OpenGL Mathematics (GLM)
You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
 
 
 

276 lines
6.8 KiB

///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @file test/core/func_matrix.cpp
/// @date 2007-01-25 / 2011-06-07
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
#include <glm/matrix.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/ulp.hpp>
#include <vector>
#include <ctime>
#include <cstdio>
using namespace glm;
int test_matrixCompMult()
{
int Error(0);
{
mat2 m(0, 1, 2, 3);
mat2 n = matrixCompMult(m, m);
Error += n == mat2(0, 1, 4, 9) ? 0 : 1;
}
{
mat2x3 m(0, 1, 2, 3, 4, 5);
mat2x3 n = matrixCompMult(m, m);
Error += n == mat2x3(0, 1, 4, 9, 16, 25) ? 0 : 1;
}
{
mat2x4 m(0, 1, 2, 3, 4, 5, 6, 7);
mat2x4 n = matrixCompMult(m, m);
Error += n == mat2x4(0, 1, 4, 9, 16, 25, 36, 49) ? 0 : 1;
}
{
mat3 m(0, 1, 2, 3, 4, 5, 6, 7, 8);
mat3 n = matrixCompMult(m, m);
Error += n == mat3(0, 1, 4, 9, 16, 25, 36, 49, 64) ? 0 : 1;
}
{
mat3x2 m(0, 1, 2, 3, 4, 5);
mat3x2 n = matrixCompMult(m, m);
Error += n == mat3x2(0, 1, 4, 9, 16, 25) ? 0 : 1;
}
{
mat3x4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
mat3x4 n = matrixCompMult(m, m);
Error += n == mat3x4(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121) ? 0 : 1;
}
{
mat4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
mat4 n = matrixCompMult(m, m);
Error += n == mat4(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225) ? 0 : 1;
}
{
mat4x2 m(0, 1, 2, 3, 4, 5, 6, 7);
mat4x2 n = matrixCompMult(m, m);
Error += n == mat4x2(0, 1, 4, 9, 16, 25, 36, 49) ? 0 : 1;
}
{
mat4x3 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
mat4x3 n = matrixCompMult(m, m);
Error += n == mat4x3(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121) ? 0 : 1;
}
return Error;
}
int test_outerProduct()
{
glm::mat4 m = glm::outerProduct(glm::vec4(1.0f), glm::vec4(1.0f));
return 0;
}
int test_transpose()
{
int Error(0);
{
mat2 m(0, 1, 2, 3);
mat2 t = transpose(m);
Error += t == mat2(0, 2, 1, 3) ? 0 : 1;
}
{
mat2x3 m(0, 1, 2, 3, 4, 5);
mat3x2 t = transpose(m);
Error += t == mat3x2(0, 3, 1, 4, 2, 5) ? 0 : 1;
}
{
mat2x4 m(0, 1, 2, 3, 4, 5, 6, 7);
mat4x2 t = transpose(m);
Error += t == mat4x2(0, 4, 1, 5, 2, 6, 3, 7) ? 0 : 1;
}
{
mat3 m(0, 1, 2, 3, 4, 5, 6, 7, 8);
mat3 t = transpose(m);
Error += t == mat3(0, 3, 6, 1, 4, 7, 2, 5, 8) ? 0 : 1;
}
{
mat3x2 m(0, 1, 2, 3, 4, 5);
mat2x3 t = transpose(m);
Error += t == mat2x3(0, 2, 4, 1, 3, 5) ? 0 : 1;
}
{
mat3x4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
mat4x3 t = transpose(m);
Error += t == mat4x3(0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11) ? 0 : 1;
}
{
mat4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
mat4 t = transpose(m);
Error += t == mat4(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15) ? 0 : 1;
}
{
mat4x2 m(0, 1, 2, 3, 4, 5, 6, 7);
mat2x4 t = transpose(m);
Error += t == mat2x4(0, 2, 4, 6, 1, 3, 5, 7) ? 0 : 1;
}
{
mat4x3 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
mat3x4 t = transpose(m);
Error += t == mat3x4(0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11) ? 0 : 1;
}
return Error;
}
int test_determinant()
{
return 0;
}
int test_inverse()
{
int Failed(0);
glm::mat4x4 A4x4(
glm::vec4(1, 0, 1, 0),
glm::vec4(0, 1, 0, 0),
glm::vec4(0, 0, 1, 0),
glm::vec4(0, 0, 0, 1));
glm::mat4x4 B4x4 = inverse(A4x4);
glm::mat4x4 I4x4 = A4x4 * B4x4;
Failed += I4x4 == glm::mat4x4(1) ? 0 : 1;
glm::mat3x3 A3x3(
glm::vec3(1, 0, 1),
glm::vec3(0, 1, 0),
glm::vec3(0, 0, 1));
glm::mat3x3 B3x3 = glm::inverse(A3x3);
glm::mat3x3 I3x3 = A3x3 * B3x3;
Failed += I3x3 == glm::mat3x3(1) ? 0 : 1;
glm::mat2x2 A2x2(
glm::vec2(1, 1),
glm::vec2(0, 1));
glm::mat2x2 B2x2 = glm::inverse(A2x2);
glm::mat2x2 I2x2 = A2x2 * B2x2;
Failed += I2x2 == glm::mat2x2(1) ? 0 : 1;
return Failed;
}
std::size_t const Count(10000000);
template <typename VEC3, typename MAT4>
int test_inverse_perf(std::size_t Instance, char const * Message)
{
std::vector<MAT4> TestInputs;
TestInputs.resize(Count);
std::vector<MAT4> TestOutputs;
TestOutputs.resize(TestInputs.size());
VEC3 Axis(glm::normalize(VEC3(1.0f, 2.0f, 3.0f)));
for(std::size_t i = 0; i < TestInputs.size(); ++i)
{
typename MAT4::value_type f = static_cast<typename MAT4::value_type>(i + Instance) * typename MAT4::value_type(0.1) + typename MAT4::value_type(0.1);
TestInputs[i] = glm::rotate(glm::translate(MAT4(1), Axis * f), f, Axis);
//TestInputs[i] = glm::translate(MAT4(1), Axis * f);
}
std::clock_t StartTime = std::clock();
for(std::size_t i = 0; i < TestInputs.size(); ++i)
TestOutputs[i] = glm::inverse(TestInputs[i]);
std::clock_t EndTime = std::clock();
for(std::size_t i = 0; i < TestInputs.size(); ++i)
TestOutputs[i] = TestOutputs[i] * TestInputs[i];
typename MAT4::value_type Diff(0);
for(std::size_t Entry = 0; Entry < TestOutputs.size(); ++Entry)
{
MAT4 i(1.0);
MAT4 m(TestOutputs[Entry]);
for(glm::length_t y = 0; y < m.length(); ++y)
for(glm::length_t x = 0; x < m[y].length(); ++x)
Diff = glm::max(m[y][x], i[y][x]);
}
//glm::uint Ulp = 0;
//Ulp = glm::max(glm::float_distance(*Dst, *Src), Ulp);
printf("inverse<%s>(%f): %lu\n", Message, Diff, EndTime - StartTime);
return 0;
}
int main()
{
int Error(0);
Error += test_matrixCompMult();
Error += test_outerProduct();
Error += test_transpose();
Error += test_determinant();
Error += test_inverse();
# ifdef NDEBUG
for(std::size_t i = 0; i < 1; ++i)
{
Error += test_inverse_perf<glm::vec3, glm::mat4>(i, "mat4");
Error += test_inverse_perf<glm::dvec3, glm::dmat4>(i, "dmat4");
}
# endif//NDEBUG
return Error;
}