You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
351 lines
8.9 KiB
351 lines
8.9 KiB
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
// OpenGL Mathematics Copyright (c) 2005 - 2010 G-Truc Creation (www.g-truc.net) |
|
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
// Created : 2008-08-31 |
|
// Updated : 2008-08-31 |
|
// Licence : This source is under MIT License |
|
// File : test/core/func_exponential.cpp |
|
/////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
#include "../precompiled.hpp" |
|
#include <glm/core/func_exponential.hpp> |
|
|
|
namespace glm{ |
|
namespace test{ |
|
|
|
static const float epsilon = 0.00001f; |
|
|
|
bool test_pow_1() |
|
{ |
|
float power = glm::pow(2.f, 2.f); |
|
|
|
if(power <= 4.f + epsilon && power >= 4.f - epsilon) |
|
return true; |
|
return false; |
|
} |
|
|
|
bool test_pow_2() |
|
{ |
|
glm::vec2 power = glm::pow(glm::vec2(2.f, 2.f), glm::vec2(2.f, 2.f)); |
|
|
|
if(power.x <= 4.f + epsilon && power.x >= 4.f - epsilon && |
|
power.y <= 4.f + epsilon && power.y >= 4.f - epsilon) |
|
return true; |
|
return false; |
|
} |
|
|
|
bool test_pow_3() |
|
{ |
|
glm::vec3 power = glm::pow(glm::vec3(2.f, 2.f, 2.f), glm::vec3(2.f, 2.f, 2.f)); |
|
|
|
if(power.x <= 4.f + epsilon && power.x >= 4.f - epsilon && |
|
power.y <= 4.f + epsilon && power.y >= 4.f - epsilon && |
|
power.z <= 4.f + epsilon && power.z >= 4.f - epsilon) |
|
return true; |
|
return false; |
|
} |
|
|
|
bool test_pow_4() |
|
{ |
|
glm::vec4 power = glm::pow(glm::vec4(2.f, 2.f, 2.f, 2.f), glm::vec4(2.f, 2.f, 2.f, 2.f)); |
|
|
|
if(power.x <= 4.f + epsilon && power.x >= 4.f - epsilon && |
|
power.y <= 4.f + epsilon && power.y >= 4.f - epsilon && |
|
power.z <= 4.f + epsilon && power.z >= 4.f - epsilon && |
|
power.w <= 4.f + epsilon && power.w >= 4.f - epsilon) |
|
return true; |
|
return false; |
|
} |
|
|
|
bool test_exp_1() |
|
{ |
|
float result = glm::exp(0.f); |
|
|
|
if(result > 1.f + epsilon || result < 1.f - epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_exp_2() |
|
{ |
|
glm::vec2 result = glm::exp(glm::vec2(0.f, 0.f)); |
|
|
|
if(result.x > 1.f + epsilon || result.x < 1.f - epsilon || |
|
result.y > 1.f + epsilon || result.y < 1.f - epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_exp_3() |
|
{ |
|
glm::vec3 result = glm::exp(glm::vec3(0.f, 0.f, 0.f)); |
|
|
|
if(result.x > 1.f + epsilon || result.x < 1.f - epsilon || |
|
result.y > 1.f + epsilon || result.y < 1.f - epsilon || |
|
result.z > 1.f + epsilon || result.z < 1.f - epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_exp_4() |
|
{ |
|
glm::vec4 result = glm::exp(glm::vec4(0.f, 0.f, 0.f, 0.f)); |
|
|
|
if(result.x > 1.f + epsilon || result.x < 1.f - epsilon || |
|
result.y > 1.f + epsilon || result.y < 1.f - epsilon || |
|
result.z > 1.f + epsilon || result.z < 1.f - epsilon || |
|
result.w > 1.f + epsilon || result.w < 1.f - epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_log_1() |
|
{ |
|
float result = glm::log(1.f); |
|
|
|
if(result > epsilon || result < -epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_log_2() |
|
{ |
|
glm::vec2 result = glm::log(glm::vec2(1.f, 1.f)); |
|
|
|
if(result.x > epsilon || result.x < -epsilon || |
|
result.y > epsilon || result.y < -epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_log_3() |
|
{ |
|
glm::vec3 result = glm::log(glm::vec3(1.f, 1.f, 1.f)); |
|
|
|
if(result.x > epsilon || result.x < -epsilon || |
|
result.y > epsilon || result.y < -epsilon || |
|
result.z > epsilon || result.z < -epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_log_4() |
|
{ |
|
glm::vec4 result = glm::log(glm::vec4(1.f, 1.f, 1.f, 1.f)); |
|
|
|
if(result.x > epsilon || result.x < -epsilon || |
|
result.y > epsilon || result.y < -epsilon || |
|
result.z > epsilon || result.z < -epsilon || |
|
result.w > epsilon || result.w < -epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_exp2_1() |
|
{ |
|
float result = glm::exp2(2.f); |
|
|
|
if(result > 4.f + epsilon || result < 4.f - epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_exp2_2() |
|
{ |
|
glm::vec2 result = glm::exp2(glm::vec2(2.f, 2.f)); |
|
|
|
if(result.x > 4.f + epsilon || result.x < 4.f - epsilon || |
|
result.y > 4.f + epsilon || result.y < 4.f - epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_exp2_3() |
|
{ |
|
glm::vec3 result = glm::exp2(glm::vec3(2.f, 2.f, 2.f)); |
|
|
|
if(result.x > 4.f + epsilon || result.x < 4.f - epsilon || |
|
result.y > 4.f + epsilon || result.y < 4.f - epsilon || |
|
result.z > 4.f + epsilon || result.z < 4.f - epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_exp2_4() |
|
{ |
|
glm::vec4 result = glm::exp2(glm::vec4(2.f, 2.f, 2.f, 2.f)); |
|
|
|
if(result.x > 4.f + epsilon || result.x < 4.f - epsilon || |
|
result.y > 4.f + epsilon || result.y < 4.f - epsilon || |
|
result.z > 4.f + epsilon || result.z < 4.f - epsilon || |
|
result.w > 4.f + epsilon || result.w < 4.f - epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_log2_1() |
|
{ |
|
float result = glm::log2(2.f); |
|
|
|
if(result > 1.f + epsilon || result < 1.f - epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_log2_2() |
|
{ |
|
glm::vec2 result = glm::log2(glm::vec2(2.f, 4.f)); |
|
|
|
if(result.x > 1.f + epsilon || result.x < 1.f - epsilon || |
|
result.y > 2.f + epsilon || result.y < 2.f - epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_log2_3() |
|
{ |
|
glm::vec3 result = glm::log2(glm::vec3(2.f, 4.f, 8.f)); |
|
|
|
if(result.x > 1.f + epsilon || result.x < 1.f - epsilon || |
|
result.y > 2.f + epsilon || result.y < 2.f - epsilon || |
|
result.z > 3.f + epsilon || result.z < 3.f - epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_log2_4() |
|
{ |
|
glm::vec4 result = glm::log2(glm::vec4(2.f, 4.f, 8.f, 16.f)); |
|
|
|
if(result.x > 1.f + epsilon || result.x < 1.f - epsilon || |
|
result.y > 2.f + epsilon || result.y < 2.f - epsilon || |
|
result.z > 3.f + epsilon || result.z < 3.f - epsilon || |
|
result.w > 4.f + epsilon || result.w < 4.f - epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_sqrt_1() |
|
{ |
|
float result = glm::sqrt(4.f); |
|
|
|
if(result < 2.f - epsilon && result > 2.f + epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_sqrt_2() |
|
{ |
|
glm::vec2 result = glm::sqrt(glm::vec2(4.f, 4.f)); |
|
|
|
if(result.x < 2.f - epsilon && result.x > 2.f + epsilon && |
|
result.y < 2.f - epsilon && result.y > 2.f + epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_sqrt_3() |
|
{ |
|
glm::vec3 result = glm::sqrt(glm::vec3(4.f, 4.f, 4.f)); |
|
|
|
if(result.x < 2.f - epsilon && result.x > 2.f + epsilon && |
|
result.y < 2.f - epsilon && result.y > 2.f + epsilon && |
|
result.z < 2.f - epsilon && result.z > 2.f + epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_sqrt_4() |
|
{ |
|
glm::vec4 result = glm::sqrt(glm::vec4(4.f, 4.f, 4.f, 4.f)); |
|
|
|
if(result.x < 2.f - epsilon && result.x > 2.f + epsilon && |
|
result.y < 2.f - epsilon && result.y > 2.f + epsilon && |
|
result.z < 2.f - epsilon && result.z > 2.f + epsilon && |
|
result.w < 2.f - epsilon && result.w > 2.f + epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_inversesqrt_1() |
|
{ |
|
float result = glm::inversesqrt(4.f); |
|
|
|
if(result < 0.5f - epsilon && result > 0.5f + epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_inversesqrt_2() |
|
{ |
|
glm::vec2 result = glm::inversesqrt(glm::vec2(4.f, 4.f)); |
|
|
|
if(result.x < 0.5f - epsilon && result.x > 0.5f + epsilon && |
|
result.y < 0.5f - epsilon && result.y > 0.5f + epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_inversesqrt_3() |
|
{ |
|
glm::vec3 result = glm::inversesqrt(glm::vec3(4.f, 4.f, 4.f)); |
|
|
|
if(result.x < 0.5f - epsilon && result.x > 0.5f + epsilon && |
|
result.y < 0.5f - epsilon && result.y > 0.5f + epsilon && |
|
result.z < 0.5f - epsilon && result.z > 0.5f + epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
bool test_inversesqrt_4() |
|
{ |
|
glm::vec4 result = glm::inversesqrt(glm::vec4(4.f, 4.f, 4.f, 4.f)); |
|
|
|
if(result.x < 0.5f - epsilon && result.x > 0.5f + epsilon && |
|
result.y < 0.5f - epsilon && result.y > 0.5f + epsilon && |
|
result.z < 0.5f - epsilon && result.z > 0.5f + epsilon && |
|
result.w < 0.5f - epsilon && result.w > 0.5f + epsilon) |
|
return false; |
|
return true; |
|
} |
|
|
|
void main_core_func_exponential() |
|
{ |
|
assert(test_pow_1()); |
|
assert(test_pow_2()); |
|
assert(test_pow_3()); |
|
assert(test_pow_4()); |
|
|
|
assert(test_exp_1()); |
|
assert(test_exp_2()); |
|
assert(test_exp_3()); |
|
assert(test_exp_4()); |
|
|
|
assert(test_log_1()); |
|
assert(test_log_2()); |
|
assert(test_log_3()); |
|
assert(test_log_4()); |
|
|
|
assert(test_exp2_1()); |
|
assert(test_exp2_2()); |
|
assert(test_exp2_3()); |
|
assert(test_exp2_4()); |
|
|
|
assert(test_log2_1()); |
|
assert(test_log2_2()); |
|
assert(test_log2_3()); |
|
assert(test_log2_4()); |
|
|
|
assert(test_sqrt_1()); |
|
assert(test_sqrt_2()); |
|
assert(test_sqrt_3()); |
|
assert(test_sqrt_4()); |
|
|
|
assert(test_inversesqrt_1()); |
|
assert(test_inversesqrt_2()); |
|
assert(test_inversesqrt_3()); |
|
assert(test_inversesqrt_4()); |
|
} |
|
|
|
}//namespace test |
|
}//namespace glm
|
|
|