You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
		
		
		
		
		
			
		
			
				
					
					
						
							782 lines
						
					
					
						
							20 KiB
						
					
					
				
			
		
		
	
	
							782 lines
						
					
					
						
							20 KiB
						
					
					
				/////////////////////////////////////////////////////////////////////////////////////////////////// | 
						|
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net) | 
						|
/////////////////////////////////////////////////////////////////////////////////////////////////// | 
						|
// Created : 2007-03-14 | 
						|
// Updated : 2013-12-25 | 
						|
// Licence : This source is under MIT License | 
						|
// File    : glm/gtx/bit.inl | 
						|
/////////////////////////////////////////////////////////////////////////////////////////////////// | 
						|
 | 
						|
#include "../detail/_vectorize.hpp" | 
						|
#include <limits> | 
						|
 | 
						|
namespace glm | 
						|
{ | 
						|
	template <typename genIType> | 
						|
	GLM_FUNC_QUALIFIER genIType mask | 
						|
	( | 
						|
		genIType const & count | 
						|
	) | 
						|
	{ | 
						|
		return ((genIType(1) << (count)) - genIType(1)); | 
						|
	} | 
						|
 | 
						|
	VECTORIZE_VEC(mask) | 
						|
 | 
						|
	// highestBitValue | 
						|
	template <typename genType> | 
						|
	GLM_FUNC_QUALIFIER genType highestBitValue | 
						|
	( | 
						|
		genType const & value | 
						|
	) | 
						|
	{ | 
						|
		genType tmp = value; | 
						|
		genType result = genType(0); | 
						|
		while(tmp) | 
						|
		{ | 
						|
			result = (tmp & (~tmp + 1)); // grab lowest bit | 
						|
			tmp &= ~result; // clear lowest bit | 
						|
		} | 
						|
		return result; | 
						|
	} | 
						|
 | 
						|
	template <typename T, precision P> | 
						|
	GLM_FUNC_QUALIFIER detail::tvec2<int, P> highestBitValue | 
						|
	( | 
						|
		detail::tvec2<T, P> const & value | 
						|
	) | 
						|
	{ | 
						|
		return detail::tvec2<int, P>( | 
						|
			highestBitValue(value[0]), | 
						|
			highestBitValue(value[1])); | 
						|
	} | 
						|
 | 
						|
	template <typename T, precision P> | 
						|
	GLM_FUNC_QUALIFIER detail::tvec3<int, P> highestBitValue | 
						|
	( | 
						|
		detail::tvec3<T, P> const & value | 
						|
	) | 
						|
	{ | 
						|
		return detail::tvec3<int, P>( | 
						|
			highestBitValue(value[0]), | 
						|
			highestBitValue(value[1]), | 
						|
			highestBitValue(value[2])); | 
						|
	} | 
						|
 | 
						|
	template <typename T, precision P> | 
						|
	GLM_FUNC_QUALIFIER detail::tvec4<int, P> highestBitValue | 
						|
	( | 
						|
		detail::tvec4<T, P> const & value | 
						|
	) | 
						|
	{ | 
						|
		return detail::tvec4<int, P>( | 
						|
			highestBitValue(value[0]), | 
						|
			highestBitValue(value[1]), | 
						|
			highestBitValue(value[2]), | 
						|
			highestBitValue(value[3])); | 
						|
	} | 
						|
 | 
						|
	// isPowerOfTwo | 
						|
	template <typename genType> | 
						|
	GLM_FUNC_QUALIFIER bool isPowerOfTwo(genType const & Value) | 
						|
	{ | 
						|
		//detail::If<std::numeric_limits<genType>::is_signed>::apply(abs, Value); | 
						|
		//return !(Value & (Value - 1)); | 
						|
 | 
						|
		// For old complier? | 
						|
		genType Result = Value; | 
						|
		if(std::numeric_limits<genType>::is_signed) | 
						|
			Result = abs(Result); | 
						|
		return !(Result & (Result - 1)); | 
						|
	} | 
						|
 | 
						|
	template <typename T, precision P> | 
						|
	GLM_FUNC_QUALIFIER detail::tvec2<bool, P> isPowerOfTwo | 
						|
	( | 
						|
		detail::tvec2<T, P> const & value | 
						|
	) | 
						|
	{ | 
						|
		return detail::tvec2<bool, P>( | 
						|
			isPowerOfTwo(value[0]), | 
						|
			isPowerOfTwo(value[1])); | 
						|
	} | 
						|
 | 
						|
	template <typename T, precision P> | 
						|
	GLM_FUNC_QUALIFIER detail::tvec3<bool, P> isPowerOfTwo | 
						|
	( | 
						|
		detail::tvec3<T, P> const & value | 
						|
	) | 
						|
	{ | 
						|
		return detail::tvec3<bool, P>( | 
						|
			isPowerOfTwo(value[0]), | 
						|
			isPowerOfTwo(value[1]), | 
						|
			isPowerOfTwo(value[2])); | 
						|
	} | 
						|
 | 
						|
	template <typename T, precision P> | 
						|
	GLM_FUNC_QUALIFIER detail::tvec4<bool, P> isPowerOfTwo | 
						|
	( | 
						|
		detail::tvec4<T, P> const & value | 
						|
	) | 
						|
	{ | 
						|
		return detail::tvec4<bool, P>( | 
						|
			isPowerOfTwo(value[0]), | 
						|
			isPowerOfTwo(value[1]), | 
						|
			isPowerOfTwo(value[2]), | 
						|
			isPowerOfTwo(value[3])); | 
						|
	} | 
						|
 | 
						|
	// powerOfTwoAbove | 
						|
	template <typename genType> | 
						|
	GLM_FUNC_QUALIFIER genType powerOfTwoAbove(genType const & value) | 
						|
	{ | 
						|
		return isPowerOfTwo(value) ? value : highestBitValue(value) << 1; | 
						|
	} | 
						|
 | 
						|
	VECTORIZE_VEC(powerOfTwoAbove) | 
						|
 | 
						|
	// powerOfTwoBelow | 
						|
	template <typename genType> | 
						|
	GLM_FUNC_QUALIFIER genType powerOfTwoBelow | 
						|
	( | 
						|
		genType const & value | 
						|
	) | 
						|
	{ | 
						|
		return isPowerOfTwo(value) ? value : highestBitValue(value); | 
						|
	} | 
						|
 | 
						|
	VECTORIZE_VEC(powerOfTwoBelow) | 
						|
 | 
						|
	// powerOfTwoNearest | 
						|
	template <typename genType> | 
						|
	GLM_FUNC_QUALIFIER genType powerOfTwoNearest | 
						|
	( | 
						|
		genType const & value | 
						|
	) | 
						|
	{ | 
						|
		if(isPowerOfTwo(value)) | 
						|
			return value; | 
						|
 | 
						|
		genType prev = highestBitValue(value); | 
						|
		genType next = prev << 1; | 
						|
		return (next - value) < (value - prev) ? next : prev; | 
						|
	} | 
						|
 | 
						|
	VECTORIZE_VEC(powerOfTwoNearest) | 
						|
 | 
						|
	template <typename genType> | 
						|
	GLM_FUNC_QUALIFIER genType bitRevert(genType const & In) | 
						|
	{ | 
						|
		GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_integer, "'bitRevert' only accept integer values"); | 
						|
 | 
						|
		genType Out = 0; | 
						|
		std::size_t BitSize = sizeof(genType) * 8; | 
						|
		for(std::size_t i = 0; i < BitSize; ++i) | 
						|
			if(In & (genType(1) << i)) | 
						|
				Out |= genType(1) << (BitSize - 1 - i); | 
						|
		return Out; | 
						|
	} | 
						|
 | 
						|
	VECTORIZE_VEC(bitRevert) | 
						|
 | 
						|
	template <typename genType> | 
						|
	GLM_FUNC_QUALIFIER genType bitRotateRight(genType const & In, std::size_t Shift) | 
						|
	{ | 
						|
		GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_integer, "'bitRotateRight' only accept integer values"); | 
						|
 | 
						|
		std::size_t BitSize = sizeof(genType) * 8; | 
						|
		return (In << Shift) | (In >> (BitSize - Shift)); | 
						|
	} | 
						|
 | 
						|
	template <typename T, precision P> | 
						|
	GLM_FUNC_QUALIFIER detail::tvec2<T, P> bitRotateRight | 
						|
	( | 
						|
		detail::tvec2<T, P> const & Value,  | 
						|
		std::size_t Shift | 
						|
	) | 
						|
	{ | 
						|
		return detail::tvec2<T, P>( | 
						|
			bitRotateRight(Value[0], Shift), | 
						|
			bitRotateRight(Value[1], Shift)); | 
						|
	} | 
						|
 | 
						|
	template <typename T, precision P> | 
						|
	GLM_FUNC_QUALIFIER detail::tvec3<T, P> bitRotateRight | 
						|
	( | 
						|
		detail::tvec3<T, P> const & Value,  | 
						|
		std::size_t Shift | 
						|
	) | 
						|
	{ | 
						|
		return detail::tvec3<T, P>( | 
						|
			bitRotateRight(Value[0], Shift), | 
						|
			bitRotateRight(Value[1], Shift), | 
						|
			bitRotateRight(Value[2], Shift)); | 
						|
	} | 
						|
 | 
						|
	template <typename T, precision P> | 
						|
	GLM_FUNC_QUALIFIER detail::tvec4<T, P> bitRotateRight | 
						|
	( | 
						|
		detail::tvec4<T, P> const & Value,  | 
						|
		std::size_t Shift | 
						|
	) | 
						|
	{ | 
						|
		return detail::tvec4<T, P>( | 
						|
			bitRotateRight(Value[0], Shift), | 
						|
			bitRotateRight(Value[1], Shift), | 
						|
			bitRotateRight(Value[2], Shift), | 
						|
			bitRotateRight(Value[3], Shift)); | 
						|
	} | 
						|
 | 
						|
	template <typename genType> | 
						|
	GLM_FUNC_QUALIFIER genType bitRotateLeft(genType const & In, std::size_t Shift) | 
						|
	{ | 
						|
		GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_integer, "'bitRotateLeft' only accept integer values"); | 
						|
 | 
						|
		std::size_t BitSize = sizeof(genType) * 8; | 
						|
		return (In >> Shift) | (In << (BitSize - Shift)); | 
						|
	} | 
						|
 | 
						|
	template <typename T, precision P> | 
						|
	GLM_FUNC_QUALIFIER detail::tvec2<T, P> bitRotateLeft | 
						|
	( | 
						|
		detail::tvec2<T, P> const & Value,  | 
						|
		std::size_t Shift | 
						|
	) | 
						|
	{ | 
						|
		return detail::tvec2<T, P>( | 
						|
			bitRotateLeft(Value[0], Shift), | 
						|
			bitRotateLeft(Value[1], Shift)); | 
						|
	} | 
						|
 | 
						|
	template <typename T, precision P> | 
						|
	GLM_FUNC_QUALIFIER detail::tvec3<T, P> bitRotateLeft | 
						|
	( | 
						|
		detail::tvec3<T, P> const & Value,  | 
						|
		std::size_t Shift | 
						|
	) | 
						|
	{ | 
						|
		return detail::tvec3<T, P>( | 
						|
			bitRotateLeft(Value[0], Shift), | 
						|
			bitRotateLeft(Value[1], Shift), | 
						|
			bitRotateLeft(Value[2], Shift)); | 
						|
	} | 
						|
 | 
						|
	template <typename T, precision P> | 
						|
	GLM_FUNC_QUALIFIER detail::tvec4<T, P> bitRotateLeft | 
						|
	( | 
						|
		detail::tvec4<T, P> const & Value,  | 
						|
		std::size_t Shift | 
						|
	) | 
						|
	{ | 
						|
		return detail::tvec4<T, P>( | 
						|
			bitRotateLeft(Value[0], Shift), | 
						|
			bitRotateLeft(Value[1], Shift), | 
						|
			bitRotateLeft(Value[2], Shift), | 
						|
			bitRotateLeft(Value[3], Shift)); | 
						|
	} | 
						|
 | 
						|
	template <typename genIUType> | 
						|
	GLM_FUNC_QUALIFIER genIUType fillBitfieldWithOne | 
						|
	( | 
						|
		genIUType const & Value, | 
						|
		int const & FromBit,  | 
						|
		int const & ToBit | 
						|
	) | 
						|
	{ | 
						|
		assert(FromBit <= ToBit); | 
						|
		assert(ToBit <= sizeof(genIUType) * std::size_t(8)); | 
						|
 | 
						|
		genIUType Result = Value; | 
						|
		for(signed i = 0; i <= ToBit; ++i) | 
						|
			Result |= (1 << i); | 
						|
		return Result; | 
						|
	} | 
						|
 | 
						|
	template <typename genIUType> | 
						|
	GLM_FUNC_QUALIFIER genIUType fillBitfieldWithZero | 
						|
	( | 
						|
		genIUType const & Value, | 
						|
		int const & FromBit,  | 
						|
		int const & ToBit | 
						|
	) | 
						|
	{ | 
						|
		assert(FromBit <= ToBit); | 
						|
		assert(ToBit <= sizeof(genIUType) * std::size_t(8)); | 
						|
 | 
						|
		genIUType Result = Value; | 
						|
		for(signed i = 0; i <= ToBit; ++i) | 
						|
			Result &= ~(1 << i); | 
						|
		return Result; | 
						|
	} | 
						|
 | 
						|
	namespace detail | 
						|
	{ | 
						|
		template <typename PARAM, typename RET> | 
						|
		GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y); | 
						|
 | 
						|
		template <typename PARAM, typename RET> | 
						|
		GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z); | 
						|
 | 
						|
		template <typename PARAM, typename RET> | 
						|
		GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w); | 
						|
 | 
						|
/* | 
						|
		template <typename PARAM, typename RET> | 
						|
		inline RET bitfieldInterleave(PARAM x, PARAM y) | 
						|
		{ | 
						|
			RET Result = 0;  | 
						|
			for (int i = 0; i < sizeof(PARAM) * 8; i++) | 
						|
				Result |= (x & 1U << i) << i | (y & 1U << i) << (i + 1); | 
						|
			return Result; | 
						|
		} | 
						|
 | 
						|
		template <typename PARAM, typename RET> | 
						|
		inline RET bitfieldInterleave(PARAM x, PARAM y, PARAM z) | 
						|
		{ | 
						|
			RET Result = 0;  | 
						|
			for (RET i = 0; i < sizeof(PARAM) * 8; i++) | 
						|
			{ | 
						|
				Result |= ((RET(x) & (RET(1) << i)) << ((i << 1) + 0)); | 
						|
				Result |= ((RET(y) & (RET(1) << i)) << ((i << 1) + 1)); | 
						|
				Result |= ((RET(z) & (RET(1) << i)) << ((i << 1) + 2)); | 
						|
			} | 
						|
			return Result; | 
						|
		} | 
						|
 | 
						|
		template <typename PARAM, typename RET> | 
						|
		inline RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w) | 
						|
		{ | 
						|
			RET Result = 0;  | 
						|
			for (int i = 0; i < sizeof(PARAM) * 8; i++) | 
						|
			{ | 
						|
				Result |= ((((RET(x) >> i) & RET(1))) << RET((i << 2) + 0)); | 
						|
				Result |= ((((RET(y) >> i) & RET(1))) << RET((i << 2) + 1)); | 
						|
				Result |= ((((RET(z) >> i) & RET(1))) << RET((i << 2) + 2)); | 
						|
				Result |= ((((RET(w) >> i) & RET(1))) << RET((i << 2) + 3)); | 
						|
			} | 
						|
			return Result; | 
						|
		} | 
						|
*/ | 
						|
		template <> | 
						|
		GLM_FUNC_QUALIFIER glm::uint16 bitfieldInterleave(glm::uint8 x, glm::uint8 y) | 
						|
		{ | 
						|
			glm::uint16 REG1(x); | 
						|
			glm::uint16 REG2(y); | 
						|
 | 
						|
			REG1 = ((REG1 <<  4) | REG1) & glm::uint16(0x0F0F); | 
						|
			REG2 = ((REG2 <<  4) | REG2) & glm::uint16(0x0F0F); | 
						|
 | 
						|
			REG1 = ((REG1 <<  2) | REG1) & glm::uint16(0x3333); | 
						|
			REG2 = ((REG2 <<  2) | REG2) & glm::uint16(0x3333); | 
						|
 | 
						|
			REG1 = ((REG1 <<  1) | REG1) & glm::uint16(0x5555); | 
						|
			REG2 = ((REG2 <<  1) | REG2) & glm::uint16(0x5555); | 
						|
 | 
						|
			return REG1 | (REG2 << 1); | 
						|
		} | 
						|
 | 
						|
		template <> | 
						|
		GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint16 x, glm::uint16 y) | 
						|
		{ | 
						|
			glm::uint32 REG1(x); | 
						|
			glm::uint32 REG2(y); | 
						|
 | 
						|
			REG1 = ((REG1 <<  8) | REG1) & glm::uint32(0x00FF00FF); | 
						|
			REG2 = ((REG2 <<  8) | REG2) & glm::uint32(0x00FF00FF); | 
						|
 | 
						|
			REG1 = ((REG1 <<  4) | REG1) & glm::uint32(0x0F0F0F0F); | 
						|
			REG2 = ((REG2 <<  4) | REG2) & glm::uint32(0x0F0F0F0F); | 
						|
 | 
						|
			REG1 = ((REG1 <<  2) | REG1) & glm::uint32(0x33333333); | 
						|
			REG2 = ((REG2 <<  2) | REG2) & glm::uint32(0x33333333); | 
						|
 | 
						|
			REG1 = ((REG1 <<  1) | REG1) & glm::uint32(0x55555555); | 
						|
			REG2 = ((REG2 <<  1) | REG2) & glm::uint32(0x55555555); | 
						|
 | 
						|
			return REG1 | (REG2 << 1); | 
						|
		} | 
						|
 | 
						|
		template <> | 
						|
		GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y) | 
						|
		{ | 
						|
			glm::uint64 REG1(x); | 
						|
			glm::uint64 REG2(y); | 
						|
 | 
						|
			REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); | 
						|
			REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); | 
						|
 | 
						|
			REG1 = ((REG1 <<  8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); | 
						|
			REG2 = ((REG2 <<  8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); | 
						|
 | 
						|
			REG1 = ((REG1 <<  4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); | 
						|
			REG2 = ((REG2 <<  4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); | 
						|
 | 
						|
			REG1 = ((REG1 <<  2) | REG1) & glm::uint64(0x3333333333333333); | 
						|
			REG2 = ((REG2 <<  2) | REG2) & glm::uint64(0x3333333333333333); | 
						|
 | 
						|
			REG1 = ((REG1 <<  1) | REG1) & glm::uint64(0x5555555555555555); | 
						|
			REG2 = ((REG2 <<  1) | REG2) & glm::uint64(0x5555555555555555); | 
						|
 | 
						|
			return REG1 | (REG2 << 1); | 
						|
		} | 
						|
 | 
						|
		template <> | 
						|
		GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z) | 
						|
		{ | 
						|
			glm::uint32 REG1(x); | 
						|
			glm::uint32 REG2(y); | 
						|
			glm::uint32 REG3(z); | 
						|
			 | 
						|
			REG1 = ((REG1 << 16) | REG1) & glm::uint32(0x00FF0000FF0000FF); | 
						|
			REG2 = ((REG2 << 16) | REG2) & glm::uint32(0x00FF0000FF0000FF); | 
						|
			REG3 = ((REG3 << 16) | REG3) & glm::uint32(0x00FF0000FF0000FF); | 
						|
			 | 
						|
			REG1 = ((REG1 <<  8) | REG1) & glm::uint32(0xF00F00F00F00F00F); | 
						|
			REG2 = ((REG2 <<  8) | REG2) & glm::uint32(0xF00F00F00F00F00F); | 
						|
			REG3 = ((REG3 <<  8) | REG3) & glm::uint32(0xF00F00F00F00F00F); | 
						|
			 | 
						|
			REG1 = ((REG1 <<  4) | REG1) & glm::uint32(0x30C30C30C30C30C3); | 
						|
			REG2 = ((REG2 <<  4) | REG2) & glm::uint32(0x30C30C30C30C30C3); | 
						|
			REG3 = ((REG3 <<  4) | REG3) & glm::uint32(0x30C30C30C30C30C3); | 
						|
			 | 
						|
			REG1 = ((REG1 <<  2) | REG1) & glm::uint32(0x9249249249249249); | 
						|
			REG2 = ((REG2 <<  2) | REG2) & glm::uint32(0x9249249249249249); | 
						|
			REG3 = ((REG3 <<  2) | REG3) & glm::uint32(0x9249249249249249); | 
						|
			 | 
						|
			return REG1 | (REG2 << 1) | (REG3 << 2); | 
						|
		} | 
						|
		 | 
						|
		template <> | 
						|
		GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z) | 
						|
		{ | 
						|
			glm::uint64 REG1(x); | 
						|
			glm::uint64 REG2(y); | 
						|
			glm::uint64 REG3(z); | 
						|
			 | 
						|
			REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFF); | 
						|
			REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFF); | 
						|
			REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFF); | 
						|
			 | 
						|
			REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FF); | 
						|
			REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FF); | 
						|
			REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FF); | 
						|
			 | 
						|
			REG1 = ((REG1 <<  8) | REG1) & glm::uint64(0xF00F00F00F00F00F); | 
						|
			REG2 = ((REG2 <<  8) | REG2) & glm::uint64(0xF00F00F00F00F00F); | 
						|
			REG3 = ((REG3 <<  8) | REG3) & glm::uint64(0xF00F00F00F00F00F); | 
						|
			 | 
						|
			REG1 = ((REG1 <<  4) | REG1) & glm::uint64(0x30C30C30C30C30C3); | 
						|
			REG2 = ((REG2 <<  4) | REG2) & glm::uint64(0x30C30C30C30C30C3); | 
						|
			REG3 = ((REG3 <<  4) | REG3) & glm::uint64(0x30C30C30C30C30C3); | 
						|
			 | 
						|
			REG1 = ((REG1 <<  2) | REG1) & glm::uint64(0x9249249249249249); | 
						|
			REG2 = ((REG2 <<  2) | REG2) & glm::uint64(0x9249249249249249); | 
						|
			REG3 = ((REG3 <<  2) | REG3) & glm::uint64(0x9249249249249249); | 
						|
			 | 
						|
			return REG1 | (REG2 << 1) | (REG3 << 2); | 
						|
		} | 
						|
		 | 
						|
		template <> | 
						|
		GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y, glm::uint32 z) | 
						|
		{ | 
						|
			glm::uint64 REG1(x); | 
						|
			glm::uint64 REG2(y); | 
						|
			glm::uint64 REG3(z); | 
						|
 | 
						|
			REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFF); | 
						|
			REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFF); | 
						|
			REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFF); | 
						|
 | 
						|
			REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FF); | 
						|
			REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FF); | 
						|
			REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FF); | 
						|
 | 
						|
			REG1 = ((REG1 <<  8) | REG1) & glm::uint64(0xF00F00F00F00F00F); | 
						|
			REG2 = ((REG2 <<  8) | REG2) & glm::uint64(0xF00F00F00F00F00F); | 
						|
			REG3 = ((REG3 <<  8) | REG3) & glm::uint64(0xF00F00F00F00F00F); | 
						|
 | 
						|
			REG1 = ((REG1 <<  4) | REG1) & glm::uint64(0x30C30C30C30C30C3); | 
						|
			REG2 = ((REG2 <<  4) | REG2) & glm::uint64(0x30C30C30C30C30C3); | 
						|
			REG3 = ((REG3 <<  4) | REG3) & glm::uint64(0x30C30C30C30C30C3); | 
						|
 | 
						|
			REG1 = ((REG1 <<  2) | REG1) & glm::uint64(0x9249249249249249); | 
						|
			REG2 = ((REG2 <<  2) | REG2) & glm::uint64(0x9249249249249249); | 
						|
			REG3 = ((REG3 <<  2) | REG3) & glm::uint64(0x9249249249249249); | 
						|
 | 
						|
			return REG1 | (REG2 << 1) | (REG3 << 2); | 
						|
		} | 
						|
 | 
						|
		template <> | 
						|
		GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z, glm::uint8 w) | 
						|
		{ | 
						|
			glm::uint32 REG1(x); | 
						|
			glm::uint32 REG2(y); | 
						|
			glm::uint32 REG3(z); | 
						|
			glm::uint32 REG4(w); | 
						|
			 | 
						|
			REG1 = ((REG1 << 12) | REG1) & glm::uint32(0x000F000F000F000F); | 
						|
			REG2 = ((REG2 << 12) | REG2) & glm::uint32(0x000F000F000F000F); | 
						|
			REG3 = ((REG3 << 12) | REG3) & glm::uint32(0x000F000F000F000F); | 
						|
			REG4 = ((REG4 << 12) | REG4) & glm::uint32(0x000F000F000F000F); | 
						|
			 | 
						|
			REG1 = ((REG1 <<  6) | REG1) & glm::uint32(0x0303030303030303); | 
						|
			REG2 = ((REG2 <<  6) | REG2) & glm::uint32(0x0303030303030303); | 
						|
			REG3 = ((REG3 <<  6) | REG3) & glm::uint32(0x0303030303030303); | 
						|
			REG4 = ((REG4 <<  6) | REG4) & glm::uint32(0x0303030303030303); | 
						|
			 | 
						|
			REG1 = ((REG1 <<  3) | REG1) & glm::uint32(0x1111111111111111); | 
						|
			REG2 = ((REG2 <<  3) | REG2) & glm::uint32(0x1111111111111111); | 
						|
			REG3 = ((REG3 <<  3) | REG3) & glm::uint32(0x1111111111111111); | 
						|
			REG4 = ((REG4 <<  3) | REG4) & glm::uint32(0x1111111111111111); | 
						|
			 | 
						|
			return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3); | 
						|
		} | 
						|
		 | 
						|
		template <> | 
						|
		GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z, glm::uint16 w) | 
						|
		{ | 
						|
			glm::uint64 REG1(x); | 
						|
			glm::uint64 REG2(y); | 
						|
			glm::uint64 REG3(z); | 
						|
			glm::uint64 REG4(w); | 
						|
 | 
						|
			REG1 = ((REG1 << 24) | REG1) & glm::uint64(0x000000FF000000FF); | 
						|
			REG2 = ((REG2 << 24) | REG2) & glm::uint64(0x000000FF000000FF); | 
						|
			REG3 = ((REG3 << 24) | REG3) & glm::uint64(0x000000FF000000FF); | 
						|
			REG4 = ((REG4 << 24) | REG4) & glm::uint64(0x000000FF000000FF); | 
						|
 | 
						|
			REG1 = ((REG1 << 12) | REG1) & glm::uint64(0x000F000F000F000F); | 
						|
			REG2 = ((REG2 << 12) | REG2) & glm::uint64(0x000F000F000F000F); | 
						|
			REG3 = ((REG3 << 12) | REG3) & glm::uint64(0x000F000F000F000F); | 
						|
			REG4 = ((REG4 << 12) | REG4) & glm::uint64(0x000F000F000F000F); | 
						|
 | 
						|
			REG1 = ((REG1 <<  6) | REG1) & glm::uint64(0x0303030303030303); | 
						|
			REG2 = ((REG2 <<  6) | REG2) & glm::uint64(0x0303030303030303); | 
						|
			REG3 = ((REG3 <<  6) | REG3) & glm::uint64(0x0303030303030303); | 
						|
			REG4 = ((REG4 <<  6) | REG4) & glm::uint64(0x0303030303030303); | 
						|
 | 
						|
			REG1 = ((REG1 <<  3) | REG1) & glm::uint64(0x1111111111111111); | 
						|
			REG2 = ((REG2 <<  3) | REG2) & glm::uint64(0x1111111111111111); | 
						|
			REG3 = ((REG3 <<  3) | REG3) & glm::uint64(0x1111111111111111); | 
						|
			REG4 = ((REG4 <<  3) | REG4) & glm::uint64(0x1111111111111111); | 
						|
 | 
						|
			return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3); | 
						|
		} | 
						|
	}//namespace detail | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER int16 bitfieldInterleave(int8 x, int8 y) | 
						|
	{ | 
						|
		union sign8 | 
						|
		{ | 
						|
			int8 i; | 
						|
			uint8 u; | 
						|
		} sign_x, sign_y; | 
						|
 | 
						|
		union sign16 | 
						|
		{ | 
						|
			int16 i; | 
						|
			uint16 u; | 
						|
		} result; | 
						|
 | 
						|
		sign_x.i = x; | 
						|
		sign_y.i = y; | 
						|
		result.u = bitfieldInterleave(sign_x.u, sign_y.u); | 
						|
 | 
						|
		return result.i; | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER uint16 bitfieldInterleave(uint8 x, uint8 y) | 
						|
	{ | 
						|
		return detail::bitfieldInterleave<uint8, uint16>(x, y); | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int16 x, int16 y) | 
						|
	{ | 
						|
		union sign16 | 
						|
		{ | 
						|
			int16 i; | 
						|
			uint16 u; | 
						|
		} sign_x, sign_y; | 
						|
 | 
						|
		union sign32 | 
						|
		{ | 
						|
			int32 i; | 
						|
			uint32 u; | 
						|
		} result; | 
						|
 | 
						|
		sign_x.i = x; | 
						|
		sign_y.i = y; | 
						|
		result.u = bitfieldInterleave(sign_x.u, sign_y.u); | 
						|
 | 
						|
		return result.i; | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint16 x, uint16 y) | 
						|
	{ | 
						|
		return detail::bitfieldInterleave<uint16, uint32>(x, y); | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y) | 
						|
	{ | 
						|
		union sign32 | 
						|
		{ | 
						|
			int32 i; | 
						|
			uint32 u; | 
						|
		} sign_x, sign_y; | 
						|
 | 
						|
		union sign64 | 
						|
		{ | 
						|
			int64 i; | 
						|
			uint64 u; | 
						|
		} result; | 
						|
 | 
						|
		sign_x.i = x; | 
						|
		sign_y.i = y; | 
						|
		result.u = bitfieldInterleave(sign_x.u, sign_y.u); | 
						|
 | 
						|
		return result.i; | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y) | 
						|
	{ | 
						|
		return detail::bitfieldInterleave<uint32, uint64>(x, y); | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z) | 
						|
	{ | 
						|
		union sign8 | 
						|
		{ | 
						|
			int8 i; | 
						|
			uint8 u; | 
						|
		} sign_x, sign_y, sign_z; | 
						|
 | 
						|
		union sign32 | 
						|
		{ | 
						|
			int32 i; | 
						|
			uint32 u; | 
						|
		} result; | 
						|
 | 
						|
		sign_x.i = x; | 
						|
		sign_y.i = y; | 
						|
		sign_z.i = z; | 
						|
		result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); | 
						|
 | 
						|
		return result.i; | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z) | 
						|
	{ | 
						|
		return detail::bitfieldInterleave<uint8, uint32>(x, y, z); | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z) | 
						|
	{ | 
						|
		union sign16 | 
						|
		{ | 
						|
			int16 i; | 
						|
			uint16 u; | 
						|
		} sign_x, sign_y, sign_z; | 
						|
 | 
						|
		union sign64 | 
						|
		{ | 
						|
			int64 i; | 
						|
			uint64 u; | 
						|
		} result; | 
						|
 | 
						|
		sign_x.i = x; | 
						|
		sign_y.i = y; | 
						|
		sign_z.i = z; | 
						|
		result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); | 
						|
 | 
						|
		return result.i; | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z) | 
						|
	{ | 
						|
		return detail::bitfieldInterleave<uint32, uint64>(x, y, z); | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y, int32 z) | 
						|
	{ | 
						|
		union sign16 | 
						|
		{ | 
						|
			int32 i; | 
						|
			uint32 u; | 
						|
		} sign_x, sign_y, sign_z; | 
						|
 | 
						|
		union sign64 | 
						|
		{ | 
						|
			int64 i; | 
						|
			uint64 u; | 
						|
		} result; | 
						|
 | 
						|
		sign_x.i = x; | 
						|
		sign_y.i = y; | 
						|
		sign_z.i = z; | 
						|
		result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); | 
						|
 | 
						|
		return result.i; | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z) | 
						|
	{ | 
						|
		return detail::bitfieldInterleave<uint32, uint64>(x, y, z); | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w) | 
						|
	{ | 
						|
		union sign8 | 
						|
		{ | 
						|
			int8 i; | 
						|
			uint8 u; | 
						|
		} sign_x, sign_y, sign_z, sign_w; | 
						|
 | 
						|
		union sign32 | 
						|
		{ | 
						|
			int32 i; | 
						|
			uint32 u; | 
						|
		} result; | 
						|
 | 
						|
		sign_x.i = x; | 
						|
		sign_y.i = y; | 
						|
		sign_z.i = z; | 
						|
		sign_w.i = w; | 
						|
		result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u); | 
						|
 | 
						|
		return result.i; | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w) | 
						|
	{ | 
						|
		return detail::bitfieldInterleave<uint8, uint32>(x, y, z, w); | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w) | 
						|
	{ | 
						|
		union sign16 | 
						|
		{ | 
						|
			int16 i; | 
						|
			uint16 u; | 
						|
		} sign_x, sign_y, sign_z, sign_w; | 
						|
 | 
						|
		union sign64 | 
						|
		{ | 
						|
			int64 i; | 
						|
			uint64 u; | 
						|
		} result; | 
						|
 | 
						|
		sign_x.i = x; | 
						|
		sign_y.i = y; | 
						|
		sign_z.i = z; | 
						|
		sign_w.i = w; | 
						|
		result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u); | 
						|
 | 
						|
		return result.i; | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w) | 
						|
	{ | 
						|
		return detail::bitfieldInterleave<uint16, uint64>(x, y, z, w); | 
						|
	} | 
						|
 | 
						|
}//namespace glm
 | 
						|
 |