You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
542 lines
16 KiB
542 lines
16 KiB
/////////////////////////////////////////////////////////////////////////////////// |
|
/// OpenGL Mathematics (glm.g-truc.net) |
|
/// |
|
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net) |
|
/// Permission is hereby granted, free of charge, to any person obtaining a copy |
|
/// of this software and associated documentation files (the "Software"), to deal |
|
/// in the Software without restriction, including without limitation the rights |
|
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
|
/// copies of the Software, and to permit persons to whom the Software is |
|
/// furnished to do so, subject to the following conditions: |
|
/// |
|
/// The above copyright notice and this permission notice shall be included in |
|
/// all copies or substantial portions of the Software. |
|
/// |
|
/// Restrictions: |
|
/// By making use of the Software for military purposes, you choose to make |
|
/// a Bunny unhappy. |
|
/// |
|
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
|
/// THE SOFTWARE. |
|
/// |
|
/// @ref gtc_bitfield |
|
/// @file glm/gtc/bitfield.inl |
|
/// @date 2011-10-14 / 2012-01-25 |
|
/// @author Christophe Riccio |
|
/////////////////////////////////////////////////////////////////////////////////// |
|
|
|
namespace glm{ |
|
namespace detail |
|
{ |
|
template <typename PARAM, typename RET> |
|
GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y); |
|
|
|
template <typename PARAM, typename RET> |
|
GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z); |
|
|
|
template <typename PARAM, typename RET> |
|
GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w); |
|
|
|
template <> |
|
GLM_FUNC_QUALIFIER glm::uint16 bitfieldInterleave(glm::uint8 x, glm::uint8 y) |
|
{ |
|
glm::uint16 REG1(x); |
|
glm::uint16 REG2(y); |
|
|
|
REG1 = ((REG1 << 4) | REG1) & glm::uint16(0x0F0F); |
|
REG2 = ((REG2 << 4) | REG2) & glm::uint16(0x0F0F); |
|
|
|
REG1 = ((REG1 << 2) | REG1) & glm::uint16(0x3333); |
|
REG2 = ((REG2 << 2) | REG2) & glm::uint16(0x3333); |
|
|
|
REG1 = ((REG1 << 1) | REG1) & glm::uint16(0x5555); |
|
REG2 = ((REG2 << 1) | REG2) & glm::uint16(0x5555); |
|
|
|
return REG1 | (REG2 << 1); |
|
} |
|
|
|
template <> |
|
GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint16 x, glm::uint16 y) |
|
{ |
|
glm::uint32 REG1(x); |
|
glm::uint32 REG2(y); |
|
|
|
REG1 = ((REG1 << 8) | REG1) & glm::uint32(0x00FF00FF); |
|
REG2 = ((REG2 << 8) | REG2) & glm::uint32(0x00FF00FF); |
|
|
|
REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x0F0F0F0F); |
|
REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x0F0F0F0F); |
|
|
|
REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x33333333); |
|
REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x33333333); |
|
|
|
REG1 = ((REG1 << 1) | REG1) & glm::uint32(0x55555555); |
|
REG2 = ((REG2 << 1) | REG2) & glm::uint32(0x55555555); |
|
|
|
return REG1 | (REG2 << 1); |
|
} |
|
|
|
template <> |
|
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y) |
|
{ |
|
glm::uint64 REG1(x); |
|
glm::uint64 REG2(y); |
|
|
|
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); |
|
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); |
|
|
|
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); |
|
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); |
|
|
|
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); |
|
|
|
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); |
|
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); |
|
|
|
REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); |
|
REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); |
|
|
|
return REG1 | (REG2 << 1); |
|
} |
|
|
|
template <> |
|
GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z) |
|
{ |
|
glm::uint32 REG1(x); |
|
glm::uint32 REG2(y); |
|
glm::uint32 REG3(z); |
|
|
|
REG1 = ((REG1 << 16) | REG1) & glm::uint32(0x00FF0000FF0000FF); |
|
REG2 = ((REG2 << 16) | REG2) & glm::uint32(0x00FF0000FF0000FF); |
|
REG3 = ((REG3 << 16) | REG3) & glm::uint32(0x00FF0000FF0000FF); |
|
|
|
REG1 = ((REG1 << 8) | REG1) & glm::uint32(0xF00F00F00F00F00F); |
|
REG2 = ((REG2 << 8) | REG2) & glm::uint32(0xF00F00F00F00F00F); |
|
REG3 = ((REG3 << 8) | REG3) & glm::uint32(0xF00F00F00F00F00F); |
|
|
|
REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x30C30C30C30C30C3); |
|
REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x30C30C30C30C30C3); |
|
REG3 = ((REG3 << 4) | REG3) & glm::uint32(0x30C30C30C30C30C3); |
|
|
|
REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x9249249249249249); |
|
REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x9249249249249249); |
|
REG3 = ((REG3 << 2) | REG3) & glm::uint32(0x9249249249249249); |
|
|
|
return REG1 | (REG2 << 1) | (REG3 << 2); |
|
} |
|
|
|
template <> |
|
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z) |
|
{ |
|
glm::uint64 REG1(x); |
|
glm::uint64 REG2(y); |
|
glm::uint64 REG3(z); |
|
|
|
REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFF); |
|
REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFF); |
|
REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFF); |
|
|
|
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FF); |
|
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FF); |
|
REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FF); |
|
|
|
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00F); |
|
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00F); |
|
REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00F); |
|
|
|
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3); |
|
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3); |
|
REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3); |
|
|
|
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249); |
|
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249); |
|
REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249); |
|
|
|
return REG1 | (REG2 << 1) | (REG3 << 2); |
|
} |
|
|
|
template <> |
|
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y, glm::uint32 z) |
|
{ |
|
glm::uint64 REG1(x); |
|
glm::uint64 REG2(y); |
|
glm::uint64 REG3(z); |
|
|
|
REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFF); |
|
REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFF); |
|
REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFF); |
|
|
|
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FF); |
|
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FF); |
|
REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FF); |
|
|
|
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00F); |
|
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00F); |
|
REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00F); |
|
|
|
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3); |
|
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3); |
|
REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3); |
|
|
|
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249); |
|
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249); |
|
REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249); |
|
|
|
return REG1 | (REG2 << 1) | (REG3 << 2); |
|
} |
|
|
|
template <> |
|
GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z, glm::uint8 w) |
|
{ |
|
glm::uint32 REG1(x); |
|
glm::uint32 REG2(y); |
|
glm::uint32 REG3(z); |
|
glm::uint32 REG4(w); |
|
|
|
REG1 = ((REG1 << 12) | REG1) & glm::uint32(0x000F000F000F000F); |
|
REG2 = ((REG2 << 12) | REG2) & glm::uint32(0x000F000F000F000F); |
|
REG3 = ((REG3 << 12) | REG3) & glm::uint32(0x000F000F000F000F); |
|
REG4 = ((REG4 << 12) | REG4) & glm::uint32(0x000F000F000F000F); |
|
|
|
REG1 = ((REG1 << 6) | REG1) & glm::uint32(0x0303030303030303); |
|
REG2 = ((REG2 << 6) | REG2) & glm::uint32(0x0303030303030303); |
|
REG3 = ((REG3 << 6) | REG3) & glm::uint32(0x0303030303030303); |
|
REG4 = ((REG4 << 6) | REG4) & glm::uint32(0x0303030303030303); |
|
|
|
REG1 = ((REG1 << 3) | REG1) & glm::uint32(0x1111111111111111); |
|
REG2 = ((REG2 << 3) | REG2) & glm::uint32(0x1111111111111111); |
|
REG3 = ((REG3 << 3) | REG3) & glm::uint32(0x1111111111111111); |
|
REG4 = ((REG4 << 3) | REG4) & glm::uint32(0x1111111111111111); |
|
|
|
return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3); |
|
} |
|
|
|
template <> |
|
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z, glm::uint16 w) |
|
{ |
|
glm::uint64 REG1(x); |
|
glm::uint64 REG2(y); |
|
glm::uint64 REG3(z); |
|
glm::uint64 REG4(w); |
|
|
|
REG1 = ((REG1 << 24) | REG1) & glm::uint64(0x000000FF000000FF); |
|
REG2 = ((REG2 << 24) | REG2) & glm::uint64(0x000000FF000000FF); |
|
REG3 = ((REG3 << 24) | REG3) & glm::uint64(0x000000FF000000FF); |
|
REG4 = ((REG4 << 24) | REG4) & glm::uint64(0x000000FF000000FF); |
|
|
|
REG1 = ((REG1 << 12) | REG1) & glm::uint64(0x000F000F000F000F); |
|
REG2 = ((REG2 << 12) | REG2) & glm::uint64(0x000F000F000F000F); |
|
REG3 = ((REG3 << 12) | REG3) & glm::uint64(0x000F000F000F000F); |
|
REG4 = ((REG4 << 12) | REG4) & glm::uint64(0x000F000F000F000F); |
|
|
|
REG1 = ((REG1 << 6) | REG1) & glm::uint64(0x0303030303030303); |
|
REG2 = ((REG2 << 6) | REG2) & glm::uint64(0x0303030303030303); |
|
REG3 = ((REG3 << 6) | REG3) & glm::uint64(0x0303030303030303); |
|
REG4 = ((REG4 << 6) | REG4) & glm::uint64(0x0303030303030303); |
|
|
|
REG1 = ((REG1 << 3) | REG1) & glm::uint64(0x1111111111111111); |
|
REG2 = ((REG2 << 3) | REG2) & glm::uint64(0x1111111111111111); |
|
REG3 = ((REG3 << 3) | REG3) & glm::uint64(0x1111111111111111); |
|
REG4 = ((REG4 << 3) | REG4) & glm::uint64(0x1111111111111111); |
|
|
|
return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3); |
|
} |
|
}//namespace detail |
|
|
|
template <typename genIUType> |
|
GLM_FUNC_QUALIFIER genIUType mask(genIUType Bits) |
|
{ |
|
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'mask' accepts only integer values"); |
|
|
|
return Bits >= sizeof(genIUType) * 8 ? ~static_cast<genIUType>(0) : (static_cast<genIUType>(1) << Bits) - static_cast<genIUType>(1); |
|
} |
|
|
|
template <typename T, precision P, template <typename, precision> class vecIUType> |
|
GLM_FUNC_QUALIFIER vecIUType<T, P> mask(vecIUType<T, P> const & v) |
|
{ |
|
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'mask' accepts only integer values"); |
|
|
|
return detail::functor1<T, T, P, vecIUType>::call(mask, v); |
|
} |
|
|
|
template <typename genIType> |
|
GLM_FUNC_QUALIFIER genIType bitfieldRotateRight(genIType In, int Shift) |
|
{ |
|
GLM_STATIC_ASSERT(std::numeric_limits<genIType>::is_integer, "'bitfieldRotateRight' accepts only integer values"); |
|
|
|
int const BitSize = static_cast<genIType>(sizeof(genIType) * 8); |
|
return (In << static_cast<genIType>(Shift)) | (In >> static_cast<genIType>(BitSize - Shift)); |
|
} |
|
|
|
template <typename T, precision P, template <typename, precision> class vecType> |
|
GLM_FUNC_QUALIFIER vecType<T, P> bitfieldRotateRight(vecType<T, P> const & In, int Shift) |
|
{ |
|
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldRotateRight' accepts only integer values"); |
|
|
|
int const BitSize = static_cast<int>(sizeof(T) * 8); |
|
return (In << static_cast<T>(Shift)) | (In >> static_cast<T>(BitSize - Shift)); |
|
} |
|
|
|
template <typename genIType> |
|
GLM_FUNC_QUALIFIER genIType bitfieldRotateLeft(genIType In, int Shift) |
|
{ |
|
GLM_STATIC_ASSERT(std::numeric_limits<genIType>::is_integer, "'bitfieldRotateLeft' accepts only integer values"); |
|
|
|
int const BitSize = static_cast<genIType>(sizeof(genIType) * 8); |
|
return (In >> static_cast<genIType>(Shift)) | (In << static_cast<genIType>(BitSize - Shift)); |
|
} |
|
|
|
template <typename T, precision P, template <typename, precision> class vecType> |
|
GLM_FUNC_QUALIFIER vecType<T, P> bitfieldRotateLeft(vecType<T, P> const & In, int Shift) |
|
{ |
|
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldRotateLeft' accepts only integer values"); |
|
|
|
int const BitSize = static_cast<int>(sizeof(T) * 8); |
|
return (In >> static_cast<T>(Shift)) | (In << static_cast<T>(BitSize - Shift)); |
|
} |
|
|
|
template <typename genIUType> |
|
GLM_FUNC_QUALIFIER genIUType bitfieldFillOne(genIUType Value, int FirstBit, int BitCount) |
|
{ |
|
return Value | static_cast<genIUType>(mask(BitCount) << FirstBit); |
|
} |
|
|
|
template <typename T, precision P, template <typename, precision> class vecType> |
|
GLM_FUNC_QUALIFIER vecType<T, P> bitfieldFillOne(vecType<T, P> const & Value, int FirstBit, int BitCount) |
|
{ |
|
return Value | static_cast<T>(mask(BitCount) << FirstBit); |
|
} |
|
|
|
template <typename genIUType> |
|
GLM_FUNC_QUALIFIER genIUType bitfieldFillZero(genIUType Value, int FirstBit, int BitCount) |
|
{ |
|
return Value & static_cast<genIUType>(~(mask(BitCount) << FirstBit)); |
|
} |
|
|
|
template <typename T, precision P, template <typename, precision> class vecType> |
|
GLM_FUNC_QUALIFIER vecType<T, P> bitfieldFillZero(vecType<T, P> const & Value, int FirstBit, int BitCount) |
|
{ |
|
return Value & static_cast<T>(~(mask(BitCount) << FirstBit)); |
|
} |
|
|
|
GLM_FUNC_QUALIFIER int16 bitfieldInterleave(int8 x, int8 y) |
|
{ |
|
union sign8 |
|
{ |
|
int8 i; |
|
uint8 u; |
|
} sign_x, sign_y; |
|
|
|
union sign16 |
|
{ |
|
int16 i; |
|
uint16 u; |
|
} result; |
|
|
|
sign_x.i = x; |
|
sign_y.i = y; |
|
result.u = bitfieldInterleave(sign_x.u, sign_y.u); |
|
|
|
return result.i; |
|
} |
|
|
|
GLM_FUNC_QUALIFIER uint16 bitfieldInterleave(uint8 x, uint8 y) |
|
{ |
|
return detail::bitfieldInterleave<uint8, uint16>(x, y); |
|
} |
|
|
|
GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int16 x, int16 y) |
|
{ |
|
union sign16 |
|
{ |
|
int16 i; |
|
uint16 u; |
|
} sign_x, sign_y; |
|
|
|
union sign32 |
|
{ |
|
int32 i; |
|
uint32 u; |
|
} result; |
|
|
|
sign_x.i = x; |
|
sign_y.i = y; |
|
result.u = bitfieldInterleave(sign_x.u, sign_y.u); |
|
|
|
return result.i; |
|
} |
|
|
|
GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint16 x, uint16 y) |
|
{ |
|
return detail::bitfieldInterleave<uint16, uint32>(x, y); |
|
} |
|
|
|
GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y) |
|
{ |
|
union sign32 |
|
{ |
|
int32 i; |
|
uint32 u; |
|
} sign_x, sign_y; |
|
|
|
union sign64 |
|
{ |
|
int64 i; |
|
uint64 u; |
|
} result; |
|
|
|
sign_x.i = x; |
|
sign_y.i = y; |
|
result.u = bitfieldInterleave(sign_x.u, sign_y.u); |
|
|
|
return result.i; |
|
} |
|
|
|
GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y) |
|
{ |
|
return detail::bitfieldInterleave<uint32, uint64>(x, y); |
|
} |
|
|
|
GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z) |
|
{ |
|
union sign8 |
|
{ |
|
int8 i; |
|
uint8 u; |
|
} sign_x, sign_y, sign_z; |
|
|
|
union sign32 |
|
{ |
|
int32 i; |
|
uint32 u; |
|
} result; |
|
|
|
sign_x.i = x; |
|
sign_y.i = y; |
|
sign_z.i = z; |
|
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); |
|
|
|
return result.i; |
|
} |
|
|
|
GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z) |
|
{ |
|
return detail::bitfieldInterleave<uint8, uint32>(x, y, z); |
|
} |
|
|
|
GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z) |
|
{ |
|
union sign16 |
|
{ |
|
int16 i; |
|
uint16 u; |
|
} sign_x, sign_y, sign_z; |
|
|
|
union sign64 |
|
{ |
|
int64 i; |
|
uint64 u; |
|
} result; |
|
|
|
sign_x.i = x; |
|
sign_y.i = y; |
|
sign_z.i = z; |
|
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); |
|
|
|
return result.i; |
|
} |
|
|
|
GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z) |
|
{ |
|
return detail::bitfieldInterleave<uint32, uint64>(x, y, z); |
|
} |
|
|
|
GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y, int32 z) |
|
{ |
|
union sign16 |
|
{ |
|
int32 i; |
|
uint32 u; |
|
} sign_x, sign_y, sign_z; |
|
|
|
union sign64 |
|
{ |
|
int64 i; |
|
uint64 u; |
|
} result; |
|
|
|
sign_x.i = x; |
|
sign_y.i = y; |
|
sign_z.i = z; |
|
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); |
|
|
|
return result.i; |
|
} |
|
|
|
GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z) |
|
{ |
|
return detail::bitfieldInterleave<uint32, uint64>(x, y, z); |
|
} |
|
|
|
GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w) |
|
{ |
|
union sign8 |
|
{ |
|
int8 i; |
|
uint8 u; |
|
} sign_x, sign_y, sign_z, sign_w; |
|
|
|
union sign32 |
|
{ |
|
int32 i; |
|
uint32 u; |
|
} result; |
|
|
|
sign_x.i = x; |
|
sign_y.i = y; |
|
sign_z.i = z; |
|
sign_w.i = w; |
|
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u); |
|
|
|
return result.i; |
|
} |
|
|
|
GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w) |
|
{ |
|
return detail::bitfieldInterleave<uint8, uint32>(x, y, z, w); |
|
} |
|
|
|
GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w) |
|
{ |
|
union sign16 |
|
{ |
|
int16 i; |
|
uint16 u; |
|
} sign_x, sign_y, sign_z, sign_w; |
|
|
|
union sign64 |
|
{ |
|
int64 i; |
|
uint64 u; |
|
} result; |
|
|
|
sign_x.i = x; |
|
sign_y.i = y; |
|
sign_z.i = z; |
|
sign_w.i = w; |
|
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u); |
|
|
|
return result.i; |
|
} |
|
|
|
GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w) |
|
{ |
|
return detail::bitfieldInterleave<uint16, uint64>(x, y, z, w); |
|
} |
|
}//namespace glm
|
|
|