You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
512 lines
19 KiB
512 lines
19 KiB
// Copyright John Maddock 2010. |
|
// Copyright Paul A. Bristow 2010. |
|
|
|
// Use, modification and distribution are subject to the |
|
// Boost Software License, Version 1.0. (See accompanying file |
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
|
|
|
#ifndef BOOST_STATS_INVERSE_GAUSSIAN_HPP |
|
#define BOOST_STATS_INVERSE_GAUSSIAN_HPP |
|
|
|
#ifdef _MSC_VER |
|
#pragma warning(disable: 4512) // assignment operator could not be generated |
|
#endif |
|
|
|
// http://en.wikipedia.org/wiki/Normal-inverse_Gaussian_distribution |
|
// http://mathworld.wolfram.com/InverseGaussianDistribution.html |
|
|
|
// The normal-inverse Gaussian distribution |
|
// also called the Wald distribution (some sources limit this to when mean = 1). |
|
|
|
// It is the continuous probability distribution |
|
// that is defined as the normal variance-mean mixture where the mixing density is the |
|
// inverse Gaussian distribution. The tails of the distribution decrease more slowly |
|
// than the normal distribution. It is therefore suitable to model phenomena |
|
// where numerically large values are more probable than is the case for the normal distribution. |
|
|
|
// The Inverse Gaussian distribution was first studied in relationship to Brownian motion. |
|
// In 1956 M.C.K. Tweedie used the name 'Inverse Gaussian' because there is an inverse |
|
// relationship between the time to cover a unit distance and distance covered in unit time. |
|
|
|
// Examples are returns from financial assets and turbulent wind speeds. |
|
// The normal-inverse Gaussian distributions form |
|
// a subclass of the generalised hyperbolic distributions. |
|
|
|
// See also |
|
|
|
// http://en.wikipedia.org/wiki/Normal_distribution |
|
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm |
|
// Also: |
|
// Weisstein, Eric W. "Normal Distribution." |
|
// From MathWorld--A Wolfram Web Resource. |
|
// http://mathworld.wolfram.com/NormalDistribution.html |
|
|
|
// http://www.jstatsoft.org/v26/i04/paper General class of inverse Gaussian distributions. |
|
// ig package - withdrawn but at http://cran.r-project.org/src/contrib/Archive/ig/ |
|
|
|
// http://www.stat.ucl.ac.be/ISdidactique/Rhelp/library/SuppDists/html/inverse_gaussian.html |
|
// R package for dinverse_gaussian, ... |
|
|
|
// http://www.statsci.org/s/inverse_gaussian.s and http://www.statsci.org/s/inverse_gaussian.html |
|
|
|
//#include <boost/math/distributions/fwd.hpp> |
|
#include <boost/math/special_functions/erf.hpp> // for erf/erfc. |
|
#include <boost/math/distributions/complement.hpp> |
|
#include <boost/math/distributions/detail/common_error_handling.hpp> |
|
#include <boost/math/distributions/normal.hpp> |
|
#include <boost/math/distributions/gamma.hpp> // for gamma function |
|
// using boost::math::gamma_p; |
|
|
|
#include <boost/math/tools/tuple.hpp> |
|
//using std::tr1::tuple; |
|
//using std::tr1::make_tuple; |
|
#include <boost/math/tools/roots.hpp> |
|
//using boost::math::tools::newton_raphson_iterate; |
|
|
|
#include <utility> |
|
|
|
namespace boost{ namespace math{ |
|
|
|
template <class RealType = double, class Policy = policies::policy<> > |
|
class inverse_gaussian_distribution |
|
{ |
|
public: |
|
typedef RealType value_type; |
|
typedef Policy policy_type; |
|
|
|
inverse_gaussian_distribution(RealType mean = 1, RealType scale = 1) |
|
: m_mean(mean), m_scale(scale) |
|
{ // Default is a 1,1 inverse_gaussian distribution. |
|
static const char* function = "boost::math::inverse_gaussian_distribution<%1%>::inverse_gaussian_distribution"; |
|
|
|
RealType result; |
|
detail::check_scale(function, scale, &result, Policy()); |
|
detail::check_location(function, mean, &result, Policy()); |
|
} |
|
|
|
RealType mean()const |
|
{ // alias for location. |
|
return m_mean; // aka mu |
|
} |
|
|
|
// Synonyms, provided to allow generic use of find_location and find_scale. |
|
RealType location()const |
|
{ // location, aka mu. |
|
return m_mean; |
|
} |
|
RealType scale()const |
|
{ // scale, aka lambda. |
|
return m_scale; |
|
} |
|
|
|
RealType shape()const |
|
{ // shape, aka phi = lambda/mu. |
|
return m_scale / m_mean; |
|
} |
|
|
|
private: |
|
// |
|
// Data members: |
|
// |
|
RealType m_mean; // distribution mean or location, aka mu. |
|
RealType m_scale; // distribution standard deviation or scale, aka lambda. |
|
}; // class normal_distribution |
|
|
|
typedef inverse_gaussian_distribution<double> inverse_gaussian; |
|
|
|
template <class RealType, class Policy> |
|
inline const std::pair<RealType, RealType> range(const inverse_gaussian_distribution<RealType, Policy>& /*dist*/) |
|
{ // Range of permissible values for random variable x, zero to max. |
|
using boost::math::tools::max_value; |
|
return std::pair<RealType, RealType>(static_cast<RealType>(0.), max_value<RealType>()); // - to + max value. |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline const std::pair<RealType, RealType> support(const inverse_gaussian_distribution<RealType, Policy>& /*dist*/) |
|
{ // Range of supported values for random variable x, zero to max. |
|
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. |
|
using boost::math::tools::max_value; |
|
return std::pair<RealType, RealType>(static_cast<RealType>(0.), max_value<RealType>()); // - to + max value. |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline RealType pdf(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& x) |
|
{ // Probability Density Function |
|
BOOST_MATH_STD_USING // for ADL of std functions |
|
|
|
RealType scale = dist.scale(); |
|
RealType mean = dist.mean(); |
|
RealType result = 0; |
|
static const char* function = "boost::math::pdf(const inverse_gaussian_distribution<%1%>&, %1%)"; |
|
if(false == detail::check_scale(function, scale, &result, Policy())) |
|
{ |
|
return result; |
|
} |
|
if(false == detail::check_location(function, mean, &result, Policy())) |
|
{ |
|
return result; |
|
} |
|
if(false == detail::check_positive_x(function, x, &result, Policy())) |
|
{ |
|
return result; |
|
} |
|
|
|
if (x == 0) |
|
{ |
|
return 0; // Convenient, even if not defined mathematically. |
|
} |
|
|
|
result = |
|
sqrt(scale / (constants::two_pi<RealType>() * x * x * x)) |
|
* exp(-scale * (x - mean) * (x - mean) / (2 * x * mean * mean)); |
|
return result; |
|
} // pdf |
|
|
|
template <class RealType, class Policy> |
|
inline RealType cdf(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& x) |
|
{ // Cumulative Density Function. |
|
BOOST_MATH_STD_USING // for ADL of std functions. |
|
|
|
RealType scale = dist.scale(); |
|
RealType mean = dist.mean(); |
|
static const char* function = "boost::math::cdf(const inverse_gaussian_distribution<%1%>&, %1%)"; |
|
RealType result = 0; |
|
if(false == detail::check_scale(function, scale, &result, Policy())) |
|
{ |
|
return result; |
|
} |
|
if(false == detail::check_location(function, mean, &result, Policy())) |
|
{ |
|
return result; |
|
} |
|
if(false == detail::check_positive_x(function, x, &result, Policy())) |
|
{ |
|
return result; |
|
} |
|
if (x == 0) |
|
{ |
|
return 0; // Convenient, even if not defined mathematically. |
|
} |
|
// Problem with this formula for large scale > 1000 or small x, |
|
//result = 0.5 * (erf(sqrt(scale / x) * ((x / mean) - 1) / constants::root_two<RealType>(), Policy()) + 1) |
|
// + exp(2 * scale / mean) / 2 |
|
// * (1 - erf(sqrt(scale / x) * (x / mean + 1) / constants::root_two<RealType>(), Policy())); |
|
// so use normal distribution version: |
|
// Wikipedia CDF equation http://en.wikipedia.org/wiki/Inverse_Gaussian_distribution. |
|
|
|
normal_distribution<RealType> n01; |
|
|
|
RealType n0 = sqrt(scale / x); |
|
n0 *= ((x / mean) -1); |
|
RealType n1 = cdf(n01, n0); |
|
RealType expfactor = exp(2 * scale / mean); |
|
RealType n3 = - sqrt(scale / x); |
|
n3 *= (x / mean) + 1; |
|
RealType n4 = cdf(n01, n3); |
|
result = n1 + expfactor * n4; |
|
return result; |
|
} // cdf |
|
|
|
template <class RealType> |
|
struct inverse_gaussian_quantile_functor |
|
{ |
|
|
|
inverse_gaussian_quantile_functor(const boost::math::inverse_gaussian_distribution<RealType> dist, RealType const& p) |
|
: distribution(dist), prob(p) |
|
{ |
|
} |
|
boost::math::tuple<RealType, RealType> operator()(RealType const& x) |
|
{ |
|
RealType c = cdf(distribution, x); |
|
RealType fx = c - prob; // Difference cdf - value - to minimize. |
|
RealType dx = pdf(distribution, x); // pdf is 1st derivative. |
|
// return both function evaluation difference f(x) and 1st derivative f'(x). |
|
return boost::math::make_tuple(fx, dx); |
|
} |
|
private: |
|
const boost::math::inverse_gaussian_distribution<RealType> distribution; |
|
RealType prob; |
|
}; |
|
|
|
template <class RealType> |
|
struct inverse_gaussian_quantile_complement_functor |
|
{ |
|
inverse_gaussian_quantile_complement_functor(const boost::math::inverse_gaussian_distribution<RealType> dist, RealType const& p) |
|
: distribution(dist), prob(p) |
|
{ |
|
} |
|
boost::math::tuple<RealType, RealType> operator()(RealType const& x) |
|
{ |
|
RealType c = cdf(complement(distribution, x)); |
|
RealType fx = c - prob; // Difference cdf - value - to minimize. |
|
RealType dx = -pdf(distribution, x); // pdf is 1st derivative. |
|
// return both function evaluation difference f(x) and 1st derivative f'(x). |
|
//return std::tr1::make_tuple(fx, dx); if available. |
|
return boost::math::make_tuple(fx, dx); |
|
} |
|
private: |
|
const boost::math::inverse_gaussian_distribution<RealType> distribution; |
|
RealType prob; |
|
}; |
|
|
|
namespace detail |
|
{ |
|
template <class RealType> |
|
inline RealType guess_ig(RealType p, RealType mu = 1, RealType lambda = 1) |
|
{ // guess at random variate value x for inverse gaussian quantile. |
|
BOOST_MATH_STD_USING |
|
using boost::math::policies::policy; |
|
// Error type. |
|
using boost::math::policies::overflow_error; |
|
// Action. |
|
using boost::math::policies::ignore_error; |
|
|
|
typedef policy< |
|
overflow_error<ignore_error> // Ignore overflow (return infinity) |
|
> no_overthrow_policy; |
|
|
|
RealType x; // result is guess at random variate value x. |
|
RealType phi = lambda / mu; |
|
if (phi > 2.) |
|
{ // Big phi, so starting to look like normal Gaussian distribution. |
|
// x=(qnorm(p,0,1,true,false) - 0.5 * sqrt(mu/lambda)) / sqrt(lambda/mu); |
|
// Whitmore, G.A. and Yalovsky, M. |
|
// A normalising logarithmic transformation for inverse Gaussian random variables, |
|
// Technometrics 20-2, 207-208 (1978), but using expression from |
|
// V Seshadri, Inverse Gaussian distribution (1998) ISBN 0387 98618 9, page 6. |
|
|
|
normal_distribution<RealType, no_overthrow_policy> n01; |
|
x = mu * exp(quantile(n01, p) / sqrt(phi) - 1/(2 * phi)); |
|
} |
|
else |
|
{ // phi < 2 so much less symmetrical with long tail, |
|
// so use gamma distribution as an approximation. |
|
using boost::math::gamma_distribution; |
|
|
|
// Define the distribution, using gamma_nooverflow: |
|
typedef gamma_distribution<RealType, no_overthrow_policy> gamma_nooverflow; |
|
|
|
gamma_distribution<RealType, no_overthrow_policy> g(static_cast<RealType>(0.5), static_cast<RealType>(1.)); |
|
|
|
// gamma_nooverflow g(static_cast<RealType>(0.5), static_cast<RealType>(1.)); |
|
// R qgamma(0.2, 0.5, 1) 0.0320923 |
|
RealType qg = quantile(complement(g, p)); |
|
//RealType qg1 = qgamma(1.- p, 0.5, 1.0, true, false); |
|
x = lambda / (qg * 2); |
|
// |
|
if (x > mu/2) // x > mu /2? |
|
{ // x too large for the gamma approximation to work well. |
|
//x = qgamma(p, 0.5, 1.0); // qgamma(0.270614, 0.5, 1) = 0.05983807 |
|
RealType q = quantile(g, p); |
|
// x = mu * exp(q * static_cast<RealType>(0.1)); // Said to improve at high p |
|
// x = mu * x; // Improves at high p? |
|
x = mu * exp(q / sqrt(phi) - 1/(2 * phi)); |
|
} |
|
} |
|
return x; |
|
} // guess_ig |
|
} // namespace detail |
|
|
|
template <class RealType, class Policy> |
|
inline RealType quantile(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& p) |
|
{ |
|
BOOST_MATH_STD_USING // for ADL of std functions. |
|
// No closed form exists so guess and use Newton Raphson iteration. |
|
|
|
RealType mean = dist.mean(); |
|
RealType scale = dist.scale(); |
|
static const char* function = "boost::math::quantile(const inverse_gaussian_distribution<%1%>&, %1%)"; |
|
|
|
RealType result = 0; |
|
if(false == detail::check_scale(function, scale, &result, Policy())) |
|
return result; |
|
if(false == detail::check_location(function, mean, &result, Policy())) |
|
return result; |
|
if(false == detail::check_probability(function, p, &result, Policy())) |
|
return result; |
|
if (p == 0) |
|
{ |
|
return 0; // Convenient, even if not defined mathematically? |
|
} |
|
if (p == 1) |
|
{ // overflow |
|
result = policies::raise_overflow_error<RealType>(function, |
|
"probability parameter is 1, but must be < 1!", Policy()); |
|
return result; // std::numeric_limits<RealType>::infinity(); |
|
} |
|
|
|
RealType guess = detail::guess_ig(p, dist.mean(), dist.scale()); |
|
using boost::math::tools::max_value; |
|
|
|
RealType min = 0.; // Minimum possible value is bottom of range of distribution. |
|
RealType max = max_value<RealType>();// Maximum possible value is top of range. |
|
// int digits = std::numeric_limits<RealType>::digits; // Maximum possible binary digits accuracy for type T. |
|
// digits used to control how accurate to try to make the result. |
|
// To allow user to control accuracy versus speed, |
|
int get_digits = policies::digits<RealType, Policy>();// get digits from policy, |
|
boost::uintmax_t m = policies::get_max_root_iterations<Policy>(); // and max iterations. |
|
using boost::math::tools::newton_raphson_iterate; |
|
result = |
|
newton_raphson_iterate(inverse_gaussian_quantile_functor<RealType>(dist, p), guess, min, max, get_digits, m); |
|
return result; |
|
} // quantile |
|
|
|
template <class RealType, class Policy> |
|
inline RealType cdf(const complemented2_type<inverse_gaussian_distribution<RealType, Policy>, RealType>& c) |
|
{ |
|
BOOST_MATH_STD_USING // for ADL of std functions. |
|
|
|
RealType scale = c.dist.scale(); |
|
RealType mean = c.dist.mean(); |
|
RealType x = c.param; |
|
static const char* function = "boost::math::cdf(const complement(inverse_gaussian_distribution<%1%>&), %1%)"; |
|
// infinite arguments not supported. |
|
//if((boost::math::isinf)(x)) |
|
//{ |
|
// if(x < 0) return 1; // cdf complement -infinity is unity. |
|
// return 0; // cdf complement +infinity is zero |
|
//} |
|
// These produce MSVC 4127 warnings, so the above used instead. |
|
//if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity()) |
|
//{ // cdf complement +infinity is zero. |
|
// return 0; |
|
//} |
|
//if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity()) |
|
//{ // cdf complement -infinity is unity. |
|
// return 1; |
|
//} |
|
RealType result = 0; |
|
if(false == detail::check_scale(function, scale, &result, Policy())) |
|
return result; |
|
if(false == detail::check_location(function, mean, &result, Policy())) |
|
return result; |
|
if(false == detail::check_x(function, x, &result, Policy())) |
|
return result; |
|
|
|
normal_distribution<RealType> n01; |
|
RealType n0 = sqrt(scale / x); |
|
n0 *= ((x / mean) -1); |
|
RealType cdf_1 = cdf(complement(n01, n0)); |
|
|
|
RealType expfactor = exp(2 * scale / mean); |
|
RealType n3 = - sqrt(scale / x); |
|
n3 *= (x / mean) + 1; |
|
|
|
//RealType n5 = +sqrt(scale/x) * ((x /mean) + 1); // note now positive sign. |
|
RealType n6 = cdf(complement(n01, +sqrt(scale/x) * ((x /mean) + 1))); |
|
// RealType n4 = cdf(n01, n3); // = |
|
result = cdf_1 - expfactor * n6; |
|
return result; |
|
} // cdf complement |
|
|
|
template <class RealType, class Policy> |
|
inline RealType quantile(const complemented2_type<inverse_gaussian_distribution<RealType, Policy>, RealType>& c) |
|
{ |
|
BOOST_MATH_STD_USING // for ADL of std functions |
|
|
|
RealType scale = c.dist.scale(); |
|
RealType mean = c.dist.mean(); |
|
static const char* function = "boost::math::quantile(const complement(inverse_gaussian_distribution<%1%>&), %1%)"; |
|
RealType result = 0; |
|
if(false == detail::check_scale(function, scale, &result, Policy())) |
|
return result; |
|
if(false == detail::check_location(function, mean, &result, Policy())) |
|
return result; |
|
RealType q = c.param; |
|
if(false == detail::check_probability(function, q, &result, Policy())) |
|
return result; |
|
|
|
RealType guess = detail::guess_ig(q, mean, scale); |
|
// Complement. |
|
using boost::math::tools::max_value; |
|
|
|
RealType min = 0.; // Minimum possible value is bottom of range of distribution. |
|
RealType max = max_value<RealType>();// Maximum possible value is top of range. |
|
// int digits = std::numeric_limits<RealType>::digits; // Maximum possible binary digits accuracy for type T. |
|
// digits used to control how accurate to try to make the result. |
|
int get_digits = policies::digits<RealType, Policy>(); |
|
boost::uintmax_t m = policies::get_max_root_iterations<Policy>(); |
|
using boost::math::tools::newton_raphson_iterate; |
|
result = |
|
newton_raphson_iterate(inverse_gaussian_quantile_complement_functor<RealType>(c.dist, q), guess, min, max, get_digits, m); |
|
return result; |
|
} // quantile |
|
|
|
template <class RealType, class Policy> |
|
inline RealType mean(const inverse_gaussian_distribution<RealType, Policy>& dist) |
|
{ // aka mu |
|
return dist.mean(); |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline RealType scale(const inverse_gaussian_distribution<RealType, Policy>& dist) |
|
{ // aka lambda |
|
return dist.scale(); |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline RealType shape(const inverse_gaussian_distribution<RealType, Policy>& dist) |
|
{ // aka phi |
|
return dist.shape(); |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline RealType standard_deviation(const inverse_gaussian_distribution<RealType, Policy>& dist) |
|
{ |
|
BOOST_MATH_STD_USING |
|
RealType scale = dist.scale(); |
|
RealType mean = dist.mean(); |
|
RealType result = sqrt(mean * mean * mean / scale); |
|
return result; |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline RealType mode(const inverse_gaussian_distribution<RealType, Policy>& dist) |
|
{ |
|
BOOST_MATH_STD_USING |
|
RealType scale = dist.scale(); |
|
RealType mean = dist.mean(); |
|
RealType result = mean * (sqrt(1 + (9 * mean * mean)/(4 * scale * scale)) |
|
- 3 * mean / (2 * scale)); |
|
return result; |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline RealType skewness(const inverse_gaussian_distribution<RealType, Policy>& dist) |
|
{ |
|
BOOST_MATH_STD_USING |
|
RealType scale = dist.scale(); |
|
RealType mean = dist.mean(); |
|
RealType result = 3 * sqrt(mean/scale); |
|
return result; |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline RealType kurtosis(const inverse_gaussian_distribution<RealType, Policy>& dist) |
|
{ |
|
RealType scale = dist.scale(); |
|
RealType mean = dist.mean(); |
|
RealType result = 15 * mean / scale -3; |
|
return result; |
|
} |
|
|
|
template <class RealType, class Policy> |
|
inline RealType kurtosis_excess(const inverse_gaussian_distribution<RealType, Policy>& dist) |
|
{ |
|
RealType scale = dist.scale(); |
|
RealType mean = dist.mean(); |
|
RealType result = 15 * mean / scale; |
|
return result; |
|
} |
|
|
|
} // namespace math |
|
} // namespace boost |
|
|
|
// This include must be at the end, *after* the accessors |
|
// for this distribution have been defined, in order to |
|
// keep compilers that support two-phase lookup happy. |
|
#include <boost/math/distributions/detail/derived_accessors.hpp> |
|
|
|
#endif // BOOST_STATS_INVERSE_GAUSSIAN_HPP |
|
|
|
|
|
|