|
<code>end() const</code>. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>end() const</code>, <code>rbegin() const</code>, <code>rend() const</code> |
|
*/ |
|
const_iterator begin() const { return const_iterator(this, empty() ? 0 : m_first); } |
|
|
|
//! Get the const iterator pointing to the end of the <code>circular_buffer</code>. |
|
/*! |
|
\return A const random access iterator pointing to the element "one behind" the last element of the <code> |
|
circular_buffer</code>. If the <code>circular_buffer</code> is empty it returns an iterator equal to |
|
the one returned by <code>begin() const</code> const. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>begin() const</code>, <code>rbegin() const</code>, <code>rend() const</code> |
|
*/ |
|
const_iterator end() const { return const_iterator(this, 0); } |
|
|
|
//! Get the iterator pointing to the beginning of the "reversed" <code>circular_buffer</code>. |
|
/*! |
|
\return A reverse random access iterator pointing to the last element of the <code>circular_buffer</code>. |
|
If the <code>circular_buffer</code> is empty it returns an iterator equal to the one returned by |
|
<code>rend()</code>. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>rend()</code>, <code>begin()</code>, <code>end()</code> |
|
*/ |
|
reverse_iterator rbegin() { return reverse_iterator(end()); } |
|
|
|
//! Get the iterator pointing to the end of the "reversed" <code>circular_buffer</code>. |
|
/*! |
|
\return A reverse random access iterator pointing to the element "one before" the first element of the <code> |
|
circular_buffer</code>. If the <code>circular_buffer</code> is empty it returns an iterator equal to |
|
the one returned by <code>rbegin()</code>. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>rbegin()</code>, <code>begin()</code>, <code>end()</code> |
|
*/ |
|
reverse_iterator rend() { return reverse_iterator(begin()); } |
|
|
|
//! Get the const iterator pointing to the beginning of the "reversed" <code>circular_buffer</code>. |
|
/*! |
|
\return A const reverse random access iterator pointing to the last element of the |
|
<code>circular_buffer</code>. If the <code>circular_buffer</code> is empty it returns an iterator equal |
|
to the one returned by <code>rend() const</code>. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>rend() const</code>, <code>begin() const</code>, <code>end() const</code> |
|
*/ |
|
const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } |
|
|
|
//! Get the const iterator pointing to the end of the "reversed" <code>circular_buffer</code>. |
|
/*! |
|
\return A const reverse random access iterator pointing to the element "one before" the first element of the |
|
<code>circular_buffer</code>. If the <code>circular_buffer</code> is empty it returns an iterator equal |
|
to the one returned by <code>rbegin() const</code>. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>rbegin() const</code>, <code>begin() const</code>, <code>end() const</code> |
|
*/ |
|
const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } |
|
|
|
//! Get the element at the <code>index</code> position. |
|
/*! |
|
\pre <code>0 \<= index \&\& index \< size()</code> |
|
\param index The position of the element. |
|
\return A reference to the element at the <code>index</code> position. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>at()</code> |
|
*/ |
|
reference operator [] (size_type index) { |
|
BOOST_CB_ASSERT(index < size()); // check for invalid index |
|
return *add(m_first, index); |
|
} |
|
|
|
//! Get the element at the <code>index</code> position. |
|
/*! |
|
\pre <code>0 \<= index \&\& index \< size()</code> |
|
\param index The position of the element. |
|
\return A const reference to the element at the <code>index</code> position. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>\link at(size_type)const at() const \endlink</code> |
|
*/ |
|
return_value_type operator [] (size_type index) const { |
|
BOOST_CB_ASSERT(index < size()); // check for invalid index |
|
return *add(m_first, index); |
|
} |
|
|
|
//! Get the element at the <code>index</code> position. |
|
/*! |
|
\param index The position of the element. |
|
\return A reference to the element at the <code>index</code> position. |
|
\throws <code>std::out_of_range</code> when the <code>index</code> is invalid (when |
|
<code>index >= size()</code>). |
|
\par Exception Safety |
|
Strong. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>\link operator[](size_type) operator[] \endlink</code> |
|
*/ |
|
reference at(size_type index) { |
|
check_position(index); |
|
return (*this)[index]; |
|
} |
|
|
|
//! Get the element at the <code>index</code> position. |
|
/*! |
|
\param index The position of the element. |
|
\return A const reference to the element at the <code>index</code> position. |
|
\throws <code>std::out_of_range</code> when the <code>index</code> is invalid (when |
|
<code>index >= size()</code>). |
|
\par Exception Safety |
|
Strong. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>\link operator[](size_type)const operator[] const \endlink</code> |
|
*/ |
|
return_value_type at(size_type index) const { |
|
check_position(index); |
|
return (*this)[index]; |
|
} |
|
|
|
//! Get the first element. |
|
/*! |
|
\pre <code>!empty()</code> |
|
\return A reference to the first element of the <code>circular_buffer</code>. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>back()</code> |
|
*/ |
|
reference front() { |
|
BOOST_CB_ASSERT(!empty()); // check for empty buffer (front element not available) |
|
return *m_first; |
|
} |
|
|
|
//! Get the last element. |
|
/*! |
|
\pre <code>!empty()</code> |
|
\return A reference to the last element of the <code>circular_buffer</code>. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>front()</code> |
|
*/ |
|
reference back() { |
|
BOOST_CB_ASSERT(!empty()); // check for empty buffer (back element not available) |
|
return *((m_last == m_buff ? m_end : m_last) - 1); |
|
} |
|
|
|
//! Get the first element. |
|
/*! |
|
\pre <code>!empty()</code> |
|
\return A const reference to the first element of the <code>circular_buffer</code>. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>back() const</code> |
|
*/ |
|
return_value_type front() const { |
|
BOOST_CB_ASSERT(!empty()); // check for empty buffer (front element not available) |
|
return *m_first; |
|
} |
|
|
|
//! Get the last element. |
|
/*! |
|
\pre <code>!empty()</code> |
|
\return A const reference to the last element of the <code>circular_buffer</code>. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>front() const</code> |
|
*/ |
|
return_value_type back() const { |
|
BOOST_CB_ASSERT(!empty()); // check for empty buffer (back element not available) |
|
return *((m_last == m_buff ? m_end : m_last) - 1); |
|
} |
|
|
|
//! Get the first continuous array of the internal buffer. |
|
/*! |
|
This method in combination with <code>array_two()</code> can be useful when passing the stored data into |
|
a legacy C API as an array. Suppose there is a <code>circular_buffer</code> of capacity 10, containing 7 |
|
characters <code>'a', 'b', ..., 'g'</code> where <code>buff[0] == 'a'</code>, <code>buff[1] == 'b'</code>, |
|
... and <code>buff[6] == 'g'</code>:<br><br> |
|
<code>circular_buffer<char> buff(10);</code><br><br> |
|
The internal representation is often not linear and the state of the internal buffer may look like this:<br> |
|
<br><code> |
|
|e|f|g| | | |a|b|c|d|<br> |
|
end ---^<br> |
|
begin -------^</code><br><br> |
|
where <code>|a|b|c|d|</code> represents the "array one", <code>|e|f|g|</code> represents the "array two" and |
|
<code>| | | |</code> is a free space.<br> |
|
Now consider a typical C style function for writing data into a file:<br><br> |
|
<code>int write(int file_desc, char* buff, int num_bytes);</code><br><br> |
|
There are two ways how to write the content of the <code>circular_buffer</code> into a file. Either relying |
|
on <code>array_one()</code> and <code>array_two()</code> methods and calling the write function twice:<br><br> |
|
<code>array_range ar = buff.array_one();<br> |
|
write(file_desc, ar.first, ar.second);<br> |
|
ar = buff.array_two();<br> |
|
write(file_desc, ar.first, ar.second);</code><br><br> |
|
Or relying on the <code>linearize()</code> method:<br><br><code> |
|
write(file_desc, buff.linearize(), buff.size());</code><br><br> |
|
Since the complexity of <code>array_one()</code> and <code>array_two()</code> methods is constant the first |
|
option is suitable when calling the write method is "cheap". On the other hand the second option is more |
|
suitable when calling the write method is more "expensive" than calling the <code>linearize()</code> method |
|
whose complexity is linear. |
|
\return The array range of the first continuous array of the internal buffer. In the case the |
|
<code>circular_buffer</code> is empty the size of the returned array is <code>0</code>. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\warning In general invoking any method which modifies the internal state of the circular_buffer may |
|
delinearize the internal buffer and invalidate the array ranges returned by <code>array_one()</code> |
|
and <code>array_two()</code> (and their const versions). |
|
\note In the case the internal buffer is linear e.g. <code>|a|b|c|d|e|f|g| | | |</code> the "array one" is |
|
represented by <code>|a|b|c|d|e|f|g|</code> and the "array two" does not exist (the |
|
<code>array_two()</code> method returns an array with the size <code>0</code>). |
|
\sa <code>array_two()</code>, <code>linearize()</code> |
|
*/ |
|
array_range array_one() { |
|
return array_range(m_first, (m_last <= m_first && !empty() ? m_end : m_last) - m_first); |
|
} |
|
|
|
//! Get the second continuous array of the internal buffer. |
|
/*! |
|
This method in combination with <code>array_one()</code> can be useful when passing the stored data into |
|
a legacy C API as an array. |
|
\return The array range of the second continuous array of the internal buffer. In the case the internal buffer |
|
is linear or the <code>circular_buffer</code> is empty the size of the returned array is |
|
<code>0</code>. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>array_one()</code> |
|
*/ |
|
array_range array_two() { |
|
return array_range(m_buff, m_last <= m_first && !empty() ? m_last - m_buff : 0); |
|
} |
|
|
|
//! Get the first continuous array of the internal buffer. |
|
/*! |
|
This method in combination with <code>array_two() const</code> can be useful when passing the stored data into |
|
a legacy C API as an array. |
|
\return The array range of the first continuous array of the internal buffer. In the case the |
|
<code>circular_buffer</code> is empty the size of the returned array is <code>0</code>. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>array_two() const</code>; <code>array_one()</code> for more details how to pass data into a legacy C |
|
API. |
|
*/ |
|
const_array_range array_one() const { |
|
return const_array_range(m_first, (m_last <= m_first && !empty() ? m_end : m_last) - m_first); |
|
} |
|
|
|
//! Get the second continuous array of the internal buffer. |
|
/*! |
|
This method in combination with <code>array_one() const</code> can be useful when passing the stored data into |
|
a legacy C API as an array. |
|
\return The array range of the second continuous array of the internal buffer. In the case the internal buffer |
|
is linear or the <code>circular_buffer</code> is empty the size of the returned array is |
|
<code>0</code>. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>array_one() const</code> |
|
*/ |
|
const_array_range array_two() const { |
|
return const_array_range(m_buff, m_last <= m_first && !empty() ? m_last - m_buff : 0); |
|
} |
|
|
|
//! Linearize the internal buffer into a continuous array. |
|
/*! |
|
This method can be useful when passing the stored data into a legacy C API as an array. |
|
\post <code>\&(*this)[0] \< \&(*this)[1] \< ... \< \&(*this)[size() - 1]</code> |
|
\return A pointer to the beginning of the array or <code>0</code> if empty. |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\throws Whatever <code>T::operator = (const T&)</code> throws. |
|
\par Exception Safety |
|
Basic; no-throw if the operations in the <i>Throws</i> section do not throw anything. |
|
\par Iterator Invalidation |
|
Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to |
|
<code>end()</code>); does not invalidate any iterators if the postcondition (the <i>Effect</i>) is already |
|
met prior calling this method. |
|
\par Complexity |
|
Linear (in the size of the <code>circular_buffer</code>); constant if the postcondition (the |
|
<i>Effect</i>) is already met. |
|
\warning In general invoking any method which modifies the internal state of the <code>circular_buffer</code> |
|
may delinearize the internal buffer and invalidate the returned pointer. |
|
\sa <code>array_one()</code> and <code>array_two()</code> for the other option how to pass data into a legacy |
|
C API; <code>is_linearized()</code>, <code>rotate(const_iterator)</code> |
|
*/ |
|
pointer linearize() { |
|
if (empty()) |
|
return 0; |
|
if (m_first < m_last || m_last == m_buff) |
|
return m_first; |
|
pointer src = m_first; |
|
pointer dest = m_buff; |
|
size_type moved = 0; |
|
size_type constructed = 0; |
|
BOOST_TRY { |
|
for (pointer first = m_first; dest < src; src = first) { |
|
for (size_type ii = 0; src < m_end; ++src, ++dest, ++moved, ++ii) { |
|
if (moved == size()) { |
|
first = dest; |
|
break; |
|
} |
|
if (dest == first) { |
|
first += ii; |
|
break; |
|
} |
|
if (is_uninitialized(dest)) { |
|
m_alloc.construct(dest, *src); |
|
++constructed; |
|
} else { |
|
value_type tmp = *src; |
|
replace(src, *dest); |
|
replace(dest, tmp); |
|
} |
|
} |
|
} |
|
} BOOST_CATCH(...) { |
|
m_last += constructed; |
|
m_size += constructed; |
|
BOOST_RETHROW |
|
} |
|
BOOST_CATCH_END |
|
for (src = m_end - constructed; src < m_end; ++src) |
|
destroy_item(src); |
|
m_first = m_buff; |
|
m_last = add(m_buff, size()); |
|
#if BOOST_CB_ENABLE_DEBUG |
|
invalidate_iterators_except(end()); |
|
#endif |
|
return m_buff; |
|
} |
|
|
|
//! Is the <code>circular_buffer</code> linearized? |
|
/*! |
|
\return <code>true</code> if the internal buffer is linearized into a continuous array (i.e. the |
|
<code>circular_buffer</code> meets a condition |
|
<code>\&(*this)[0] \< \&(*this)[1] \< ... \< \&(*this)[size() - 1]</code>); |
|
<code>false</code> otherwise. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>linearize()</code>, <code>array_one()</code>, <code>array_two()</code> |
|
*/ |
|
bool is_linearized() const { return m_first < m_last || m_last == m_buff; } |
|
|
|
//! Rotate elements in the <code>circular_buffer</code>. |
|
/*! |
|
A more effective implementation of |
|
<code><a href="http://www.sgi.com/tech/stl/rotate.html">std::rotate</a></code>. |
|
\pre <code>new_begin</code> is a valid iterator pointing to the <code>circular_buffer</code> <b>except</b> its |
|
end. |
|
\post Before calling the method suppose:<br><br> |
|
<code>m == std::distance(new_begin, end())</code><br><code>n == std::distance(begin(), new_begin)</code> |
|
<br><code>val_0 == *new_begin, val_1 == *(new_begin + 1), ... val_m == *(new_begin + m)</code><br> |
|
<code>val_r1 == *(new_begin - 1), val_r2 == *(new_begin - 2), ... val_rn == *(new_begin - n)</code><br> |
|
<br>then after call to the method:<br><br> |
|
<code>val_0 == (*this)[0] \&\& val_1 == (*this)[1] \&\& ... \&\& val_m == (*this)[m - 1] \&\& val_r1 == |
|
(*this)[m + n - 1] \&\& val_r2 == (*this)[m + n - 2] \&\& ... \&\& val_rn == (*this)[m]</code> |
|
\param new_begin The new beginning. |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\throws Whatever <code>T::operator = (const T&)</code> throws. |
|
\par Exception Safety |
|
Basic; no-throw if the <code>circular_buffer</code> is full or <code>new_begin</code> points to |
|
<code>begin()</code> or if the operations in the <i>Throws</i> section do not throw anything. |
|
\par Iterator Invalidation |
|
If <code>m \< n</code> invalidates iterators pointing to the last <code>m</code> elements |
|
(<b>including</b> <code>new_begin</code>, but not iterators equal to <code>end()</code>) else invalidates |
|
iterators pointing to the first <code>n</code> elements; does not invalidate any iterators if the |
|
<code>circular_buffer</code> is full. |
|
\par Complexity |
|
Linear (in <code>(std::min)(m, n)</code>); constant if the <code>circular_buffer</code> is full. |
|
\sa <code><a href="http://www.sgi.com/tech/stl/rotate.html">std::rotate</a></code> |
|
*/ |
|
void rotate(const_iterator new_begin) { |
|
BOOST_CB_ASSERT(new_begin.is_valid(this)); // check for uninitialized or invalidated iterator |
|
BOOST_CB_ASSERT(new_begin.m_it != 0); // check for iterator pointing to end() |
|
if (full()) { |
|
m_first = m_last = const_cast<pointer>(new_begin.m_it); |
|
} else { |
|
difference_type m = end() - new_begin; |
|
difference_type n = new_begin - begin(); |
|
if (m < n) { |
|
for (; m > 0; --m) { |
|
push_front(back()); |
|
pop_back(); |
|
} |
|
} else { |
|
for (; n > 0; --n) { |
|
push_back(front()); |
|
pop_front(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Size and capacity |
|
|
|
//! Get the number of elements currently stored in the <code>circular_buffer</code>. |
|
/*! |
|
\return The number of elements stored in the <code>circular_buffer</code>. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>capacity()</code>, <code>max_size()</code>, <code>reserve()</code>, |
|
<code>\link resize() resize(size_type, const_reference)\endlink</code> |
|
*/ |
|
size_type size() const { return m_size; } |
|
|
|
/*! \brief Get the largest possible size or capacity of the <code>circular_buffer</code>. (It depends on |
|
allocator's %max_size()). |
|
\return The maximum size/capacity the <code>circular_buffer</code> can be set to. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>size()</code>, <code>capacity()</code>, <code>reserve()</code> |
|
*/ |
|
size_type max_size() const { |
|
return (std::min<size_type>)(m_alloc.max_size(), (std::numeric_limits<difference_type>::max)()); |
|
} |
|
|
|
//! Is the <code>circular_buffer</code> empty? |
|
/*! |
|
\return <code>true</code> if there are no elements stored in the <code>circular_buffer</code>; |
|
<code>false</code> otherwise. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>full()</code> |
|
*/ |
|
bool empty() const { return size() == 0; } |
|
|
|
//! Is the <code>circular_buffer</code> full? |
|
/*! |
|
\return <code>true</code> if the number of elements stored in the <code>circular_buffer</code> |
|
equals the capacity of the <code>circular_buffer</code>; <code>false</code> otherwise. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>empty()</code> |
|
*/ |
|
bool full() const { return capacity() == size(); } |
|
|
|
/*! \brief Get the maximum number of elements which can be inserted into the <code>circular_buffer</code> without |
|
overwriting any of already stored elements. |
|
\return <code>capacity() - size()</code> |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>capacity()</code>, <code>size()</code>, <code>max_size()</code> |
|
*/ |
|
size_type reserve() const { return capacity() - size(); } |
|
|
|
//! Get the capacity of the <code>circular_buffer</code>. |
|
/*! |
|
\return The maximum number of elements which can be stored in the <code>circular_buffer</code>. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>reserve()</code>, <code>size()</code>, <code>max_size()</code>, |
|
<code>set_capacity(capacity_type)</code> |
|
*/ |
|
capacity_type capacity() const { return m_end - m_buff; } |
|
|
|
//! Change the capacity of the <code>circular_buffer</code>. |
|
/*! |
|
\post <code>capacity() == new_capacity \&\& size() \<= new_capacity</code><br><br> |
|
If the current number of elements stored in the <code>circular_buffer</code> is greater than the desired |
|
new capacity then number of <code>[size() - new_capacity]</code> <b>last</b> elements will be removed and |
|
the new size will be equal to <code>new_capacity</code>. |
|
\param new_capacity The new capacity. |
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is |
|
used). |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\par Exception Safety |
|
Strong. |
|
\par Iterator Invalidation |
|
Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to |
|
<code>end()</code>) if the new capacity is different from the original. |
|
\par Complexity |
|
Linear (in <code>min[size(), new_capacity]</code>). |
|
\sa <code>rset_capacity(capacity_type)</code>, |
|
<code>\link resize() resize(size_type, const_reference)\endlink</code> |
|
*/ |
|
void set_capacity(capacity_type new_capacity) { |
|
if (new_capacity == capacity()) |
|
return; |
|
pointer buff = allocate(new_capacity); |
|
iterator b = begin(); |
|
BOOST_TRY { |
|
reset(buff, |
|
cb_details::uninitialized_copy_with_alloc(b, b + (std::min)(new_capacity, size()), buff, m_alloc), |
|
new_capacity); |
|
} BOOST_CATCH(...) { |
|
deallocate(buff, new_capacity); |
|
BOOST_RETHROW |
|
} |
|
BOOST_CATCH_END |
|
} |
|
|
|
//! Change the size of the <code>circular_buffer</code>. |
|
/*! |
|
\post <code>size() == new_size \&\& capacity() >= new_size</code><br><br> |
|
If the new size is greater than the current size, copies of <code>item</code> will be inserted at the |
|
<b>back</b> of the of the <code>circular_buffer</code> in order to achieve the desired size. In the case |
|
the resulting size exceeds the current capacity the capacity will be set to <code>new_size</code>.<br> |
|
If the current number of elements stored in the <code>circular_buffer</code> is greater than the desired |
|
new size then number of <code>[size() - new_size]</code> <b>last</b> elements will be removed. (The |
|
capacity will remain unchanged.) |
|
\param new_size The new size. |
|
\param item The element the <code>circular_buffer</code> will be filled with in order to gain the requested |
|
size. (See the <i>Effect</i>.) |
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is |
|
used). |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\par Exception Safety |
|
Basic. |
|
\par Iterator Invalidation |
|
Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to |
|
<code>end()</code>) if the new size is greater than the current capacity. Invalidates iterators pointing |
|
to the removed elements if the new size is lower that the original size. Otherwise it does not invalidate |
|
any iterator. |
|
\par Complexity |
|
Linear (in the new size of the <code>circular_buffer</code>). |
|
\sa <code>\link rresize() rresize(size_type, const_reference)\endlink</code>, |
|
<code>set_capacity(capacity_type)</code> |
|
*/ |
|
void resize(size_type new_size, param_value_type item = value_type()) { |
|
if (new_size > size()) { |
|
if (new_size > capacity()) |
|
set_capacity(new_size); |
|
insert(end(), new_size - size(), item); |
|
} else { |
|
iterator e = end(); |
|
erase(e - (size() - new_size), e); |
|
} |
|
} |
|
|
|
//! Change the capacity of the <code>circular_buffer</code>. |
|
/*! |
|
\post <code>capacity() == new_capacity \&\& size() \<= new_capacity</code><br><br> |
|
If the current number of elements stored in the <code>circular_buffer</code> is greater than the desired |
|
new capacity then number of <code>[size() - new_capacity]</code> <b>first</b> elements will be removed |
|
and the new size will be equal to <code>new_capacity</code>. |
|
\param new_capacity The new capacity. |
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is |
|
used). |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\par Exception Safety |
|
Strong. |
|
\par Iterator Invalidation |
|
Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to |
|
<code>end()</code>) if the new capacity is different from the original. |
|
\par Complexity |
|
Linear (in <code>min[size(), new_capacity]</code>). |
|
\sa <code>set_capacity(capacity_type)</code>, |
|
<code>\link rresize() rresize(size_type, const_reference)\endlink</code> |
|
*/ |
|
void rset_capacity(capacity_type new_capacity) { |
|
if (new_capacity == capacity()) |
|
return; |
|
pointer buff = allocate(new_capacity); |
|
iterator e = end(); |
|
BOOST_TRY { |
|
reset(buff, cb_details::uninitialized_copy_with_alloc(e - (std::min)(new_capacity, size()), |
|
e, buff, m_alloc), new_capacity); |
|
} BOOST_CATCH(...) { |
|
deallocate(buff, new_capacity); |
|
BOOST_RETHROW |
|
} |
|
BOOST_CATCH_END |
|
} |
|
|
|
//! Change the size of the <code>circular_buffer</code>. |
|
/*! |
|
\post <code>size() == new_size \&\& capacity() >= new_size</code><br><br> |
|
If the new size is greater than the current size, copies of <code>item</code> will be inserted at the |
|
<b>front</b> of the of the <code>circular_buffer</code> in order to achieve the desired size. In the case |
|
the resulting size exceeds the current capacity the capacity will be set to <code>new_size</code>.<br> |
|
If the current number of elements stored in the <code>circular_buffer</code> is greater than the desired |
|
new size then number of <code>[size() - new_size]</code> <b>first</b> elements will be removed. (The |
|
capacity will remain unchanged.) |
|
\param new_size The new size. |
|
\param item The element the <code>circular_buffer</code> will be filled with in order to gain the requested |
|
size. (See the <i>Effect</i>.) |
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is |
|
used). |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\par Exception Safety |
|
Basic. |
|
\par Iterator Invalidation |
|
Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to |
|
<code>end()</code>) if the new size is greater than the current capacity. Invalidates iterators pointing |
|
to the removed elements if the new size is lower that the original size. Otherwise it does not invalidate |
|
any iterator. |
|
\par Complexity |
|
Linear (in the new size of the <code>circular_buffer</code>). |
|
\sa <code>\link resize() resize(size_type, const_reference)\endlink</code>, |
|
<code>rset_capacity(capacity_type)</code> |
|
*/ |
|
void rresize(size_type new_size, param_value_type item = value_type()) { |
|
if (new_size > size()) { |
|
if (new_size > capacity()) |
|
set_capacity(new_size); |
|
rinsert(begin(), new_size - size(), item); |
|
} else { |
|
rerase(begin(), end() - new_size); |
|
} |
|
} |
|
|
|
// Construction/Destruction |
|
|
|
//! Create an empty <code>circular_buffer</code> with zero capacity. |
|
/*! |
|
\post <code>capacity() == 0 \&\& size() == 0</code> |
|
\param alloc The allocator. |
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is |
|
used). |
|
\par Complexity |
|
Constant. |
|
\warning Since Boost version 1.36 the behaviour of this constructor has changed. Now the constructor does not |
|
allocate any memory and both capacity and size are set to zero. Also note when inserting an element |
|
into a <code>circular_buffer</code> with zero capacity (e.g. by |
|
<code>\link push_back() push_back(const_reference)\endlink</code> or |
|
<code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>) nothing |
|
will be inserted and the size (as well as capacity) remains zero. |
|
\note You can explicitly set the capacity by calling the <code>set_capacity(capacity_type)</code> method or you |
|
can use the other constructor with the capacity specified. |
|
\sa <code>circular_buffer(capacity_type, const allocator_type& alloc)</code>, |
|
<code>set_capacity(capacity_type)</code> |
|
*/ |
|
explicit circular_buffer(const allocator_type& alloc = allocator_type()) |
|
: m_buff(0), m_end(0), m_first(0), m_last(0), m_size(0), m_alloc(alloc) {} |
|
|
|
//! Create an empty <code>circular_buffer</code> with the specified capacity. |
|
/*! |
|
\post <code>capacity() == buffer_capacity \&\& size() == 0</code> |
|
\param buffer_capacity The maximum number of elements which can be stored in the <code>circular_buffer</code>. |
|
\param alloc The allocator. |
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is |
|
used). |
|
\par Complexity |
|
Constant. |
|
*/ |
|
explicit circular_buffer(capacity_type buffer_capacity, const allocator_type& alloc = allocator_type()) |
|
: m_size(0), m_alloc(alloc) { |
|
initialize_buffer(buffer_capacity); |
|
m_first = m_last = m_buff; |
|
} |
|
|
|
/*! \brief Create a full <code>circular_buffer</code> with the specified capacity and filled with <code>n</code> |
|
copies of <code>item</code>. |
|
\post <code>capacity() == n \&\& full() \&\& (*this)[0] == item \&\& (*this)[1] == item \&\& ... \&\& |
|
(*this)[n - 1] == item </code> |
|
\param n The number of elements the created <code>circular_buffer</code> will be filled with. |
|
\param item The element the created <code>circular_buffer</code> will be filled with. |
|
\param alloc The allocator. |
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is |
|
used). |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\par Complexity |
|
Linear (in the <code>n</code>). |
|
*/ |
|
circular_buffer(size_type n, param_value_type item, const allocator_type& alloc = allocator_type()) |
|
: m_size(n), m_alloc(alloc) { |
|
initialize_buffer(n, item); |
|
m_first = m_last = m_buff; |
|
} |
|
|
|
/*! \brief Create a <code>circular_buffer</code> with the specified capacity and filled with <code>n</code> |
|
copies of <code>item</code>. |
|
\pre <code>buffer_capacity >= n</code> |
|
\post <code>capacity() == buffer_capacity \&\& size() == n \&\& (*this)[0] == item \&\& (*this)[1] == item |
|
\&\& ... \&\& (*this)[n - 1] == item</code> |
|
\param buffer_capacity The capacity of the created <code>circular_buffer</code>. |
|
\param n The number of elements the created <code>circular_buffer</code> will be filled with. |
|
\param item The element the created <code>circular_buffer</code> will be filled with. |
|
\param alloc The allocator. |
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is |
|
used). |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\par Complexity |
|
Linear (in the <code>n</code>). |
|
*/ |
|
circular_buffer(capacity_type buffer_capacity, size_type n, param_value_type item, |
|
const allocator_type& alloc = allocator_type()) |
|
: m_size(n), m_alloc(alloc) { |
|
BOOST_CB_ASSERT(buffer_capacity >= size()); // check for capacity lower than size |
|
initialize_buffer(buffer_capacity, item); |
|
m_first = m_buff; |
|
m_last = buffer_capacity == n ? m_buff : m_buff + n; |
|
} |
|
|
|
//! The copy constructor. |
|
/*! |
|
Creates a copy of the specified <code>circular_buffer</code>. |
|
\post <code>*this == cb</code> |
|
\param cb The <code>circular_buffer</code> to be copied. |
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is |
|
used). |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\par Complexity |
|
Linear (in the size of <code>cb</code>). |
|
*/ |
|
circular_buffer(const circular_buffer<T, Alloc>& cb) |
|
: |
|
#if BOOST_CB_ENABLE_DEBUG |
|
debug_iterator_registry(), |
|
#endif |
|
m_size(cb.size()), m_alloc(cb.get_allocator()) { |
|
initialize_buffer(cb.capacity()); |
|
m_first = m_buff; |
|
BOOST_TRY { |
|
m_last = cb_details::uninitialized_copy_with_alloc(cb.begin(), cb.end(), m_buff, m_alloc); |
|
} BOOST_CATCH(...) { |
|
deallocate(m_buff, cb.capacity()); |
|
BOOST_RETHROW |
|
} |
|
BOOST_CATCH_END |
|
if (m_last == m_end) |
|
m_last = m_buff; |
|
} |
|
|
|
#if BOOST_WORKAROUND(BOOST_MSVC, < 1300) |
|
|
|
/*! \cond */ |
|
template <class InputIterator> |
|
circular_buffer(InputIterator first, InputIterator last) |
|
: m_alloc(allocator_type()) { |
|
initialize(first, last, is_integral<InputIterator>()); |
|
} |
|
|
|
template <class InputIterator> |
|
circular_buffer(capacity_type capacity, InputIterator first, InputIterator last) |
|
: m_alloc(allocator_type()) { |
|
initialize(capacity, first, last, is_integral<InputIterator>()); |
|
} |
|
/*! \endcond */ |
|
|
|
#else |
|
|
|
//! Create a full <code>circular_buffer</code> filled with a copy of the range. |
|
/*! |
|
\pre Valid range <code>[first, last)</code>.<br> |
|
<code>first</code> and <code>last</code> have to meet the requirements of |
|
<a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>. |
|
\post <code>capacity() == std::distance(first, last) \&\& full() \&\& (*this)[0]== *first \&\& |
|
(*this)[1] == *(first + 1) \&\& ... \&\& (*this)[std::distance(first, last) - 1] == *(last - 1)</code> |
|
\param first The beginning of the range to be copied. |
|
\param last The end of the range to be copied. |
|
\param alloc The allocator. |
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is |
|
used). |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\par Complexity |
|
Linear (in the <code>std::distance(first, last)</code>). |
|
*/ |
|
template <class InputIterator> |
|
circular_buffer(InputIterator first, InputIterator last, const allocator_type& alloc = allocator_type()) |
|
: m_alloc(alloc) { |
|
initialize(first, last, is_integral<InputIterator>()); |
|
} |
|
|
|
//! Create a <code>circular_buffer</code> with the specified capacity and filled with a copy of the range. |
|
/*! |
|
\pre Valid range <code>[first, last)</code>.<br> |
|
<code>first</code> and <code>last</code> have to meet the requirements of |
|
<a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>. |
|
\post <code>capacity() == buffer_capacity \&\& size() \<= std::distance(first, last) \&\& |
|
(*this)[0]== *(last - buffer_capacity) \&\& (*this)[1] == *(last - buffer_capacity + 1) \&\& ... \&\& |
|
(*this)[buffer_capacity - 1] == *(last - 1)</code><br><br> |
|
If the number of items to be copied from the range <code>[first, last)</code> is greater than the |
|
specified <code>buffer_capacity</code> then only elements from the range |
|
<code>[last - buffer_capacity, last)</code> will be copied. |
|
\param buffer_capacity The capacity of the created <code>circular_buffer</code>. |
|
\param first The beginning of the range to be copied. |
|
\param last The end of the range to be copied. |
|
\param alloc The allocator. |
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is |
|
used). |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\par Complexity |
|
Linear (in <code>std::distance(first, last)</code>; in |
|
<code>min[capacity, std::distance(first, last)]</code> if the <code>InputIterator</code> is a |
|
<a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a>). |
|
*/ |
|
template <class InputIterator> |
|
circular_buffer(capacity_type buffer_capacity, InputIterator first, InputIterator last, |
|
const allocator_type& alloc = allocator_type()) |
|
: m_alloc(alloc) { |
|
initialize(buffer_capacity, first, last, is_integral<InputIterator>()); |
|
} |
|
|
|
#endif // #if BOOST_WORKAROUND(BOOST_MSVC, < 1300) |
|
|
|
//! The destructor. |
|
/*! |
|
Destroys the <code>circular_buffer</code>. |
|
\throws Nothing. |
|
\par Iterator Invalidation |
|
Invalidates all iterators pointing to the <code>circular_buffer</code> (including iterators equal to |
|
<code>end()</code>). |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>) for scalar types; linear for other types. |
|
\sa <code>clear()</code> |
|
*/ |
|
~circular_buffer() { |
|
destroy(); |
|
#if BOOST_CB_ENABLE_DEBUG |
|
invalidate_all_iterators(); |
|
#endif |
|
} |
|
|
|
public: |
|
// Assign methods |
|
|
|
//! The assign operator. |
|
/*! |
|
Makes this <code>circular_buffer</code> to become a copy of the specified <code>circular_buffer</code>. |
|
\post <code>*this == cb</code> |
|
\param cb The <code>circular_buffer</code> to be copied. |
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is |
|
used). |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\par Exception Safety |
|
Strong. |
|
\par Iterator Invalidation |
|
Invalidates all iterators pointing to this <code>circular_buffer</code> (except iterators equal to |
|
<code>end()</code>). |
|
\par Complexity |
|
Linear (in the size of <code>cb</code>). |
|
\sa <code>\link assign(size_type, param_value_type) assign(size_type, const_reference)\endlink</code>, |
|
<code>\link assign(capacity_type, size_type, param_value_type) |
|
assign(capacity_type, size_type, const_reference)\endlink</code>, |
|
<code>assign(InputIterator, InputIterator)</code>, |
|
<code>assign(capacity_type, InputIterator, InputIterator)</code> |
|
*/ |
|
circular_buffer<T, Alloc>& operator = (const circular_buffer<T, Alloc>& cb) { |
|
if (this == &cb) |
|
return *this; |
|
pointer buff = allocate(cb.capacity()); |
|
BOOST_TRY { |
|
reset(buff, cb_details::uninitialized_copy_with_alloc(cb.begin(), cb.end(), buff, m_alloc), cb.capacity()); |
|
} BOOST_CATCH(...) { |
|
deallocate(buff, cb.capacity()); |
|
BOOST_RETHROW |
|
} |
|
BOOST_CATCH_END |
|
return *this; |
|
} |
|
|
|
//! Assign <code>n</code> items into the <code>circular_buffer</code>. |
|
/*! |
|
The content of the <code>circular_buffer</code> will be removed and replaced with <code>n</code> copies of the |
|
<code>item</code>. |
|
\post <code>capacity() == n \&\& size() == n \&\& (*this)[0] == item \&\& (*this)[1] == item \&\& ... \&\& |
|
(*this) [n - 1] == item</code> |
|
\param n The number of elements the <code>circular_buffer</code> will be filled with. |
|
\param item The element the <code>circular_buffer</code> will be filled with. |
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is |
|
used). |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\par Exception Safety |
|
Basic. |
|
\par Iterator Invalidation |
|
Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to |
|
<code>end()</code>). |
|
\par Complexity |
|
Linear (in the <code>n</code>). |
|
\sa <code>\link operator=(const circular_buffer&) operator=\endlink</code>, |
|
<code>\link assign(capacity_type, size_type, param_value_type) |
|
assign(capacity_type, size_type, const_reference)\endlink</code>, |
|
<code>assign(InputIterator, InputIterator)</code>, |
|
<code>assign(capacity_type, InputIterator, InputIterator)</code> |
|
*/ |
|
void assign(size_type n, param_value_type item) { |
|
assign_n(n, n, cb_details::assign_n<param_value_type, allocator_type>(n, item, m_alloc)); |
|
} |
|
|
|
//! Assign <code>n</code> items into the <code>circular_buffer</code> specifying the capacity. |
|
/*! |
|
The capacity of the <code>circular_buffer</code> will be set to the specified value and the content of the |
|
<code>circular_buffer</code> will be removed and replaced with <code>n</code> copies of the <code>item</code>. |
|
\pre <code>capacity >= n</code> |
|
\post <code>capacity() == buffer_capacity \&\& size() == n \&\& (*this)[0] == item \&\& (*this)[1] == item |
|
\&\& ... \&\& (*this) [n - 1] == item </code> |
|
\param buffer_capacity The new capacity. |
|
\param n The number of elements the <code>circular_buffer</code> will be filled with. |
|
\param item The element the <code>circular_buffer</code> will be filled with. |
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is |
|
used). |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\par Exception Safety |
|
Basic. |
|
\par Iterator Invalidation |
|
Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to |
|
<code>end()</code>). |
|
\par Complexity |
|
Linear (in the <code>n</code>). |
|
\sa <code>\link operator=(const circular_buffer&) operator=\endlink</code>, |
|
<code>\link assign(size_type, param_value_type) assign(size_type, const_reference)\endlink</code>, |
|
<code>assign(InputIterator, InputIterator)</code>, |
|
<code>assign(capacity_type, InputIterator, InputIterator)</code> |
|
*/ |
|
void assign(capacity_type buffer_capacity, size_type n, param_value_type item) { |
|
BOOST_CB_ASSERT(buffer_capacity >= n); // check for new capacity lower than n |
|
assign_n(buffer_capacity, n, cb_details::assign_n<param_value_type, allocator_type>(n, item, m_alloc)); |
|
} |
|
|
|
//! Assign a copy of the range into the <code>circular_buffer</code>. |
|
/*! |
|
The content of the <code>circular_buffer</code> will be removed and replaced with copies of elements from the |
|
specified range. |
|
\pre Valid range <code>[first, last)</code>.<br> |
|
<code>first</code> and <code>last</code> have to meet the requirements of |
|
<a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>. |
|
\post <code>capacity() == std::distance(first, last) \&\& size() == std::distance(first, last) \&\& |
|
(*this)[0]== *first \&\& (*this)[1] == *(first + 1) \&\& ... \&\& (*this)[std::distance(first, last) - 1] |
|
== *(last - 1)</code> |
|
\param first The beginning of the range to be copied. |
|
\param last The end of the range to be copied. |
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is |
|
used). |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\par Exception Safety |
|
Basic. |
|
\par Iterator Invalidation |
|
Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to |
|
<code>end()</code>). |
|
\par Complexity |
|
Linear (in the <code>std::distance(first, last)</code>). |
|
\sa <code>\link operator=(const circular_buffer&) operator=\endlink</code>, |
|
<code>\link assign(size_type, param_value_type) assign(size_type, const_reference)\endlink</code>, |
|
<code>\link assign(capacity_type, size_type, param_value_type) |
|
assign(capacity_type, size_type, const_reference)\endlink</code>, |
|
<code>assign(capacity_type, InputIterator, InputIterator)</code> |
|
*/ |
|
template <class InputIterator> |
|
void assign(InputIterator first, InputIterator last) { |
|
assign(first, last, is_integral<InputIterator>()); |
|
} |
|
|
|
//! Assign a copy of the range into the <code>circular_buffer</code> specifying the capacity. |
|
/*! |
|
The capacity of the <code>circular_buffer</code> will be set to the specified value and the content of the |
|
<code>circular_buffer</code> will be removed and replaced with copies of elements from the specified range. |
|
\pre Valid range <code>[first, last)</code>.<br> |
|
<code>first</code> and <code>last</code> have to meet the requirements of |
|
<a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>. |
|
\post <code>capacity() == buffer_capacity \&\& size() \<= std::distance(first, last) \&\& |
|
(*this)[0]== *(last - buffer_capacity) \&\& (*this)[1] == *(last - buffer_capacity + 1) \&\& ... \&\& |
|
(*this)[buffer_capacity - 1] == *(last - 1)</code><br><br> |
|
If the number of items to be copied from the range <code>[first, last)</code> is greater than the |
|
specified <code>buffer_capacity</code> then only elements from the range |
|
<code>[last - buffer_capacity, last)</code> will be copied. |
|
\param buffer_capacity The new capacity. |
|
\param first The beginning of the range to be copied. |
|
\param last The end of the range to be copied. |
|
\throws "An allocation error" if memory is exhausted (<code>std::bad_alloc</code> if the standard allocator is |
|
used). |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\par Exception Safety |
|
Basic. |
|
\par Iterator Invalidation |
|
Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to |
|
<code>end()</code>). |
|
\par Complexity |
|
Linear (in <code>std::distance(first, last)</code>; in |
|
<code>min[capacity, std::distance(first, last)]</code> if the <code>InputIterator</code> is a |
|
<a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a>). |
|
\sa <code>\link operator=(const circular_buffer&) operator=\endlink</code>, |
|
<code>\link assign(size_type, param_value_type) assign(size_type, const_reference)\endlink</code>, |
|
<code>\link assign(capacity_type, size_type, param_value_type) |
|
assign(capacity_type, size_type, const_reference)\endlink</code>, |
|
<code>assign(InputIterator, InputIterator)</code> |
|
*/ |
|
template <class InputIterator> |
|
void assign(capacity_type buffer_capacity, InputIterator first, InputIterator last) { |
|
assign(buffer_capacity, first, last, is_integral<InputIterator>()); |
|
} |
|
|
|
//! Swap the contents of two <code>circular_buffer</code>s. |
|
/*! |
|
\post <code>this</code> contains elements of <code>cb</code> and vice versa; the capacity of <code>this</code> |
|
equals to the capacity of <code>cb</code> and vice versa. |
|
\param cb The <code>circular_buffer</code> whose content will be swapped. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Invalidates all iterators of both <code>circular_buffer</code>s. (On the other hand the iterators still |
|
point to the same elements but within another container. If you want to rely on this feature you have to |
|
turn the <a href="#debug">Debug Support</a> off otherwise an assertion will report an error if such |
|
invalidated iterator is used.) |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>swap(circular_buffer<T, Alloc>&, circular_buffer<T, Alloc>&)</code> |
|
*/ |
|
void swap(circular_buffer<T, Alloc>& cb) { |
|
swap_allocator(cb, is_stateless<allocator_type>()); |
|
std::swap(m_buff, cb.m_buff); |
|
std::swap(m_end, cb.m_end); |
|
std::swap(m_first, cb.m_first); |
|
std::swap(m_last, cb.m_last); |
|
std::swap(m_size, cb.m_size); |
|
#if BOOST_CB_ENABLE_DEBUG |
|
invalidate_all_iterators(); |
|
cb.invalidate_all_iterators(); |
|
#endif |
|
} |
|
|
|
// push and pop |
|
|
|
//! Insert a new element at the end of the <code>circular_buffer</code>. |
|
/*! |
|
\post if <code>capacity() > 0</code> then <code>back() == item</code><br> |
|
If the <code>circular_buffer</code> is full, the first element will be removed. If the capacity is |
|
<code>0</code>, nothing will be inserted. |
|
\param item The element to be inserted. |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\throws Whatever <code>T::operator = (const T&)</code> throws. |
|
\par Exception Safety |
|
Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators with the exception of iterators pointing to the overwritten element. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>\link push_front() push_front(const_reference)\endlink</code>, |
|
<code>pop_back()</code>, <code>pop_front()</code> |
|
*/ |
|
void push_back(param_value_type item = value_type()) { |
|
if (full()) { |
|
if (empty()) |
|
return; |
|
replace(m_last, item); |
|
increment(m_last); |
|
m_first = m_last; |
|
} else { |
|
m_alloc.construct(m_last, item); |
|
increment(m_last); |
|
++m_size; |
|
} |
|
} |
|
|
|
//! Insert a new element at the beginning of the <code>circular_buffer</code>. |
|
/*! |
|
\post if <code>capacity() > 0</code> then <code>front() == item</code><br> |
|
If the <code>circular_buffer</code> is full, the last element will be removed. If the capacity is |
|
<code>0</code>, nothing will be inserted. |
|
\param item The element to be inserted. |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\throws Whatever <code>T::operator = (const T&)</code> throws. |
|
\par Exception Safety |
|
Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything. |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators with the exception of iterators pointing to the overwritten element. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>\link push_back() push_back(const_reference)\endlink</code>, |
|
<code>pop_back()</code>, <code>pop_front()</code> |
|
*/ |
|
void push_front(param_value_type item = value_type()) { |
|
BOOST_TRY { |
|
if (full()) { |
|
if (empty()) |
|
return; |
|
decrement(m_first); |
|
replace(m_first, item); |
|
m_last = m_first; |
|
} else { |
|
decrement(m_first); |
|
m_alloc.construct(m_first, item); |
|
++m_size; |
|
} |
|
} BOOST_CATCH(...) { |
|
increment(m_first); |
|
BOOST_RETHROW |
|
} |
|
BOOST_CATCH_END |
|
} |
|
|
|
//! Remove the last element from the <code>circular_buffer</code>. |
|
/*! |
|
\pre <code>!empty()</code> |
|
\post The last element is removed from the <code>circular_buffer</code>. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Invalidates only iterators pointing to the removed element. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>pop_front()</code>, <code>\link push_back() push_back(const_reference)\endlink</code>, |
|
<code>\link push_front() push_front(const_reference)\endlink</code> |
|
*/ |
|
void pop_back() { |
|
BOOST_CB_ASSERT(!empty()); // check for empty buffer (back element not available) |
|
decrement(m_last); |
|
destroy_item(m_last); |
|
--m_size; |
|
} |
|
|
|
//! Remove the first element from the <code>circular_buffer</code>. |
|
/*! |
|
\pre <code>!empty()</code> |
|
\post The first element is removed from the <code>circular_buffer</code>. |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Invalidates only iterators pointing to the removed element. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>). |
|
\sa <code>pop_back()</code>, <code>\link push_back() push_back(const_reference)\endlink</code>, |
|
<code>\link push_front() push_front(const_reference)\endlink</code> |
|
*/ |
|
void pop_front() { |
|
BOOST_CB_ASSERT(!empty()); // check for empty buffer (front element not available) |
|
destroy_item(m_first); |
|
increment(m_first); |
|
--m_size; |
|
} |
|
|
|
public: |
|
// Insert |
|
|
|
//! Insert an element at the specified position. |
|
/*! |
|
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> or its end. |
|
\post The <code>item</code> will be inserted at the position <code>pos</code>.<br> |
|
If the <code>circular_buffer</code> is full, the first element will be overwritten. If the |
|
<code>circular_buffer</code> is full and the <code>pos</code> points to <code>begin()</code>, then the |
|
<code>item</code> will not be inserted. If the capacity is <code>0</code>, nothing will be inserted. |
|
\param pos An iterator specifying the position where the <code>item</code> will be inserted. |
|
\param item The element to be inserted. |
|
\return Iterator to the inserted element or <code>begin()</code> if the <code>item</code> is not inserted. (See |
|
the <i>Effect</i>.) |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\throws Whatever <code>T::operator = (const T&)</code> throws. |
|
\par Exception Safety |
|
Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything. |
|
\par Iterator Invalidation |
|
Invalidates iterators pointing to the elements at the insertion point (including <code>pos</code>) and |
|
iterators behind the insertion point (towards the end; except iterators equal to <code>end()</code>). It |
|
also invalidates iterators pointing to the overwritten element. |
|
\par Complexity |
|
Linear (in <code>std::distance(pos, end())</code>). |
|
\sa <code>\link insert(iterator, size_type, param_value_type) |
|
insert(iterator, size_type, value_type)\endlink</code>, |
|
<code>insert(iterator, InputIterator, InputIterator)</code>, |
|
<code>\link rinsert(iterator, param_value_type) rinsert(iterator, value_type)\endlink</code>, |
|
<code>\link rinsert(iterator, size_type, param_value_type) |
|
rinsert(iterator, size_type, value_type)\endlink</code>, |
|
<code>rinsert(iterator, InputIterator, InputIterator)</code> |
|
*/ |
|
iterator insert(iterator pos, param_value_type item = value_type()) { |
|
BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator |
|
iterator b = begin(); |
|
if (full() && pos == b) |
|
return b; |
|
return insert_item(pos, item); |
|
} |
|
|
|
//! Insert <code>n</code> copies of the <code>item</code> at the specified position. |
|
/*! |
|
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> or its end. |
|
\post The number of <code>min[n, (pos - begin()) + reserve()]</code> elements will be inserted at the position |
|
<code>pos</code>.<br>The number of <code>min[pos - begin(), max[0, n - reserve()]]</code> elements will |
|
be overwritten at the beginning of the <code>circular_buffer</code>.<br>(See <i>Example</i> for the |
|
explanation.) |
|
\param pos An iterator specifying the position where the <code>item</code>s will be inserted. |
|
\param n The number of <code>item</code>s the to be inserted. |
|
\param item The element whose copies will be inserted. |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\throws Whatever <code>T::operator = (const T&)</code> throws. |
|
\par Exception Safety |
|
Basic; no-throw if the operations in the <i>Throws</i> section do not throw anything. |
|
\par Iterator Invalidation |
|
Invalidates iterators pointing to the elements at the insertion point (including <code>pos</code>) and |
|
iterators behind the insertion point (towards the end; except iterators equal to <code>end()</code>). It |
|
also invalidates iterators pointing to the overwritten elements. |
|
\par Complexity |
|
Linear (in <code>min[capacity(), std::distance(pos, end()) + n]</code>). |
|
\par Example |
|
Consider a <code>circular_buffer</code> with the capacity of 6 and the size of 4. Its internal buffer may |
|
look like the one below.<br><br> |
|
<code>|1|2|3|4| | |</code><br> |
|
<code>p ---^</code><br><br>After inserting 5 elements at the position <code>p</code>:<br><br> |
|
<code>insert(p, (size_t)5, 0);</code><br><br>actually only 4 elements get inserted and elements |
|
<code>1</code> and <code>2</code> are overwritten. This is due to the fact the insert operation preserves |
|
the capacity. After insertion the internal buffer looks like this:<br><br><code>|0|0|0|0|3|4|</code><br> |
|
<br>For comparison if the capacity would not be preserved the internal buffer would then result in |
|
<code>|1|2|0|0|0|0|0|3|4|</code>. |
|
\sa <code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>, |
|
<code>insert(iterator, InputIterator, InputIterator)</code>, |
|
<code>\link rinsert(iterator, param_value_type) rinsert(iterator, value_type)\endlink</code>, |
|
<code>\link rinsert(iterator, size_type, param_value_type) |
|
rinsert(iterator, size_type, value_type)\endlink</code>, |
|
<code>rinsert(iterator, InputIterator, InputIterator)</code> |
|
*/ |
|
void insert(iterator pos, size_type n, param_value_type item) { |
|
BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator |
|
if (n == 0) |
|
return; |
|
size_type copy = capacity() - (end() - pos); |
|
if (copy == 0) |
|
return; |
|
if (n > copy) |
|
n = copy; |
|
insert_n(pos, n, cb_details::item_wrapper<const_pointer, param_value_type>(item)); |
|
} |
|
|
|
//! Insert the range <code>[first, last)</code> at the specified position. |
|
/*! |
|
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> or its end.<br> |
|
Valid range <code>[first, last)</code> where <code>first</code> and <code>last</code> meet the |
|
requirements of an <a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>. |
|
\post Elements from the range |
|
<code>[first + max[0, distance(first, last) - (pos - begin()) - reserve()], last)</code> will be |
|
inserted at the position <code>pos</code>.<br>The number of <code>min[pos - begin(), max[0, |
|
distance(first, last) - reserve()]]</code> elements will be overwritten at the beginning of the |
|
<code>circular_buffer</code>.<br>(See <i>Example</i> for the explanation.) |
|
\param pos An iterator specifying the position where the range will be inserted. |
|
\param first The beginning of the range to be inserted. |
|
\param last The end of the range to be inserted. |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\throws Whatever <code>T::operator = (const T&)</code> throws. |
|
\par Exception Safety |
|
Basic; no-throw if the operations in the <i>Throws</i> section do not throw anything. |
|
\par Iterator Invalidation |
|
Invalidates iterators pointing to the elements at the insertion point (including <code>pos</code>) and |
|
iterators behind the insertion point (towards the end; except iterators equal to <code>end()</code>). It |
|
also invalidates iterators pointing to the overwritten elements. |
|
\par Complexity |
|
Linear (in <code>[std::distance(pos, end()) + std::distance(first, last)]</code>; in |
|
<code>min[capacity(), std::distance(pos, end()) + std::distance(first, last)]</code> if the |
|
<code>InputIterator</code> is a |
|
<a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a>). |
|
\par Example |
|
Consider a <code>circular_buffer</code> with the capacity of 6 and the size of 4. Its internal buffer may |
|
look like the one below.<br><br> |
|
<code>|1|2|3|4| | |</code><br> |
|
<code>p ---^</code><br><br>After inserting a range of elements at the position <code>p</code>:<br><br> |
|
<code>int array[] = { 5, 6, 7, 8, 9 };</code><br><code>insert(p, array, array + 5);</code><br><br> |
|
actually only elements <code>6</code>, <code>7</code>, <code>8</code> and <code>9</code> from the |
|
specified range get inserted and elements <code>1</code> and <code>2</code> are overwritten. This is due |
|
to the fact the insert operation preserves the capacity. After insertion the internal buffer looks like |
|
this:<br><br><code>|6|7|8|9|3|4|</code><br><br>For comparison if the capacity would not be preserved the |
|
internal buffer would then result in <code>|1|2|5|6|7|8|9|3|4|</code>. |
|
\sa <code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>, |
|
<code>\link insert(iterator, size_type, param_value_type) |
|
insert(iterator, size_type, value_type)\endlink</code>, <code>\link rinsert(iterator, param_value_type) |
|
rinsert(iterator, value_type)\endlink</code>, <code>\link rinsert(iterator, size_type, param_value_type) |
|
rinsert(iterator, size_type, value_type)\endlink</code>, |
|
<code>rinsert(iterator, InputIterator, InputIterator)</code> |
|
*/ |
|
template <class InputIterator> |
|
void insert(iterator pos, InputIterator first, InputIterator last) { |
|
BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator |
|
insert(pos, first, last, is_integral<InputIterator>()); |
|
} |
|
|
|
//! Insert an element before the specified position. |
|
/*! |
|
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> or its end. |
|
\post The <code>item</code> will be inserted before the position <code>pos</code>.<br> |
|
If the <code>circular_buffer</code> is full, the last element will be overwritten. If the |
|
<code>circular_buffer</code> is full and the <code>pos</code> points to <code>end()</code>, then the |
|
<code>item</code> will not be inserted. If the capacity is <code>0</code>, nothing will be inserted. |
|
\param pos An iterator specifying the position before which the <code>item</code> will be inserted. |
|
\param item The element to be inserted. |
|
\return Iterator to the inserted element or <code>end()</code> if the <code>item</code> is not inserted. (See |
|
the <i>Effect</i>.) |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\throws Whatever <code>T::operator = (const T&)</code> throws. |
|
\par Exception Safety |
|
Basic; no-throw if the operations in the <i>Throws</i> section do not throw anything. |
|
\par Iterator Invalidation |
|
Invalidates iterators pointing to the elements before the insertion point (towards the beginning and |
|
excluding <code>pos</code>). It also invalidates iterators pointing to the overwritten element. |
|
\par Complexity |
|
Linear (in <code>std::distance(begin(), pos)</code>). |
|
\sa <code>\link rinsert(iterator, size_type, param_value_type) |
|
rinsert(iterator, size_type, value_type)\endlink</code>, |
|
<code>rinsert(iterator, InputIterator, InputIterator)</code>, |
|
<code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>, |
|
<code>\link insert(iterator, size_type, param_value_type) |
|
insert(iterator, size_type, value_type)\endlink</code>, |
|
<code>insert(iterator, InputIterator, InputIterator)</code> |
|
*/ |
|
iterator rinsert(iterator pos, param_value_type item = value_type()) { |
|
BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator |
|
if (full() && pos.m_it == 0) |
|
return end(); |
|
if (pos == begin()) { |
|
BOOST_TRY { |
|
decrement(m_first); |
|
construct_or_replace(!full(), m_first, item); |
|
} BOOST_CATCH(...) { |
|
increment(m_first); |
|
BOOST_RETHROW |
|
} |
|
BOOST_CATCH_END |
|
pos.m_it = m_first; |
|
} else { |
|
pointer src = m_first; |
|
pointer dest = m_first; |
|
decrement(dest); |
|
pos.m_it = map_pointer(pos.m_it); |
|
bool construct = !full(); |
|
BOOST_TRY { |
|
while (src != pos.m_it) { |
|
construct_or_replace(construct, dest, *src); |
|
increment(src); |
|
increment(dest); |
|
construct = false; |
|
} |
|
decrement(pos.m_it); |
|
replace(pos.m_it, item); |
|
} BOOST_CATCH(...) { |
|
if (!construct && !full()) { |
|
decrement(m_first); |
|
++m_size; |
|
} |
|
BOOST_RETHROW |
|
} |
|
BOOST_CATCH_END |
|
decrement(m_first); |
|
} |
|
if (full()) |
|
m_last = m_first; |
|
else |
|
++m_size; |
|
return iterator(this, pos.m_it); |
|
} |
|
|
|
//! Insert <code>n</code> copies of the <code>item</code> before the specified position. |
|
/*! |
|
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> or its end. |
|
\post The number of <code>min[n, (end() - pos) + reserve()]</code> elements will be inserted before the |
|
position <code>pos</code>.<br>The number of <code>min[end() - pos, max[0, n - reserve()]]</code> elements |
|
will be overwritten at the end of the <code>circular_buffer</code>.<br>(See <i>Example</i> for the |
|
explanation.) |
|
\param pos An iterator specifying the position where the <code>item</code>s will be inserted. |
|
\param n The number of <code>item</code>s the to be inserted. |
|
\param item The element whose copies will be inserted. |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\throws Whatever <code>T::operator = (const T&)</code> throws. |
|
\par Exception Safety |
|
Basic; no-throw if the operations in the <i>Throws</i> section do not throw anything. |
|
\par Iterator Invalidation |
|
Invalidates iterators pointing to the elements before the insertion point (towards the beginning and |
|
excluding <code>pos</code>). It also invalidates iterators pointing to the overwritten elements. |
|
\par Complexity |
|
Linear (in <code>min[capacity(), std::distance(begin(), pos) + n]</code>). |
|
\par Example |
|
Consider a <code>circular_buffer</code> with the capacity of 6 and the size of 4. Its internal buffer may |
|
look like the one below.<br><br> |
|
<code>|1|2|3|4| | |</code><br> |
|
<code>p ---^</code><br><br>After inserting 5 elements before the position <code>p</code>:<br><br> |
|
<code>rinsert(p, (size_t)5, 0);</code><br><br>actually only 4 elements get inserted and elements |
|
<code>3</code> and <code>4</code> are overwritten. This is due to the fact the rinsert operation preserves |
|
the capacity. After insertion the internal buffer looks like this:<br><br><code>|1|2|0|0|0|0|</code><br> |
|
<br>For comparison if the capacity would not be preserved the internal buffer would then result in |
|
<code>|1|2|0|0|0|0|0|3|4|</code>. |
|
\sa <code>\link rinsert(iterator, param_value_type) rinsert(iterator, value_type)\endlink</code>, |
|
<code>rinsert(iterator, InputIterator, InputIterator)</code>, |
|
<code>\link insert(iterator, param_value_type) insert(iterator, value_type)\endlink</code>, |
|
<code>\link insert(iterator, size_type, param_value_type) |
|
insert(iterator, size_type, value_type)\endlink</code>, |
|
<code>insert(iterator, InputIterator, InputIterator)</code> |
|
*/ |
|
void rinsert(iterator pos, size_type n, param_value_type item) { |
|
BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator |
|
rinsert_n(pos, n, cb_details::item_wrapper<const_pointer, param_value_type>(item)); |
|
} |
|
|
|
//! Insert the range <code>[first, last)</code> before the specified position. |
|
/*! |
|
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> or its end.<br> |
|
Valid range <code>[first, last)</code> where <code>first</code> and <code>last</code> meet the |
|
requirements of an <a href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a>. |
|
\post Elements from the range |
|
<code>[first, last - max[0, distance(first, last) - (end() - pos) - reserve()])</code> will be inserted |
|
before the position <code>pos</code>.<br>The number of <code>min[end() - pos, max[0, |
|
distance(first, last) - reserve()]]</code> elements will be overwritten at the end of the |
|
<code>circular_buffer</code>.<br>(See <i>Example</i> for the explanation.) |
|
\param pos An iterator specifying the position where the range will be inserted. |
|
\param first The beginning of the range to be inserted. |
|
\param last The end of the range to be inserted. |
|
\throws Whatever <code>T::T(const T&)</code> throws. |
|
\throws Whatever <code>T::operator = (const T&)</code> throws. |
|
\par Exception Safety |
|
Basic; no-throw if the operations in the <i>Throws</i> section do not throw anything. |
|
\par Iterator Invalidation |
|
Invalidates iterators pointing to the elements before the insertion point (towards the beginning and |
|
excluding <code>pos</code>). It also invalidates iterators pointing to the overwritten elements. |
|
\par Complexity |
|
Linear (in <code>[std::distance(begin(), pos) + std::distance(first, last)]</code>; in |
|
<code>min[capacity(), std::distance(begin(), pos) + std::distance(first, last)]</code> if the |
|
<code>InputIterator</code> is a |
|
<a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">RandomAccessIterator</a>). |
|
\par Example |
|
Consider a <code>circular_buffer</code> with the capacity of 6 and the size of 4. Its internal buffer may |
|
look like the one below.<br><br> |
|
<code>|1|2|3|4| | |</code><br> |
|
<code>p ---^</code><br><br>After inserting a range of elements before the position <code>p</code>:<br><br> |
|
<code>int array[] = { 5, 6, 7, 8, 9 };</code><br><code>insert(p, array, array + 5);</code><br><br> |
|
actually only elements <code>5</code>, <code>6</code>, <code>7</code> and <code>8</code> from the |
|
specified range get inserted and elements <code>3</code> and <code>4</code> are overwritten. This is due |
|
to the fact the rinsert operation preserves the capacity. After insertion the internal buffer looks like |
|
this:<br><br><code>|1|2|5|6|7|8|</code><br><br>For comparison if the capacity would not be preserved the |
|
internal buffer would then result in <code>|1|2|5|6|7|8|9|3|4|</code>. |
|
\sa <code>\link rinsert(iterator, param_value_type) rinsert(iterator, value_type)\endlink</code>, |
|
<code>\link rinsert(iterator, size_type, param_value_type) |
|
rinsert(iterator, size_type, value_type)\endlink</code>, <code>\link insert(iterator, param_value_type) |
|
insert(iterator, value_type)\endlink</code>, <code>\link insert(iterator, size_type, param_value_type) |
|
insert(iterator, size_type, value_type)\endlink</code>, |
|
<code>insert(iterator, InputIterator, InputIterator)</code> |
|
*/ |
|
template <class InputIterator> |
|
void rinsert(iterator pos, InputIterator first, InputIterator last) { |
|
BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator |
|
rinsert(pos, first, last, is_integral<InputIterator>()); |
|
} |
|
|
|
// Erase |
|
|
|
//! Remove an element at the specified position. |
|
/*! |
|
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> (but not an |
|
<code>end()</code>). |
|
\post The element at the position <code>pos</code> is removed. |
|
\param pos An iterator pointing at the element to be removed. |
|
\return Iterator to the first element remaining beyond the removed element or <code>end()</code> if no such |
|
element exists. |
|
\throws Whatever <code>T::operator = (const T&)</code> throws. |
|
\par Exception Safety |
|
Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything. |
|
\par Iterator Invalidation |
|
Invalidates iterators pointing to the erased element and iterators pointing to the elements behind |
|
the erased element (towards the end; except iterators equal to <code>end()</code>). |
|
\par Complexity |
|
Linear (in <code>std::distance(pos, end())</code>). |
|
\sa <code>erase(iterator, iterator)</code>, <code>rerase(iterator)</code>, |
|
<code>rerase(iterator, iterator)</code>, <code>erase_begin(size_type)</code>, |
|
<code>erase_end(size_type)</code>, <code>clear()</code> |
|
*/ |
|
iterator erase(iterator pos) { |
|
BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator |
|
BOOST_CB_ASSERT(pos.m_it != 0); // check for iterator pointing to end() |
|
pointer next = pos.m_it; |
|
increment(next); |
|
for (pointer p = pos.m_it; next != m_last; p = next, increment(next)) |
|
replace(p, *next); |
|
decrement(m_last); |
|
destroy_item(m_last); |
|
--m_size; |
|
#if BOOST_CB_ENABLE_DEBUG |
|
return m_last == pos.m_it ? end() : iterator(this, pos.m_it); |
|
#else |
|
return m_last == pos.m_it ? end() : pos; |
|
#endif |
|
} |
|
|
|
//! Erase the range <code>[first, last)</code>. |
|
/*! |
|
\pre Valid range <code>[first, last)</code>. |
|
\post The elements from the range <code>[first, last)</code> are removed. (If <code>first == last</code> |
|
nothing is removed.) |
|
\param first The beginning of the range to be removed. |
|
\param last The end of the range to be removed. |
|
\return Iterator to the first element remaining beyond the removed elements or <code>end()</code> if no such |
|
element exists. |
|
\throws Whatever <code>T::operator = (const T&)</code> throws. |
|
\par Exception Safety |
|
Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything. |
|
\par Iterator Invalidation |
|
Invalidates iterators pointing to the erased elements and iterators pointing to the elements behind |
|
the erased range (towards the end; except iterators equal to <code>end()</code>). |
|
\par Complexity |
|
Linear (in <code>std::distance(first, end())</code>). |
|
\sa <code>erase(iterator)</code>, <code>rerase(iterator)</code>, <code>rerase(iterator, iterator)</code>, |
|
<code>erase_begin(size_type)</code>, <code>erase_end(size_type)</code>, <code>clear()</code> |
|
*/ |
|
iterator erase(iterator first, iterator last) { |
|
BOOST_CB_ASSERT(first.is_valid(this)); // check for uninitialized or invalidated iterator |
|
BOOST_CB_ASSERT(last.is_valid(this)); // check for uninitialized or invalidated iterator |
|
BOOST_CB_ASSERT(first <= last); // check for wrong range |
|
if (first == last) |
|
return first; |
|
pointer p = first.m_it; |
|
while (last.m_it != 0) |
|
replace((first++).m_it, *last++); |
|
do { |
|
decrement(m_last); |
|
destroy_item(m_last); |
|
--m_size; |
|
} while(m_last != first.m_it); |
|
return m_last == p ? end() : iterator(this, p); |
|
} |
|
|
|
//! Remove an element at the specified position. |
|
/*! |
|
\pre <code>pos</code> is a valid iterator pointing to the <code>circular_buffer</code> (but not an |
|
<code>end()</code>). |
|
\post The element at the position <code>pos</code> is removed. |
|
\param pos An iterator pointing at the element to be removed. |
|
\return Iterator to the first element remaining in front of the removed element or <code>begin()</code> if no |
|
such element exists. |
|
\throws Whatever <code>T::operator = (const T&)</code> throws. |
|
\par Exception Safety |
|
Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything. |
|
\par Iterator Invalidation |
|
Invalidates iterators pointing to the erased element and iterators pointing to the elements in front of |
|
the erased element (towards the beginning). |
|
\par Complexity |
|
Linear (in <code>std::distance(begin(), pos)</code>). |
|
\note This method is symetric to the <code>erase(iterator)</code> method and is more effective than |
|
<code>erase(iterator)</code> if the iterator <code>pos</code> is close to the beginning of the |
|
<code>circular_buffer</code>. (See the <i>Complexity</i>.) |
|
\sa <code>erase(iterator)</code>, <code>erase(iterator, iterator)</code>, |
|
<code>rerase(iterator, iterator)</code>, <code>erase_begin(size_type)</code>, |
|
<code>erase_end(size_type)</code>, <code>clear()</code> |
|
*/ |
|
iterator rerase(iterator pos) { |
|
BOOST_CB_ASSERT(pos.is_valid(this)); // check for uninitialized or invalidated iterator |
|
BOOST_CB_ASSERT(pos.m_it != 0); // check for iterator pointing to end() |
|
pointer prev = pos.m_it; |
|
pointer p = prev; |
|
for (decrement(prev); p != m_first; p = prev, decrement(prev)) |
|
replace(p, *prev); |
|
destroy_item(m_first); |
|
increment(m_first); |
|
--m_size; |
|
#if BOOST_CB_ENABLE_DEBUG |
|
return p == pos.m_it ? begin() : iterator(this, pos.m_it); |
|
#else |
|
return p == pos.m_it ? begin() : pos; |
|
#endif |
|
} |
|
|
|
//! Erase the range <code>[first, last)</code>. |
|
/*! |
|
\pre Valid range <code>[first, last)</code>. |
|
\post The elements from the range <code>[first, last)</code> are removed. (If <code>first == last</code> |
|
nothing is removed.) |
|
\param first The beginning of the range to be removed. |
|
\param last The end of the range to be removed. |
|
\return Iterator to the first element remaining in front of the removed elements or <code>begin()</code> if no |
|
such element exists. |
|
\throws Whatever <code>T::operator = (const T&)</code> throws. |
|
\par Exception Safety |
|
Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything. |
|
\par Iterator Invalidation |
|
Invalidates iterators pointing to the erased elements and iterators pointing to the elements in front of |
|
the erased range (towards the beginning). |
|
\par Complexity |
|
Linear (in <code>std::distance(begin(), last)</code>). |
|
\note This method is symetric to the <code>erase(iterator, iterator)</code> method and is more effective than |
|
<code>erase(iterator, iterator)</code> if <code>std::distance(begin(), first)</code> is lower that |
|
<code>std::distance(last, end())</code>. |
|
\sa <code>erase(iterator)</code>, <code>erase(iterator, iterator)</code>, <code>rerase(iterator)</code>, |
|
<code>erase_begin(size_type)</code>, <code>erase_end(size_type)</code>, <code>clear()</code> |
|
*/ |
|
iterator rerase(iterator first, iterator last) { |
|
BOOST_CB_ASSERT(first.is_valid(this)); // check for uninitialized or invalidated iterator |
|
BOOST_CB_ASSERT(last.is_valid(this)); // check for uninitialized or invalidated iterator |
|
BOOST_CB_ASSERT(first <= last); // check for wrong range |
|
if (first == last) |
|
return first; |
|
pointer p = map_pointer(last.m_it); |
|
last.m_it = p; |
|
while (first.m_it != m_first) { |
|
decrement(first.m_it); |
|
decrement(p); |
|
replace(p, *first.m_it); |
|
} |
|
do { |
|
destroy_item(m_first); |
|
increment(m_first); |
|
--m_size; |
|
} while(m_first != p); |
|
if (m_first == last.m_it) |
|
return begin(); |
|
decrement(last.m_it); |
|
return iterator(this, last.m_it); |
|
} |
|
|
|
//! Remove first <code>n</code> elements (with constant complexity for scalar types). |
|
/*! |
|
\pre <code>n \<= size()</code> |
|
\post The <code>n</code> elements at the beginning of the <code>circular_buffer</code> will be removed. |
|
\param n The number of elements to be removed. |
|
\throws Whatever <code>T::operator = (const T&)</code> throws. (Does not throw anything in case of scalars.) |
|
\par Exception Safety |
|
Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything. (I.e. no throw in |
|
case of scalars.) |
|
\par Iterator Invalidation |
|
Invalidates iterators pointing to the first <code>n</code> erased elements. |
|
\par Complexity |
|
Constant (in <code>n</code>) for scalar types; linear for other types. |
|
\note This method has been specially designed for types which do not require an explicit destructruction (e.g. |
|
integer, float or a pointer). For these scalar types a call to a destructor is not required which makes |
|
it possible to implement the "erase from beginning" operation with a constant complexity. For non-sacalar |
|
types the complexity is linear (hence the explicit destruction is needed) and the implementation is |
|
actually equivalent to |
|
<code>\link circular_buffer::rerase(iterator, iterator) rerase(begin(), begin() + n)\endlink</code>. |
|
\sa <code>erase(iterator)</code>, <code>erase(iterator, iterator)</code>, |
|
<code>rerase(iterator)</code>, <code>rerase(iterator, iterator)</code>, |
|
<code>erase_end(size_type)</code>, <code>clear()</code> |
|
*/ |
|
void erase_begin(size_type n) { |
|
BOOST_CB_ASSERT(n <= size()); // check for n greater than size |
|
#if BOOST_CB_ENABLE_DEBUG |
|
erase_begin(n, false_type()); |
|
#else |
|
erase_begin(n, is_scalar<value_type>()); |
|
#endif |
|
} |
|
|
|
//! Remove last <code>n</code> elements (with constant complexity for scalar types). |
|
/*! |
|
\pre <code>n \<= size()</code> |
|
\post The <code>n</code> elements at the end of the <code>circular_buffer</code> will be removed. |
|
\param n The number of elements to be removed. |
|
\throws Whatever <code>T::operator = (const T&)</code> throws. (Does not throw anything in case of scalars.) |
|
\par Exception Safety |
|
Basic; no-throw if the operation in the <i>Throws</i> section does not throw anything. (I.e. no throw in |
|
case of scalars.) |
|
\par Iterator Invalidation |
|
Invalidates iterators pointing to the last <code>n</code> erased elements. |
|
\par Complexity |
|
Constant (in <code>n</code>) for scalar types; linear for other types. |
|
\note This method has been specially designed for types which do not require an explicit destructruction (e.g. |
|
integer, float or a pointer). For these scalar types a call to a destructor is not required which makes |
|
it possible to implement the "erase from end" operation with a constant complexity. For non-sacalar |
|
types the complexity is linear (hence the explicit destruction is needed) and the implementation is |
|
actually equivalent to |
|
<code>\link circular_buffer::erase(iterator, iterator) erase(end() - n, end())\endlink</code>. |
|
\sa <code>erase(iterator)</code>, <code>erase(iterator, iterator)</code>, |
|
<code>rerase(iterator)</code>, <code>rerase(iterator, iterator)</code>, |
|
<code>erase_begin(size_type)</code>, <code>clear()</code> |
|
*/ |
|
void erase_end(size_type n) { |
|
BOOST_CB_ASSERT(n <= size()); // check for n greater than size |
|
#if BOOST_CB_ENABLE_DEBUG |
|
erase_end(n, false_type()); |
|
#else |
|
erase_end(n, is_scalar<value_type>()); |
|
#endif |
|
} |
|
|
|
//! Remove all stored elements from the <code>circular_buffer</code>. |
|
/*! |
|
\post <code>size() == 0</code> |
|
\throws Nothing. |
|
\par Exception Safety |
|
No-throw. |
|
\par Iterator Invalidation |
|
Invalidates all iterators pointing to the <code>circular_buffer</code> (except iterators equal to |
|
<code>end()</code>). |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>) for scalar types; linear for other types. |
|
\sa <code>~circular_buffer()</code>, <code>erase(iterator)</code>, <code>erase(iterator, iterator)</code>, |
|
<code>rerase(iterator)</code>, <code>rerase(iterator, iterator)</code>, |
|
<code>erase_begin(size_type)</code>, <code>erase_end(size_type)</code> |
|
*/ |
|
void clear() { |
|
destroy_content(); |
|
m_size = 0; |
|
} |
|
|
|
private: |
|
// Helper methods |
|
|
|
//! Check if the <code>index</code> is valid. |
|
void check_position(size_type index) const { |
|
if (index >= size()) |
|
throw_exception(std::out_of_range("circular_buffer")); |
|
} |
|
|
|
//! Increment the pointer. |
|
template <class Pointer> |
|
void increment(Pointer& p) const { |
|
if (++p == m_end) |
|
p = m_buff; |
|
} |
|
|
|
//! Decrement the pointer. |
|
template <class Pointer> |
|
void decrement(Pointer& p) const { |
|
if (p == m_buff) |
|
p = m_end; |
|
--p; |
|
} |
|
|
|
//! Add <code>n</code> to the pointer. |
|
template <class Pointer> |
|
Pointer add(Pointer p, difference_type n) const { |
|
return p + (n < (m_end - p) ? n : n - capacity()); |
|
} |
|
|
|
//! Subtract <code>n</code> from the pointer. |
|
template <class Pointer> |
|
Pointer sub(Pointer p, difference_type n) const { |
|
return p - (n > (p - m_buff) ? n - capacity() : n); |
|
} |
|
|
|
//! Map the null pointer to virtual end of circular buffer. |
|
pointer map_pointer(pointer p) const { return p == 0 ? m_last : p; } |
|
|
|
//! Allocate memory. |
|
pointer allocate(size_type n) { |
|
if (n > max_size()) |
|
throw_exception(std::length_error("circular_buffer")); |
|
#if BOOST_CB_ENABLE_DEBUG |
|
pointer p = (n == 0) ? 0 : m_alloc.allocate(n, 0); |
|
std::memset(p, cb_details::UNINITIALIZED, sizeof(value_type) * n); |
|
return p; |
|
#else |
|
return (n == 0) ? 0 : m_alloc.allocate(n, 0); |
|
#endif |
|
} |
|
|
|
//! Deallocate memory. |
|
void deallocate(pointer p, size_type n) { |
|
if (p != 0) |
|
m_alloc.deallocate(p, n); |
|
} |
|
|
|
//! Does the pointer point to the uninitialized memory? |
|
bool is_uninitialized(const_pointer p) const { |
|
return p >= m_last && (m_first < m_last || p < m_first); |
|
} |
|
|
|
//! Replace an element. |
|
void replace(pointer pos, param_value_type item) { |
|
*pos = item; |
|
#if BOOST_CB_ENABLE_DEBUG |
|
invalidate_iterators(iterator(this, pos)); |
|
#endif |
|
} |
|
|
|
//! Construct or replace an element. |
|
/*! |
|
<code>construct</code> has to be set to <code>true</code> if and only if |
|
<code>pos</code> points to an uninitialized memory. |
|
*/ |
|
void construct_or_replace(bool construct, pointer pos, param_value_type item) { |
|
if (construct) |
|
m_alloc.construct(pos, item); |
|
else |
|
replace(pos, item); |
|
} |
|
|
|
//! Destroy an item. |
|
void destroy_item(pointer p) { |
|
m_alloc.destroy(p); |
|
#if BOOST_CB_ENABLE_DEBUG |
|
invalidate_iterators(iterator(this, p)); |
|
std::memset(p, cb_details::UNINITIALIZED, sizeof(value_type)); |
|
#endif |
|
} |
|
|
|
//! Destroy an item only if it has been constructed. |
|
void destroy_if_constructed(pointer pos) { |
|
if (is_uninitialized(pos)) |
|
destroy_item(pos); |
|
} |
|
|
|
//! Destroy the whole content of the circular buffer. |
|
void destroy_content() { |
|
#if BOOST_CB_ENABLE_DEBUG |
|
destroy_content(false_type()); |
|
#else |
|
destroy_content(is_scalar<value_type>()); |
|
#endif |
|
} |
|
|
|
//! Specialized destroy_content method. |
|
void destroy_content(const true_type&) { |
|
m_first = add(m_first, size()); |
|
} |
|
|
|
//! Specialized destroy_content method. |
|
void destroy_content(const false_type&) { |
|
for (size_type ii = 0; ii < size(); ++ii, increment(m_first)) |
|
destroy_item(m_first); |
|
} |
|
|
|
//! Destroy content and free allocated memory. |
|
void destroy() { |
|
destroy_content(); |
|
deallocate(m_buff, capacity()); |
|
#if BOOST_CB_ENABLE_DEBUG |
|
m_buff = 0; |
|
m_first = 0; |
|
m_last = 0; |
|
m_end = 0; |
|
#endif |
|
} |
|
|
|
//! Initialize the internal buffer. |
|
void initialize_buffer(capacity_type buffer_capacity) { |
|
m_buff = allocate(buffer_capacity); |
|
m_end = m_buff + buffer_capacity; |
|
} |
|
|
|
//! Initialize the internal buffer. |
|
void initialize_buffer(capacity_type buffer_capacity, param_value_type item) { |
|
initialize_buffer(buffer_capacity); |
|
BOOST_TRY { |
|
cb_details::uninitialized_fill_n_with_alloc(m_buff, size(), item, m_alloc); |
|
} BOOST_CATCH(...) { |
|
deallocate(m_buff, size()); |
|
BOOST_RETHROW |
|
} |
|
BOOST_CATCH_END |
|
} |
|
|
|
//! Specialized initialize method. |
|
template <class IntegralType> |
|
void initialize(IntegralType n, IntegralType item, const true_type&) { |
|
m_size = static_cast<size_type>(n); |
|
initialize_buffer(size(), item); |
|
m_first = m_last = m_buff; |
|
} |
|
|
|
//! Specialized initialize method. |
|
template <class Iterator> |
|
void initialize(Iterator first, Iterator last, const false_type&) { |
|
BOOST_CB_IS_CONVERTIBLE(Iterator, value_type); // check for invalid iterator type |
|
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581)) |
|
initialize(first, last, BOOST_ITERATOR_CATEGORY<Iterator>::type()); |
|
#else |
|
initialize(first, last, BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<Iterator>::type()); |
|
#endif |
|
} |
|
|
|
//! Specialized initialize method. |
|
template <class InputIterator> |
|
void initialize(InputIterator first, InputIterator last, const std::input_iterator_tag&) { |
|
BOOST_CB_ASSERT_TEMPLATED_ITERATOR_CONSTRUCTORS // check if the STL provides templated iterator constructors |
|
// for containers |
|
std::deque<value_type, allocator_type> tmp(first, last, m_alloc); |
|
size_type distance = tmp.size(); |
|
initialize(distance, tmp.begin(), tmp.end(), distance); |
|
} |
|
|
|
//! Specialized initialize method. |
|
template <class ForwardIterator> |
|
void initialize(ForwardIterator first, ForwardIterator last, const std::forward_iterator_tag&) { |
|
BOOST_CB_ASSERT(std::distance(first, last) >= 0); // check for wrong range |
|
size_type distance = std::distance(first, last); |
|
initialize(distance, first, last, distance); |
|
} |
|
|
|
//! Specialized initialize method. |
|
template <class IntegralType> |
|
void initialize(capacity_type buffer_capacity, IntegralType n, IntegralType item, const true_type&) { |
|
BOOST_CB_ASSERT(buffer_capacity >= static_cast<size_type>(n)); // check for capacity lower than n |
|
m_size = static_cast<size_type>(n); |
|
initialize_buffer(buffer_capacity, item); |
|
m_first = m_buff; |
|
m_last = buffer_capacity == size() ? m_buff : m_buff + size(); |
|
} |
|
|
|
//! Specialized initialize method. |
|
template <class Iterator> |
|
void initialize(capacity_type buffer_capacity, Iterator first, Iterator last, const false_type&) { |
|
BOOST_CB_IS_CONVERTIBLE(Iterator, value_type); // check for invalid iterator type |
|
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581)) |
|
initialize(buffer_capacity, first, last, BOOST_ITERATOR_CATEGORY<Iterator>::type()); |
|
#else |
|
initialize(buffer_capacity, first, last, BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<Iterator>::type()); |
|
#endif |
|
} |
|
|
|
//! Specialized initialize method. |
|
template <class InputIterator> |
|
void initialize(capacity_type buffer_capacity, |
|
InputIterator first, |
|
InputIterator last, |
|
const std::input_iterator_tag&) { |
|
initialize_buffer(buffer_capacity); |
|
m_first = m_last = m_buff; |
|
m_size = 0; |
|
if (buffer_capacity == 0) |
|
return; |
|
while (first != last && !full()) { |
|
m_alloc.construct(m_last, *first++); |
|
increment(m_last); |
|
++m_size; |
|
} |
|
while (first != last) { |
|
replace(m_last, *first++); |
|
increment(m_last); |
|
m_first = m_last; |
|
} |
|
} |
|
|
|
//! Specialized initialize method. |
|
template <class ForwardIterator> |
|
void initialize(capacity_type buffer_capacity, |
|
ForwardIterator first, |
|
ForwardIterator last, |
|
const std::forward_iterator_tag&) { |
|
BOOST_CB_ASSERT(std::distance(first, last) >= 0); // check for wrong range |
|
initialize(buffer_capacity, first, last, std::distance(first, last)); |
|
} |
|
|
|
//! Initialize the circular buffer. |
|
template <class ForwardIterator> |
|
void initialize(capacity_type buffer_capacity, |
|
ForwardIterator first, |
|
ForwardIterator last, |
|
size_type distance) { |
|
initialize_buffer(buffer_capacity); |
|
m_first = m_buff; |
|
if (distance > buffer_capacity) { |
|
std::advance(first, distance - buffer_capacity); |
|
m_size = buffer_capacity; |
|
} else { |
|
m_size = distance; |
|
} |
|
BOOST_TRY { |
|
m_last = cb_details::uninitialized_copy_with_alloc(first, last, m_buff, m_alloc); |
|
} BOOST_CATCH(...) { |
|
deallocate(m_buff, buffer_capacity); |
|
BOOST_RETHROW |
|
} |
|
BOOST_CATCH_END |
|
if (m_last == m_end) |
|
m_last = m_buff; |
|
} |
|
|
|
//! Reset the circular buffer. |
|
void reset(pointer buff, pointer last, capacity_type new_capacity) { |
|
destroy(); |
|
m_size = last - buff; |
|
m_first = m_buff = buff; |
|
m_end = m_buff + new_capacity; |
|
m_last = last == m_end ? m_buff : last; |
|
} |
|
|
|
//! Specialized method for swapping the allocator. |
|
void swap_allocator(circular_buffer<T, Alloc>& cb, const true_type&) { |
|
// Swap is not needed because allocators have no state. |
|
} |
|
|
|
//! Specialized method for swapping the allocator. |
|
void swap_allocator(circular_buffer<T, Alloc>& cb, const false_type&) { |
|
std::swap(m_alloc, cb.m_alloc); |
|
} |
|
|
|
//! Specialized assign method. |
|
template <class IntegralType> |
|
void assign(IntegralType n, IntegralType item, const true_type&) { |
|
assign(static_cast<size_type>(n), static_cast<value_type>(item)); |
|
} |
|
|
|
//! Specialized assign method. |
|
template <class Iterator> |
|
void assign(Iterator first, Iterator last, const false_type&) { |
|
BOOST_CB_IS_CONVERTIBLE(Iterator, value_type); // check for invalid iterator type |
|
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581)) |
|
assign(first, last, BOOST_ITERATOR_CATEGORY<Iterator>::type()); |
|
#else |
|
assign(first, last, BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<Iterator>::type()); |
|
#endif |
|
} |
|
|
|
//! Specialized assign method. |
|
template <class InputIterator> |
|
void assign(InputIterator first, InputIterator last, const std::input_iterator_tag&) { |
|
BOOST_CB_ASSERT_TEMPLATED_ITERATOR_CONSTRUCTORS // check if the STL provides templated iterator constructors |
|
// for containers |
|
std::deque<value_type, allocator_type> tmp(first, last, m_alloc); |
|
size_type distance = tmp.size(); |
|
assign_n(distance, distance, |
|
cb_details::assign_range<BOOST_DEDUCED_TYPENAME std::deque<value_type, allocator_type>::iterator, |
|
allocator_type>(tmp.begin(), tmp.end(), m_alloc)); |
|
} |
|
|
|
//! Specialized assign method. |
|
template <class ForwardIterator> |
|
void assign(ForwardIterator first, ForwardIterator last, const std::forward_iterator_tag&) { |
|
BOOST_CB_ASSERT(std::distance(first, last) >= 0); // check for wrong range |
|
size_type distance = std::distance(first, last); |
|
assign_n(distance, distance, cb_details::assign_range<ForwardIterator, allocator_type>(first, last, m_alloc)); |
|
} |
|
|
|
//! Specialized assign method. |
|
template <class IntegralType> |
|
void assign(capacity_type new_capacity, IntegralType n, IntegralType item, const true_type&) { |
|
assign(new_capacity, static_cast<size_type>(n), static_cast<value_type>(item)); |
|
} |
|
|
|
//! Specialized assign method. |
|
template <class Iterator> |
|
void assign(capacity_type new_capacity, Iterator first, Iterator last, const false_type&) { |
|
BOOST_CB_IS_CONVERTIBLE(Iterator, value_type); // check for invalid iterator type |
|
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581)) |
|
assign(new_capacity, first, last, BOOST_ITERATOR_CATEGORY<Iterator>::type()); |
|
#else |
|
assign(new_capacity, first, last, BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<Iterator>::type()); |
|
#endif |
|
} |
|
|
|
//! Specialized assign method. |
|
template <class InputIterator> |
|
void assign(capacity_type new_capacity, InputIterator first, InputIterator last, const std::input_iterator_tag&) { |
|
if (new_capacity == capacity()) { |
|
clear(); |
|
insert(begin(), first, last); |
|
} else { |
|
#if BOOST_WORKAROUND(BOOST_MSVC, < 1300) |
|
circular_buffer<value_type, allocator_type> tmp(new_capacity, m_alloc); |
|
tmp.insert(begin(), first, last); |
|
#else |
|
circular_buffer<value_type, allocator_type> tmp(new_capacity, first, last, m_alloc); |
|
#endif |
|
tmp.swap(*this); |
|
} |
|
} |
|
|
|
//! Specialized assign method. |
|
template <class ForwardIterator> |
|
void assign(capacity_type new_capacity, ForwardIterator first, ForwardIterator last, |
|
const std::forward_iterator_tag&) { |
|
BOOST_CB_ASSERT(std::distance(first, last) >= 0); // check for wrong range |
|
size_type distance = std::distance(first, last); |
|
if (distance > new_capacity) { |
|
std::advance(first, distance - new_capacity); |
|
distance = new_capacity; |
|
} |
|
assign_n(new_capacity, distance, |
|
cb_details::assign_range<ForwardIterator, allocator_type>(first, last, m_alloc)); |
|
} |
|
|
|
//! Helper assign method. |
|
template <class Functor> |
|
void assign_n(capacity_type new_capacity, size_type n, const Functor& fnc) { |
|
if (new_capacity == capacity()) { |
|
destroy_content(); |
|
BOOST_TRY { |
|
fnc(m_buff); |
|
} BOOST_CATCH(...) { |
|
m_size = 0; |
|
BOOST_RETHROW |
|
} |
|
BOOST_CATCH_END |
|
} else { |
|
pointer buff = allocate(new_capacity); |
|
BOOST_TRY { |
|
fnc(buff); |
|
} BOOST_CATCH(...) { |
|
deallocate(buff, new_capacity); |
|
BOOST_RETHROW |
|
} |
|
BOOST_CATCH_END |
|
destroy(); |
|
m_buff = buff; |
|
m_end = m_buff + new_capacity; |
|
} |
|
m_size = n; |
|
m_first = m_buff; |
|
m_last = add(m_buff, size()); |
|
} |
|
|
|
//! Helper insert method. |
|
iterator insert_item(const iterator& pos, param_value_type item) { |
|
pointer p = pos.m_it; |
|
if (p == 0) { |
|
construct_or_replace(!full(), m_last, item); |
|
p = m_last; |
|
} else { |
|
pointer src = m_last; |
|
pointer dest = m_last; |
|
bool construct = !full(); |
|
BOOST_TRY { |
|
while (src != p) { |
|
decrement(src); |
|
construct_or_replace(construct, dest, *src); |
|
decrement(dest); |
|
construct = false; |
|
} |
|
replace(p, item); |
|
} BOOST_CATCH(...) { |
|
if (!construct && !full()) { |
|
increment(m_last); |
|
++m_size; |
|
} |
|
BOOST_RETHROW |
|
} |
|
BOOST_CATCH_END |
|
} |
|
increment(m_last); |
|
if (full()) |
|
m_first = m_last; |
|
else |
|
++m_size; |
|
return iterator(this, p); |
|
} |
|
|
|
//! Specialized insert method. |
|
template <class IntegralType> |
|
void insert(const iterator& pos, IntegralType n, IntegralType item, const true_type&) { |
|
insert(pos, static_cast<size_type>(n), static_cast<value_type>(item)); |
|
} |
|
|
|
//! Specialized insert method. |
|
template <class Iterator> |
|
void insert(const iterator& pos, Iterator first, Iterator last, const false_type&) { |
|
BOOST_CB_IS_CONVERTIBLE(Iterator, value_type); // check for invalid iterator type |
|
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581)) |
|
insert(pos, first, last, BOOST_ITERATOR_CATEGORY<Iterator>::type()); |
|
#else |
|
insert(pos, first, last, BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<Iterator>::type()); |
|
#endif |
|
} |
|
|
|
//! Specialized insert method. |
|
template <class InputIterator> |
|
void insert(iterator pos, InputIterator first, InputIterator last, const std::input_iterator_tag&) { |
|
if (!full() || pos != begin()) { |
|
for (;first != last; ++pos) |
|
pos = insert_item(pos, *first++); |
|
} |
|
} |
|
|
|
//! Specialized insert method. |
|
template <class ForwardIterator> |
|
void insert(const iterator& pos, ForwardIterator first, ForwardIterator last, const std::forward_iterator_tag&) { |
|
BOOST_CB_ASSERT(std::distance(first, last) >= 0); // check for wrong range |
|
size_type n = std::distance(first, last); |
|
if (n == 0) |
|
return; |
|
size_type copy = capacity() - (end() - pos); |
|
if (copy == 0) |
|
return; |
|
if (n > copy) { |
|
std::advance(first, n - copy); |
|
n = copy; |
|
} |
|
insert_n(pos, n, cb_details::iterator_wrapper<ForwardIterator>(first)); |
|
} |
|
|
|
//! Helper insert method. |
|
template <class Wrapper> |
|
void insert_n(const iterator& pos, size_type n, const Wrapper& wrapper) { |
|
size_type construct = reserve(); |
|
if (construct > n) |
|
construct = n; |
|
if (pos.m_it == 0) { |
|
size_type ii = 0; |
|
pointer p = m_last; |
|
BOOST_TRY { |
|
for (; ii < construct; ++ii, increment(p)) |
|
m_alloc.construct(p, *wrapper()); |
|
for (;ii < n; ++ii, increment(p)) |
|
replace(p, *wrapper()); |
|
} BOOST_CATCH(...) { |
|
size_type constructed = (std::min)(ii, construct); |
|
m_last = add(m_last, constructed); |
|
m_size += constructed; |
|
BOOST_RETHROW |
|
} |
|
BOOST_CATCH_END |
|
} else { |
|
pointer src = m_last; |
|
pointer dest = add(m_last, n - 1); |
|
pointer p = pos.m_it; |
|
size_type ii = 0; |
|
BOOST_TRY { |
|
while (src != pos.m_it) { |
|
decrement(src); |
|
construct_or_replace(is_uninitialized(dest), dest, *src); |
|
decrement(dest); |
|
} |
|
for (; ii < n; ++ii, increment(p)) |
|
construct_or_replace(is_uninitialized(p), p, *wrapper()); |
|
} BOOST_CATCH(...) { |
|
for (p = add(m_last, n - 1); p != dest; decrement(p)) |
|
destroy_if_constructed(p); |
|
for (n = 0, p = pos.m_it; n < ii; ++n, increment(p)) |
|
destroy_if_constructed(p); |
|
BOOST_RETHROW |
|
} |
|
BOOST_CATCH_END |
|
} |
|
m_last = add(m_last, n); |
|
m_first = add(m_first, n - construct); |
|
m_size += construct; |
|
} |
|
|
|
//! Specialized rinsert method. |
|
template <class IntegralType> |
|
void rinsert(const iterator& pos, IntegralType n, IntegralType item, const true_type&) { |
|
rinsert(pos, static_cast<size_type>(n), static_cast<value_type>(item)); |
|
} |
|
|
|
//! Specialized rinsert method. |
|
template <class Iterator> |
|
void rinsert(const iterator& pos, Iterator first, Iterator last, const false_type&) { |
|
BOOST_CB_IS_CONVERTIBLE(Iterator, value_type); // check for invalid iterator type |
|
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581)) |
|
rinsert(pos, first, last, BOOST_ITERATOR_CATEGORY<Iterator>::type()); |
|
#else |
|
rinsert(pos, first, last, BOOST_DEDUCED_TYPENAME BOOST_ITERATOR_CATEGORY<Iterator>::type()); |
|
#endif |
|
} |
|
|
|
//! Specialized insert method. |
|
template <class InputIterator> |
|
void rinsert(iterator pos, InputIterator first, InputIterator last, const std::input_iterator_tag&) { |
|
if (!full() || pos.m_it != 0) { |
|
for (;first != last; ++pos) { |
|
pos = rinsert(pos, *first++); |
|
if (pos.m_it == 0) |
|
break; |
|
} |
|
} |
|
} |
|
|
|
//! Specialized rinsert method. |
|
template <class ForwardIterator> |
|
void rinsert(const iterator& pos, ForwardIterator first, ForwardIterator last, const std::forward_iterator_tag&) { |
|
BOOST_CB_ASSERT(std::distance(first, last) >= 0); // check for wrong range |
|
rinsert_n(pos, std::distance(first, last), cb_details::iterator_wrapper<ForwardIterator>(first)); |
|
} |
|
|
|
//! Helper rinsert method. |
|
template <class Wrapper> |
|
void rinsert_n(const iterator& pos, size_type n, const Wrapper& wrapper) { |
|
if (n == 0) |
|
return; |
|
iterator b = begin(); |
|
size_type copy = capacity() - (pos - b); |
|
if (copy == 0) |
|
return; |
|
if (n > copy) |
|
n = copy; |
|
size_type construct = reserve(); |
|
if (construct > n) |
|
construct = n; |
|
if (pos == b) { |
|
pointer p = sub(m_first, n); |
|
size_type ii = n; |
|
BOOST_TRY { |
|
for (;ii > construct; --ii, increment(p)) |
|
replace(p, *wrapper()); |
|
for (; ii > 0; --ii, increment(p)) |
|
m_alloc.construct(p, *wrapper()); |
|
} BOOST_CATCH(...) { |
|
size_type constructed = ii < construct ? construct - ii : 0; |
|
m_last = add(m_last, constructed); |
|
m_size += constructed; |
|
BOOST_RETHROW |
|
} |
|
BOOST_CATCH_END |
|
} else { |
|
pointer src = m_first; |
|
pointer dest = sub(m_first, n); |
|
pointer p = map_pointer(pos.m_it); |
|
BOOST_TRY { |
|
while (src != p) { |
|
construct_or_replace(is_uninitialized(dest), dest, *src); |
|
increment(src); |
|
increment(dest); |
|
} |
|
for (size_type ii = 0; ii < n; ++ii, increment(dest)) |
|
construct_or_replace(is_uninitialized(dest), dest, *wrapper()); |
|
} BOOST_CATCH(...) { |
|
for (src = sub(m_first, n); src != dest; increment(src)) |
|
destroy_if_constructed(src); |
|
BOOST_RETHROW |
|
} |
|
BOOST_CATCH_END |
|
} |
|
m_first = sub(m_first, n); |
|
m_last = sub(m_last, n - construct); |
|
m_size += construct; |
|
} |
|
|
|
//! Specialized erase_begin method. |
|
void erase_begin(size_type n, const true_type&) { |
|
m_first = add(m_first, n); |
|
m_size -= n; |
|
} |
|
|
|
//! Specialized erase_begin method. |
|
void erase_begin(size_type n, const false_type&) { |
|
iterator b = begin(); |
|
rerase(b, b + n); |
|
} |
|
|
|
//! Specialized erase_end method. |
|
void erase_end(size_type n, const true_type&) { |
|
m_last = sub(m_last, n); |
|
m_size -= n; |
|
} |
|
|
|
//! Specialized erase_end method. |
|
void erase_end(size_type n, const false_type&) { |
|
iterator e = end(); |
|
erase(e - n, e); |
|
} |
|
}; |
|
|
|
// Non-member functions |
|
|
|
//! Compare two <code>circular_buffer</code>s element-by-element to determine if they are equal. |
|
/*! |
|
\param lhs The <code>circular_buffer</code> to compare. |
|
\param rhs The <code>circular_buffer</code> to compare. |
|
\return <code>lhs.\link circular_buffer::size() size()\endlink == rhs.\link circular_buffer::size() size()\endlink |
|
&& <a href="http://www.sgi.com/tech/stl/equal.html">std::equal</a>(lhs.\link circular_buffer::begin() |
|
begin()\endlink, lhs.\link circular_buffer::end() end()\endlink, |
|
rhs.\link circular_buffer::begin() begin()\endlink)</code> |
|
\throws Nothing. |
|
\par Complexity |
|
Linear (in the size of the <code>circular_buffer</code>s). |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
*/ |
|
template <class T, class Alloc> |
|
inline bool operator == (const circular_buffer<T, Alloc>& lhs, const circular_buffer<T, Alloc>& rhs) { |
|
return lhs.size() == rhs.size() && std::equal(lhs.begin(), lhs.end(), rhs.begin()); |
|
} |
|
|
|
/*! |
|
\brief Compare two <code>circular_buffer</code>s element-by-element to determine if the left one is lesser than the |
|
right one. |
|
\param lhs The <code>circular_buffer</code> to compare. |
|
\param rhs The <code>circular_buffer</code> to compare. |
|
\return <code><a href="http://www.sgi.com/tech/stl/lexicographical_compare.html"> |
|
std::lexicographical_compare</a>(lhs.\link circular_buffer::begin() begin()\endlink, |
|
lhs.\link circular_buffer::end() end()\endlink, rhs.\link circular_buffer::begin() begin()\endlink, |
|
rhs.\link circular_buffer::end() end()\endlink)</code> |
|
\throws Nothing. |
|
\par Complexity |
|
Linear (in the size of the <code>circular_buffer</code>s). |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
*/ |
|
template <class T, class Alloc> |
|
inline bool operator < (const circular_buffer<T, Alloc>& lhs, const circular_buffer<T, Alloc>& rhs) { |
|
return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); |
|
} |
|
|
|
#if !defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING) || defined(BOOST_MSVC) |
|
|
|
//! Compare two <code>circular_buffer</code>s element-by-element to determine if they are non-equal. |
|
/*! |
|
\param lhs The <code>circular_buffer</code> to compare. |
|
\param rhs The <code>circular_buffer</code> to compare. |
|
\return <code>!(lhs == rhs)</code> |
|
\throws Nothing. |
|
\par Complexity |
|
Linear (in the size of the <code>circular_buffer</code>s). |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\sa <code>operator==(const circular_buffer<T,Alloc>&, const circular_buffer<T,Alloc>&)</code> |
|
*/ |
|
template <class T, class Alloc> |
|
inline bool operator != (const circular_buffer<T, Alloc>& lhs, const circular_buffer<T, Alloc>& rhs) { |
|
return !(lhs == rhs); |
|
} |
|
|
|
/*! |
|
\brief Compare two <code>circular_buffer</code>s element-by-element to determine if the left one is greater than |
|
the right one. |
|
\param lhs The <code>circular_buffer</code> to compare. |
|
\param rhs The <code>circular_buffer</code> to compare. |
|
\return <code>rhs \< lhs</code> |
|
\throws Nothing. |
|
\par Complexity |
|
Linear (in the size of the <code>circular_buffer</code>s). |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\sa <code>operator<(const circular_buffer<T,Alloc>&, const circular_buffer<T,Alloc>&)</code> |
|
*/ |
|
template <class T, class Alloc> |
|
inline bool operator > (const circular_buffer<T, Alloc>& lhs, const circular_buffer<T, Alloc>& rhs) { |
|
return rhs < lhs; |
|
} |
|
|
|
/*! |
|
\brief Compare two <code>circular_buffer</code>s element-by-element to determine if the left one is lesser or equal |
|
to the right one. |
|
\param lhs The <code>circular_buffer</code> to compare. |
|
\param rhs The <code>circular_buffer</code> to compare. |
|
\return <code>!(rhs \< lhs)</code> |
|
\throws Nothing. |
|
\par Complexity |
|
Linear (in the size of the <code>circular_buffer</code>s). |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\sa <code>operator<(const circular_buffer<T,Alloc>&, const circular_buffer<T,Alloc>&)</code> |
|
*/ |
|
template <class T, class Alloc> |
|
inline bool operator <= (const circular_buffer<T, Alloc>& lhs, const circular_buffer<T, Alloc>& rhs) { |
|
return !(rhs < lhs); |
|
} |
|
|
|
/*! |
|
\brief Compare two <code>circular_buffer</code>s element-by-element to determine if the left one is greater or |
|
equal to the right one. |
|
\param lhs The <code>circular_buffer</code> to compare. |
|
\param rhs The <code>circular_buffer</code> to compare. |
|
\return <code>!(lhs < rhs)</code> |
|
\throws Nothing. |
|
\par Complexity |
|
Linear (in the size of the <code>circular_buffer</code>s). |
|
\par Iterator Invalidation |
|
Does not invalidate any iterators. |
|
\sa <code>operator<(const circular_buffer<T,Alloc>&, const circular_buffer<T,Alloc>&)</code> |
|
*/ |
|
template <class T, class Alloc> |
|
inline bool operator >= (const circular_buffer<T, Alloc>& lhs, const circular_buffer<T, Alloc>& rhs) { |
|
return !(lhs < rhs); |
|
} |
|
|
|
//! Swap the contents of two <code>circular_buffer</code>s. |
|
/*! |
|
\post <code>lhs</code> contains elements of <code>rhs</code> and vice versa. |
|
\param lhs The <code>circular_buffer</code> whose content will be swapped with <code>rhs</code>. |
|
\param rhs The <code>circular_buffer</code> whose content will be swapped with <code>lhs</code>. |
|
\throws Nothing. |
|
\par Complexity |
|
Constant (in the size of the <code>circular_buffer</code>s). |
|
\par Iterator Invalidation |
|
Invalidates all iterators of both <code>circular_buffer</code>s. (On the other hand the iterators still |
|
point to the same elements but within another container. If you want to rely on this feature you have to |
|
turn the <a href="#debug">Debug Support</a> off otherwise an assertion will report an error if such |
|
invalidated iterator is used.) |
|
\sa <code>\link circular_buffer::swap(circular_buffer<T, Alloc>&) swap(circular_buffer<T, Alloc>&)\endlink</code> |
|
*/ |
|
template <class T, class Alloc> |
|
inline void swap(circular_buffer<T, Alloc>& lhs, circular_buffer<T, Alloc>& rhs) { |
|
lhs.swap(rhs); |
|
} |
|
|
|
#endif // #if !defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING) || defined(BOOST_MSVC) |
|
|
|
} // namespace boost |
|
|
|
#endif // #if !defined(BOOST_CIRCULAR_BUFFER_BASE_HPP)
|
|
|