You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
		
		
		
		
		
			
		
			
				
					
					
						
							724 lines
						
					
					
						
							22 KiB
						
					
					
				
			
		
		
	
	
							724 lines
						
					
					
						
							22 KiB
						
					
					
				#define GLM_ENABLE_EXPERIMENTAL | 
						|
#include <glm/glm.hpp> | 
						|
#include <glm/gtx/pca.hpp> | 
						|
#include <glm/gtc/epsilon.hpp> | 
						|
#include <glm/gtx/string_cast.hpp> | 
						|
 | 
						|
#include <cstdio> | 
						|
#include <vector> | 
						|
#if GLM_HAS_CXX11_STL == 1 | 
						|
#include <random> | 
						|
#endif | 
						|
 | 
						|
template<typename T> | 
						|
T myEpsilon(); | 
						|
template<> | 
						|
GLM_INLINE GLM_CONSTEXPR float myEpsilon<float>() { return 0.00001f; } | 
						|
template<> | 
						|
GLM_INLINE GLM_CONSTEXPR double myEpsilon<double>() { return 0.000001; } | 
						|
 | 
						|
template<glm::length_t D, typename T, glm::qualifier Q> | 
						|
bool vectorEpsilonEqual(glm::vec<D, T, Q> const& a, glm::vec<D, T, Q> const& b, T epsilon) | 
						|
{ | 
						|
	for (int c = 0; c < D; ++c) | 
						|
		if (!glm::epsilonEqual(a[c], b[c], epsilon)) | 
						|
		{ | 
						|
			fprintf(stderr, "failing vectorEpsilonEqual: [%d] %lf != %lf (~%lf)\n", | 
						|
				c, | 
						|
				static_cast<double>(a[c]), | 
						|
				static_cast<double>(b[c]), | 
						|
				static_cast<double>(epsilon) | 
						|
			); | 
						|
			return false; | 
						|
		} | 
						|
	return true; | 
						|
} | 
						|
 | 
						|
template<glm::length_t D, typename T, glm::qualifier Q> | 
						|
bool matrixEpsilonEqual(glm::mat<D, D, T, Q> const& a, glm::mat<D, D, T, Q> const& b, T epsilon) | 
						|
{ | 
						|
	for (int c = 0; c < D; ++c) | 
						|
		for (int r = 0; r < D; ++r) | 
						|
			if (!glm::epsilonEqual(a[c][r], b[c][r], epsilon)) | 
						|
			{ | 
						|
				fprintf(stderr, "failing vectorEpsilonEqual: [%d][%d] %lf != %lf (~%lf)\n", | 
						|
					c, r, | 
						|
					static_cast<double>(a[c][r]), | 
						|
					static_cast<double>(b[c][r]), | 
						|
					static_cast<double>(epsilon) | 
						|
				); | 
						|
				return false; | 
						|
			} | 
						|
	return true; | 
						|
} | 
						|
 | 
						|
template<typename T> | 
						|
GLM_INLINE bool sameSign(T const& a, T const& b) | 
						|
{ | 
						|
	return ((a >= 0) && (b >= 0)) || ((a < 0) && (b < 0)); | 
						|
} | 
						|
 | 
						|
template<typename T> | 
						|
T failReport(T line) | 
						|
{ | 
						|
	fprintf(stderr, "Failed in line %d\n", static_cast<int>(line)); | 
						|
	return line; | 
						|
} | 
						|
 | 
						|
// Test data: 1AGA 'agarose double helix' | 
						|
// https://www.rcsb.org/structure/1aga | 
						|
// The fourth coordinate is randomized | 
						|
namespace agarose | 
						|
{ | 
						|
 | 
						|
	// Fills `outTestData` with hard-coded atom positions from 1AGA | 
						|
	// The fourth coordinate is randomized | 
						|
	template<typename vec> | 
						|
	void fillTestData(std::vector<vec>& outTestData) | 
						|
	{ | 
						|
		// x,y,z coordinates copied from RCSB PDB file of 1AGA | 
						|
		// w coordinate randomized with standard normal distribution | 
						|
		static const double _1aga[] = { | 
						|
			3.219, -0.637, 19.462, 2.286, | 
						|
			4.519, 0.024, 18.980, -0.828, | 
						|
			4.163, 1.425, 18.481, -0.810, | 
						|
			3.190, 1.341, 17.330, -0.170, | 
						|
			1.962, 0.991, 18.165, 0.816, | 
						|
			2.093, 1.952, 19.331, 0.276, | 
						|
			5.119, -0.701, 17.908, -0.490, | 
						|
			3.517, 2.147, 19.514, -0.207, | 
						|
			2.970, 2.609, 16.719, 0.552, | 
						|
			2.107, -0.398, 18.564, 0.403, | 
						|
			2.847, 2.618, 15.335, 0.315, | 
						|
			1.457, 3.124, 14.979, 0.683, | 
						|
			1.316, 3.291, 13.473, 0.446, | 
						|
			2.447, 4.155, 12.931, 1.324, | 
						|
			3.795, 3.614, 13.394, 0.112, | 
						|
			4.956, 4.494, 12.982, 0.253, | 
						|
			0.483, 2.217, 15.479, 1.316, | 
						|
			0.021, 3.962, 13.166, 1.522, | 
						|
			2.311, 5.497, 13.395, 0.248, | 
						|
			3.830, 3.522, 14.827, 0.591, | 
						|
			5.150, 4.461, 11.576, 0.635, | 
						|
			-1.057, 3.106, 13.132, 0.191, | 
						|
			-2.280, 3.902, 12.650, 1.135, | 
						|
			-3.316, 2.893, 12.151, 0.794, | 
						|
			-2.756, 2.092, 11.000, 0.720, | 
						|
			-1.839, 1.204, 11.835, -1.172, | 
						|
			-2.737, 0.837, 13.001, -0.313, | 
						|
			-1.952, 4.784, 11.578, 2.082, | 
						|
			-3.617, 1.972, 13.184, 0.653, | 
						|
			-3.744, 1.267, 10.389, -0.413, | 
						|
			-0.709, 2.024, 12.234, -1.747, | 
						|
			-3.690, 1.156, 9.005, -1.275, | 
						|
			-3.434, -0.300, 8.649, 0.441, | 
						|
			-3.508, -0.506, 7.143, 0.237, | 
						|
			-4.822, 0.042, 6.601, -2.856, | 
						|
			-5.027, 1.480, 7.064, 0.985, | 
						|
			-6.370, 2.045, 6.652, 0.915, | 
						|
			-2.162, -0.690, 9.149, 1.100, | 
						|
			-3.442, -1.963, 6.836, -0.081, | 
						|
			-5.916, -0.747, 7.065, -2.345, | 
						|
			-4.965, 1.556, 8.497, 0.504, | 
						|
			-6.439, 2.230, 5.246, 1.451, | 
						|
			-2.161, -2.469, 6.802, -1.171, | 
						|
			-2.239, -3.925, 6.320, -1.434, | 
						|
			-0.847, -4.318, 5.821, 0.098, | 
						|
			-0.434, -3.433, 4.670, -1.446, | 
						|
			-0.123, -2.195, 5.505, 0.182, | 
						|
			0.644, -2.789, 6.671, 0.865, | 
						|
			-3.167, -4.083, 5.248, -0.098, | 
						|
			0.101, -4.119, 6.854, -0.001, | 
						|
			0.775, -3.876, 4.059, 1.061, | 
						|
			-1.398, -1.625, 5.904, 0.230, | 
						|
			0.844, -3.774, 2.675, 1.313, | 
						|
			1.977, -2.824, 2.319, -0.112, | 
						|
			2.192, -2.785, 0.813, -0.981, | 
						|
			2.375, -4.197, 0.271, -0.355, | 
						|
			1.232, -5.093, 0.734, 0.632, | 
						|
			1.414, -6.539, 0.322, 0.576, | 
						|
			1.678, -1.527, 2.819, -1.187, | 
						|
			3.421, -1.999, 0.496, -1.770, | 
						|
			3.605, -4.750, 0.735, 1.099, | 
						|
			1.135, -5.078, 2.167, 0.854, | 
						|
			1.289, -6.691, -1.084, -0.487, | 
						|
			-1.057, 3.106, 22.602, -1.297, | 
						|
			-2.280, 3.902, 22.120, 0.376, | 
						|
			-3.316, 2.893, 21.621, 0.932, | 
						|
			-2.756, 2.092, 20.470, 1.680, | 
						|
			-1.839, 1.204, 21.305, 0.615, | 
						|
			-2.737, 0.837, 22.471, 0.899, | 
						|
			-1.952, 4.784, 21.048, -0.521, | 
						|
			-3.617, 1.972, 22.654, 0.133, | 
						|
			-3.744, 1.267, 19.859, 0.081, | 
						|
			-0.709, 2.024, 21.704, 1.420, | 
						|
			-3.690, 1.156, 18.475, -0.850, | 
						|
			-3.434, -0.300, 18.119, -0.249, | 
						|
			-3.508, -0.506, 16.613, 1.434, | 
						|
			-4.822, 0.042, 16.071, -2.466, | 
						|
			-5.027, 1.480, 16.534, -1.045, | 
						|
			-6.370, 2.045, 16.122, 1.707, | 
						|
			-2.162, -0.690, 18.619, -2.023, | 
						|
			-3.442, -1.963, 16.336, -0.304, | 
						|
			-5.916, -0.747, 16.535, 0.979, | 
						|
			-4.965, 1.556, 17.967, -1.165, | 
						|
			-6.439, 2.230, 14.716, 0.929, | 
						|
			-2.161, -2.469, 16.302, -0.234, | 
						|
			-2.239, -3.925, 15.820, -0.228, | 
						|
			-0.847, -4.318, 15.321, 1.844, | 
						|
			-0.434, -3.433, 14.170, 1.132, | 
						|
			-0.123, -2.195, 15.005, 0.211, | 
						|
			0.644, -2.789, 16.171, -0.632, | 
						|
			-3.167, -4.083, 14.748, -0.519, | 
						|
			0.101, -4.119, 16.354, 0.173, | 
						|
			0.775, -3.876, 13.559, 1.243, | 
						|
			-1.398, -1.625, 15.404, -0.187, | 
						|
			0.844, -3.774, 12.175, -1.332, | 
						|
			1.977, -2.824, 11.819, -1.616, | 
						|
			2.192, -2.785, 10.313, 1.320, | 
						|
			2.375, -4.197, 9.771, 0.237, | 
						|
			1.232, -5.093, 10.234, 0.851, | 
						|
			1.414, -6.539, 9.822, 1.816, | 
						|
			1.678, -1.527, 12.319, -1.657, | 
						|
			3.421, -1.999, 10.036, 1.559, | 
						|
			3.605, -4.750, 10.235, 0.831, | 
						|
			1.135, -5.078, 11.667, 0.060, | 
						|
			1.289, -6.691, 8.416, 1.066, | 
						|
			3.219, -0.637, 10.002, 2.111, | 
						|
			4.519, 0.024, 9.520, -0.874, | 
						|
			4.163, 1.425, 9.021, -1.012, | 
						|
			3.190, 1.341, 7.870, -0.250, | 
						|
			1.962, 0.991, 8.705, -1.359, | 
						|
			2.093, 1.952, 9.871, -0.126, | 
						|
			5.119, -0.701, 8.448, 0.995, | 
						|
			3.517, 2.147, 10.054, 0.941, | 
						|
			2.970, 2.609, 7.259, -0.562, | 
						|
			2.107, -0.398, 9.104, -0.038, | 
						|
			2.847, 2.618, 5.875, 0.398, | 
						|
			1.457, 3.124, 5.519, 0.481, | 
						|
			1.316, 3.291, 4.013, -0.187, | 
						|
			2.447, 4.155, 3.471, -0.429, | 
						|
			3.795, 3.614, 3.934, -0.432, | 
						|
			4.956, 4.494, 3.522, -0.788, | 
						|
			0.483, 2.217, 6.019, -0.923, | 
						|
			0.021, 3.962, 3.636, -0.316, | 
						|
			2.311, 5.497, 3.935, -1.917, | 
						|
			3.830, 3.522, 5.367, -0.302, | 
						|
			5.150, 4.461, 2.116, -1.615 | 
						|
		}; | 
						|
		static const glm::length_t _1agaSize = sizeof(_1aga) / (4 * sizeof(double)); | 
						|
 | 
						|
		outTestData.resize(_1agaSize); | 
						|
		for(glm::length_t i = 0; i < _1agaSize; ++i) | 
						|
			for(glm::length_t d = 0; d < static_cast<glm::length_t>(vec::length()); ++d) | 
						|
				outTestData[i][d] = static_cast<typename vec::value_type>(_1aga[i * 4 + d]); | 
						|
	} | 
						|
 | 
						|
	// All reference values computed separately using symbolic precision | 
						|
	// https://github.com/sgrottel/exp-pca-precision | 
						|
	// This applies to all functions named: `agarose::expected*()` | 
						|
 | 
						|
	GLM_INLINE glm::dmat4 const& expectedCovarData() | 
						|
	{ | 
						|
		static const glm::dmat4 covar4x4d( | 
						|
			9.62434068027210898322, -0.00006657369614512471, -4.29321376568405099761, 0.01879374187452758846, | 
						|
			-0.00006657369614512471, 9.62443937868480681175, 5.35113872637944076871, -0.11569259145880574080, | 
						|
			-4.29321376568405099761, 5.35113872637944076871, 35.62848549634668415820, 0.90874239254220201545, | 
						|
			0.01879374187452758846, -0.11569259145880574080, 0.90874239254220201545, 1.09705971856890904803 | 
						|
		); | 
						|
		return covar4x4d; | 
						|
	} | 
						|
 | 
						|
	template<glm::length_t D> | 
						|
	GLM_INLINE glm::vec<D, double, glm::defaultp> const& expectedEigenvalues(); | 
						|
	template<> | 
						|
	GLM_INLINE glm::dvec2 const& expectedEigenvalues<2>() | 
						|
	{ | 
						|
		static const glm::dvec2 evals2( | 
						|
			9.62447289926297399961763301774251330057894539467032275382255, | 
						|
			9.62430715969394210015560961264297422776572580714373620309355 | 
						|
		); | 
						|
		return evals2; | 
						|
	} | 
						|
	template<> | 
						|
	GLM_INLINE glm::dvec3 const& expectedEigenvalues<3>() | 
						|
	{ | 
						|
		static const glm::dvec3 evals3( | 
						|
				37.3274494274683425233695502581182052836449738530676689472257, | 
						|
				9.62431434161498823505729817436585077939509766554969096873168, | 
						|
				7.92550178622027216422369326567668971675332732240052872097887 | 
						|
			); | 
						|
		return evals3; | 
						|
	} | 
						|
	template<> | 
						|
	GLM_INLINE glm::dvec4 const& expectedEigenvalues<4>() | 
						|
	{ | 
						|
		static const glm::dvec4 evals4( | 
						|
				37.3477389918792213596879452204499702406947817221901007885630, | 
						|
				9.62470688921105696017807313860277172063600080413412567999700, | 
						|
				7.94017075281634999342344275928070533134615133171969063657713, | 
						|
				1.06170863996588365446060186982477896078741484440002343404155 | 
						|
			); | 
						|
		return evals4; | 
						|
	} | 
						|
 | 
						|
	template<glm::length_t D> | 
						|
	GLM_INLINE glm::mat<D, D, double, glm::defaultp> const& expectedEigenvectors(); | 
						|
	template<> | 
						|
	GLM_INLINE glm::dmat2 const& expectedEigenvectors<2>() | 
						|
	{ | 
						|
		static const glm::dmat2 evecs2( | 
						|
			glm::dvec2( | 
						|
				-0.503510847492551904906870957742619139443409162857537237123308, | 
						|
				1 | 
						|
			), | 
						|
			glm::dvec2( | 
						|
				1.98605453086051402895741763848787613048533838388005162794043, | 
						|
				1 | 
						|
			) | 
						|
		); | 
						|
		return evecs2; | 
						|
	} | 
						|
	template<> | 
						|
	GLM_INLINE glm::dmat3 const& expectedEigenvectors<3>() | 
						|
	{ | 
						|
		static const glm::dmat3 evecs3( | 
						|
			glm::dvec3( | 
						|
				-0.154972738414395866005286433008304444294405085038689821864654, | 
						|
				0.193161285869815165989799191097521722568079378840201629578695, | 
						|
				1 | 
						|
			), | 
						|
			glm::dvec3( | 
						|
				-158565.112775416943154745839952575022429933119522746586149868, | 
						|
				-127221.506282351944358932458687410410814983610301927832439675, | 
						|
				1 | 
						|
			), | 
						|
			glm::dvec3( | 
						|
				2.52702248596556806145700361724323960543858113426446460406536, | 
						|
				-3.14959802931313870497377546974185300816008580801457419079412, | 
						|
				1 | 
						|
			) | 
						|
		); | 
						|
		return evecs3; | 
						|
	} | 
						|
	template<> | 
						|
	GLM_INLINE glm::dmat4 const& expectedEigenvectors<4>() | 
						|
	{ | 
						|
		static const glm::dmat4 evecs4( | 
						|
			glm::dvec4( | 
						|
				-6.35322390281037045217295803597357821705371650876122113027264, | 
						|
				7.91546394153385394517767054617789939529794642646629201212056, | 
						|
				41.0301543819240679808549819457450130787045236815736490549663, | 
						|
				1 | 
						|
			), | 
						|
			glm::dvec4( | 
						|
				-114.622418941087829756565311692197154422302604224781253861297, | 
						|
				-92.2070185807065289900871215218752013659402949497379896153118, | 
						|
				0.0155846091025912430932734548933329458404665760587569100867246, | 
						|
				1 | 
						|
			), | 
						|
			glm::dvec4( | 
						|
				13.1771887761559019483954743159026938257325190511642952175789, | 
						|
				-16.3688257459634877666638419310116970616615816436949741766895, | 
						|
				5.17386502341472097227408249233288958059579189051394773143190, | 
						|
				1 | 
						|
			), | 
						|
			glm::dvec4( | 
						|
				-0.0192777078948229800494895064532553117703859768210647632969276, | 
						|
				0.0348034950916108873629241563077465542944938906271231198634442, | 
						|
				-0.0340715609308469289267379681032545422644143611273049912226126, | 
						|
				1 | 
						|
			) | 
						|
		); | 
						|
		return evecs4; | 
						|
	} | 
						|
 | 
						|
} // namespace agarose | 
						|
 | 
						|
// Compute center of gravity | 
						|
template<typename vec> | 
						|
vec computeCenter(const std::vector<vec>& testData) | 
						|
{ | 
						|
	double c[4]; | 
						|
	std::fill(c, c + vec::length(), 0.0); | 
						|
 | 
						|
	typename std::vector<vec>::const_iterator e = testData.end(); | 
						|
	for(typename std::vector<vec>::const_iterator i = testData.begin(); i != e; ++i) | 
						|
		for(glm::length_t d = 0; d < static_cast<glm::length_t>(vec::length()); ++d) | 
						|
			c[d] += static_cast<double>((*i)[d]); | 
						|
 | 
						|
	vec cVec(0); | 
						|
	for(glm::length_t d = 0; d < static_cast<glm::length_t>(vec::length()); ++d) | 
						|
		cVec[d] = static_cast<typename vec::value_type>(c[d] / static_cast<double>(testData.size())); | 
						|
	return cVec; | 
						|
} | 
						|
 | 
						|
// Test sorting of Eigenvalue&Eigenvector lists. Use exhaustive search. | 
						|
template<glm::length_t D, typename T, glm::qualifier Q> | 
						|
int testEigenvalueSort() | 
						|
{ | 
						|
	// Test input data: four arbitrary values | 
						|
	static const glm::vec<D, T, Q> refVal( | 
						|
		glm::vec<4, T, Q>( | 
						|
			10, 8, 6, 4 | 
						|
		) | 
						|
	); | 
						|
	// Test input data: four arbitrary vectors, which can be matched to the above values | 
						|
	static const glm::mat<D, D, T, Q> refVec( | 
						|
		glm::mat<4, 4, T, Q>( | 
						|
			10, 20, 5, 40, | 
						|
			8, 16, 4, 32, | 
						|
			6, 12, 3, 24, | 
						|
			4, 8, 2, 16 | 
						|
		) | 
						|
	); | 
						|
	// Permutations of test input data for exhaustive check, based on `D` (1 <= D <= 4) | 
						|
	static const int permutationCount[] = { | 
						|
		0, | 
						|
		1, | 
						|
		2, | 
						|
		6, | 
						|
		24 | 
						|
	}; | 
						|
	// The permutations t perform, based on `D` (1 <= D <= 4) | 
						|
	static const glm::ivec4 permutation[] = { | 
						|
		glm::ivec4(0, 1, 2, 3), | 
						|
		glm::ivec4(1, 0, 2, 3), // last for D = 2 | 
						|
		glm::ivec4(0, 2, 1, 3), | 
						|
		glm::ivec4(1, 2, 0, 3), | 
						|
		glm::ivec4(2, 0, 1, 3), | 
						|
		glm::ivec4(2, 1, 0, 3), // last for D = 3 | 
						|
		glm::ivec4(0, 1, 3, 2), | 
						|
		glm::ivec4(1, 0, 3, 2), | 
						|
		glm::ivec4(0, 2, 3, 1), | 
						|
		glm::ivec4(1, 2, 3, 0), | 
						|
		glm::ivec4(2, 0, 3, 1), | 
						|
		glm::ivec4(2, 1, 3, 0), | 
						|
		glm::ivec4(0, 3, 1, 2), | 
						|
		glm::ivec4(1, 3, 0, 2), | 
						|
		glm::ivec4(0, 3, 2, 1), | 
						|
		glm::ivec4(1, 3, 2, 0), | 
						|
		glm::ivec4(2, 3, 0, 1), | 
						|
		glm::ivec4(2, 3, 1, 0), | 
						|
		glm::ivec4(3, 0, 1, 2), | 
						|
		glm::ivec4(3, 1, 0, 2), | 
						|
		glm::ivec4(3, 0, 2, 1), | 
						|
		glm::ivec4(3, 1, 2, 0), | 
						|
		glm::ivec4(3, 2, 0, 1), | 
						|
		glm::ivec4(3, 2, 1, 0)  // last for D = 4 | 
						|
	}; | 
						|
 | 
						|
	// initial sanity check | 
						|
	if(!vectorEpsilonEqual(refVal, refVal, myEpsilon<T>())) | 
						|
		return failReport(__LINE__); | 
						|
	if(!matrixEpsilonEqual(refVec, refVec, myEpsilon<T>())) | 
						|
		return failReport(__LINE__); | 
						|
 | 
						|
	// Exhaustive search through all permutations | 
						|
	for(int p = 0; p < permutationCount[D]; ++p) | 
						|
	{ | 
						|
		glm::vec<D, T, Q> testVal; | 
						|
		glm::mat<D, D, T, Q> testVec; | 
						|
		for(int i = 0; i < D; ++i) | 
						|
		{ | 
						|
			testVal[i] = refVal[permutation[p][i]]; | 
						|
			testVec[i] = refVec[permutation[p][i]]; | 
						|
		} | 
						|
 | 
						|
		glm::sortEigenvalues(testVal, testVec); | 
						|
 | 
						|
		if (!vectorEpsilonEqual(testVal, refVal, myEpsilon<T>())) | 
						|
			return failReport(__LINE__); | 
						|
		if (!matrixEpsilonEqual(testVec, refVec, myEpsilon<T>())) | 
						|
			return failReport(__LINE__); | 
						|
	} | 
						|
 | 
						|
	return 0; | 
						|
} | 
						|
 | 
						|
// Test covariance matrix creation functions | 
						|
template<glm::length_t D, typename T, glm::qualifier Q> | 
						|
int testCovar( | 
						|
#if GLM_HAS_CXX11_STL == 1 | 
						|
	glm::length_t dataSize, unsigned int randomEngineSeed | 
						|
#else // GLM_HAS_CXX11_STL == 1 | 
						|
	glm::length_t, unsigned int | 
						|
#endif // GLM_HAS_CXX11_STL == 1 | 
						|
) | 
						|
{ | 
						|
	typedef glm::vec<D, T, Q> vec; | 
						|
	typedef glm::mat<D, D, T, Q> mat; | 
						|
 | 
						|
	// #1: test expected result with fixed data set | 
						|
	std::vector<vec> testData; | 
						|
	agarose::fillTestData(testData); | 
						|
 | 
						|
	// compute center of gravity | 
						|
	vec center = computeCenter(testData); | 
						|
 | 
						|
	mat covarMat = glm::computeCovarianceMatrix(testData.data(), testData.size(), center); | 
						|
	if(!matrixEpsilonEqual(covarMat, mat(agarose::expectedCovarData()), myEpsilon<T>())) | 
						|
	{ | 
						|
		fprintf(stderr, "Reconstructed covarMat:\n%s\n", glm::to_string(covarMat).c_str()); | 
						|
		return failReport(__LINE__); | 
						|
	} | 
						|
 | 
						|
	// #2: test function variant consitency with random data | 
						|
#if GLM_HAS_CXX11_STL == 1 | 
						|
	std::default_random_engine rndEng(randomEngineSeed); | 
						|
	std::normal_distribution<T> normalDist; | 
						|
	testData.resize(dataSize); | 
						|
	// some common offset of all data | 
						|
	T offset[D]; | 
						|
	for(glm::length_t d = 0; d < D; ++d) | 
						|
		offset[d] = normalDist(rndEng); | 
						|
	// init data | 
						|
	for(glm::length_t i = 0; i < dataSize; ++i) | 
						|
		for(glm::length_t d = 0; d < D; ++d) | 
						|
			testData[i][d] = offset[d] + normalDist(rndEng); | 
						|
	center = computeCenter(testData); | 
						|
 | 
						|
	std::vector<vec> centeredTestData; | 
						|
	centeredTestData.reserve(testData.size()); | 
						|
	typename std::vector<vec>::const_iterator e = testData.end(); | 
						|
	for(typename std::vector<vec>::const_iterator i = testData.begin(); i != e; ++i) | 
						|
		centeredTestData.push_back((*i) - center); | 
						|
 | 
						|
	mat c1 = glm::computeCovarianceMatrix(centeredTestData.data(), centeredTestData.size()); | 
						|
	mat c2 = glm::computeCovarianceMatrix<D, T, Q>(centeredTestData.begin(), centeredTestData.end()); | 
						|
	mat c3 = glm::computeCovarianceMatrix(testData.data(), testData.size(), center); | 
						|
	mat c4 = glm::computeCovarianceMatrix<D, T, Q>(testData.rbegin(), testData.rend(), center); | 
						|
 | 
						|
	if(!matrixEpsilonEqual(c1, c2, myEpsilon<T>())) | 
						|
		return failReport(__LINE__); | 
						|
	if(!matrixEpsilonEqual(c1, c3, myEpsilon<T>())) | 
						|
		return failReport(__LINE__); | 
						|
	if(!matrixEpsilonEqual(c1, c4, myEpsilon<T>())) | 
						|
		return failReport(__LINE__); | 
						|
#endif // GLM_HAS_CXX11_STL == 1 | 
						|
	return 0; | 
						|
} | 
						|
 | 
						|
// Computes eigenvalues and eigenvectors from well-known covariance matrix | 
						|
template<glm::length_t D, typename T, glm::qualifier Q> | 
						|
int testEigenvectors(T epsilon) | 
						|
{ | 
						|
	typedef glm::vec<D, T, Q> vec; | 
						|
	typedef glm::mat<D, D, T, Q> mat; | 
						|
 | 
						|
	// test expected result with fixed data set | 
						|
	std::vector<vec> testData; | 
						|
	mat covarMat(agarose::expectedCovarData()); | 
						|
 | 
						|
	vec eigenvalues; | 
						|
	mat eigenvectors; | 
						|
	unsigned int c = glm::findEigenvaluesSymReal(covarMat, eigenvalues, eigenvectors); | 
						|
	if(c != D) | 
						|
		return failReport(__LINE__); | 
						|
	glm::sortEigenvalues(eigenvalues, eigenvectors); | 
						|
 | 
						|
	if (!vectorEpsilonEqual(eigenvalues, vec(agarose::expectedEigenvalues<D>()), epsilon)) | 
						|
		return failReport(__LINE__); | 
						|
 | 
						|
	for (int i = 0; i < D; ++i) | 
						|
	{ | 
						|
		vec act = glm::normalize(eigenvectors[i]); | 
						|
		vec exp = glm::normalize(agarose::expectedEigenvectors<D>()[i]); | 
						|
		if (!sameSign(act[0], exp[0])) exp = -exp; | 
						|
		if (!vectorEpsilonEqual(act, exp, epsilon)) | 
						|
			return failReport(__LINE__); | 
						|
	} | 
						|
 | 
						|
	return 0; | 
						|
} | 
						|
 | 
						|
// A simple small smoke test: | 
						|
// - a uniformly sampled block | 
						|
// - reconstruct main axes | 
						|
// - check order of eigenvalues equals order of extends of block in direction of main axes | 
						|
int smokeTest() | 
						|
{ | 
						|
	using glm::vec3; | 
						|
	using glm::mat3; | 
						|
	std::vector<vec3> pts; | 
						|
	pts.reserve(11 * 15 * 7); | 
						|
 | 
						|
	for(int x = -5; x <= 5; ++x) | 
						|
		for(int y = -7; y <= 7; ++y) | 
						|
			for(int z = -3; z <= 3; ++z) | 
						|
				pts.push_back(vec3(x, y, z)); | 
						|
 | 
						|
	mat3 covar = glm::computeCovarianceMatrix(pts.data(), pts.size()); | 
						|
	mat3 eVec; | 
						|
	vec3 eVal; | 
						|
	int eCnt = glm::findEigenvaluesSymReal(covar, eVal, eVec); | 
						|
	if(eCnt != 3) | 
						|
		return failReport(__LINE__); | 
						|
 | 
						|
	// sort eVec by decending eVal | 
						|
	if(eVal[0] < eVal[1]) | 
						|
	{ | 
						|
		std::swap(eVal[0], eVal[1]); | 
						|
		std::swap(eVec[0], eVec[1]); | 
						|
	} | 
						|
	if(eVal[0] < eVal[2]) | 
						|
	{ | 
						|
		std::swap(eVal[0], eVal[2]); | 
						|
		std::swap(eVec[0], eVec[2]); | 
						|
	} | 
						|
	if(eVal[1] < eVal[2]) | 
						|
	{ | 
						|
		std::swap(eVal[1], eVal[2]); | 
						|
		std::swap(eVec[1], eVec[2]); | 
						|
	} | 
						|
 | 
						|
	if(!vectorEpsilonEqual(glm::abs(eVec[0]), vec3(0, 1, 0), myEpsilon<float>())) | 
						|
		return failReport(__LINE__); | 
						|
	if(!vectorEpsilonEqual(glm::abs(eVec[1]), vec3(1, 0, 0), myEpsilon<float>())) | 
						|
		return failReport(__LINE__); | 
						|
	if(!vectorEpsilonEqual(glm::abs(eVec[2]), vec3(0, 0, 1), myEpsilon<float>())) | 
						|
		return failReport(__LINE__); | 
						|
 | 
						|
	return 0; | 
						|
} | 
						|
 | 
						|
#if GLM_HAS_CXX11_STL == 1 | 
						|
int rndTest(unsigned int randomEngineSeed) | 
						|
{ | 
						|
	std::default_random_engine rndEng(randomEngineSeed); | 
						|
	std::normal_distribution<double> normalDist; | 
						|
 | 
						|
	// construct orthonormal system | 
						|
	glm::dvec3 x(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); | 
						|
	double l = glm::length(x); | 
						|
	while(l < myEpsilon<double>()) | 
						|
		x = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); | 
						|
	x = glm::normalize(x); | 
						|
	glm::dvec3 y(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); | 
						|
	l = glm::length(y); | 
						|
	while(l < myEpsilon<double>()) | 
						|
		y = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); | 
						|
	while(glm::abs(glm::dot(x, y)) < myEpsilon<double>()) | 
						|
	{ | 
						|
		y = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); | 
						|
		while(l < myEpsilon<double>()) | 
						|
			y = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); | 
						|
	} | 
						|
	y = glm::normalize(y); | 
						|
	glm::dvec3 z = glm::normalize(glm::cross(x, y)); | 
						|
	y = glm::normalize(glm::cross(z, x)); | 
						|
 | 
						|
	// generate input point data | 
						|
	std::vector<glm::dvec3> ptData; | 
						|
	static const int pattern[] = { | 
						|
		8, 0, 0, | 
						|
		4, 1, 2, | 
						|
		0, 2, 0, | 
						|
		0, 0, 4 | 
						|
	}; | 
						|
	glm::dvec3 offset(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); | 
						|
	for(int p = 0; p < 4; ++p) | 
						|
		for(int xs = 1; xs >= -1; xs -= 2) | 
						|
			for(int ys = 1; ys >= -1; ys -= 2) | 
						|
				for(int zs = 1; zs >= -1; zs -= 2) | 
						|
					ptData.push_back( | 
						|
						offset | 
						|
						+ x * static_cast<double>(pattern[p * 3 + 0] * xs) | 
						|
						+ y * static_cast<double>(pattern[p * 3 + 1] * ys) | 
						|
						+ z * static_cast<double>(pattern[p * 3 + 2] * zs)); | 
						|
 | 
						|
	// perform PCA: | 
						|
	glm::dvec3 center = computeCenter(ptData); | 
						|
	glm::dmat3 covarMat = glm::computeCovarianceMatrix(ptData.data(), ptData.size(), center); | 
						|
	glm::dvec3 evals; | 
						|
	glm::dmat3 evecs; | 
						|
	int evcnt = glm::findEigenvaluesSymReal(covarMat, evals, evecs); | 
						|
	if(evcnt != 3) | 
						|
		return failReport(__LINE__); | 
						|
	glm::sortEigenvalues(evals, evecs); | 
						|
 | 
						|
	if (!sameSign(evecs[0][0], x[0])) evecs[0] = -evecs[0]; | 
						|
	if(!vectorEpsilonEqual(x, evecs[0], myEpsilon<double>())) | 
						|
		return failReport(__LINE__); | 
						|
	if (!sameSign(evecs[2][0], y[0])) evecs[2] = -evecs[2]; | 
						|
	if (!vectorEpsilonEqual(y, evecs[2], myEpsilon<double>())) | 
						|
		return failReport(__LINE__); | 
						|
	if (!sameSign(evecs[1][0], z[0])) evecs[1] = -evecs[1]; | 
						|
	if (!vectorEpsilonEqual(z, evecs[1], myEpsilon<double>())) | 
						|
		return failReport(__LINE__); | 
						|
 | 
						|
	return 0; | 
						|
} | 
						|
#endif // GLM_HAS_CXX11_STL == 1 | 
						|
 | 
						|
int main() | 
						|
{ | 
						|
	int error(0); | 
						|
 | 
						|
	// A small smoke test to fail early with most problems | 
						|
	if(smokeTest()) | 
						|
		return failReport(__LINE__); | 
						|
 | 
						|
	// test sorting utility. | 
						|
	if(testEigenvalueSort<2, float, glm::defaultp>() != 0) | 
						|
		error = failReport(__LINE__); | 
						|
	if(testEigenvalueSort<2, double, glm::defaultp>() != 0) | 
						|
		error = failReport(__LINE__); | 
						|
	if(testEigenvalueSort<3, float, glm::defaultp>() != 0) | 
						|
		error = failReport(__LINE__); | 
						|
	if(testEigenvalueSort<3, double, glm::defaultp>() != 0) | 
						|
		error = failReport(__LINE__); | 
						|
	if(testEigenvalueSort<4, float, glm::defaultp>() != 0) | 
						|
		error = failReport(__LINE__); | 
						|
	if(testEigenvalueSort<4, double, glm::defaultp>() != 0) | 
						|
		error = failReport(__LINE__); | 
						|
	if (error != 0) | 
						|
		return error; | 
						|
 | 
						|
	// Note: the random engine uses a fixed seed to create consistent and reproducible test data | 
						|
	// test covariance matrix computation from different data sources | 
						|
	if(testCovar<2, float, glm::defaultp>(100, 12345) != 0) | 
						|
		error = failReport(__LINE__); | 
						|
	if(testCovar<2, double, glm::defaultp>(100, 42) != 0) | 
						|
		error = failReport(__LINE__); | 
						|
	if(testCovar<3, float, glm::defaultp>(100, 2021) != 0) | 
						|
		error = failReport(__LINE__); | 
						|
	if(testCovar<3, double, glm::defaultp>(100, 815) != 0) | 
						|
		error = failReport(__LINE__); | 
						|
	if(testCovar<4, float, glm::defaultp>(100, 3141) != 0) | 
						|
		error = failReport(__LINE__); | 
						|
	if(testCovar<4, double, glm::defaultp>(100, 174) != 0) | 
						|
		error = failReport(__LINE__); | 
						|
	if (error != 0) | 
						|
		return error; | 
						|
 | 
						|
	// test PCA eigen vector reconstruction | 
						|
	// Expected epsilon precision evaluated separately: | 
						|
	// https://github.com/sgrottel/exp-pca-precision | 
						|
	if(testEigenvectors<2, float, glm::defaultp>(0.002f) != 0) | 
						|
		error = failReport(__LINE__); | 
						|
	if(testEigenvectors<2, double, glm::defaultp>(0.00000000001) != 0) | 
						|
		error = failReport(__LINE__); | 
						|
	if(testEigenvectors<3, float, glm::defaultp>(0.00001f) != 0) | 
						|
		error = failReport(__LINE__); | 
						|
	if(testEigenvectors<3, double, glm::defaultp>(0.0000000001) != 0) | 
						|
		error = failReport(__LINE__); | 
						|
	if(testEigenvectors<4, float, glm::defaultp>(0.0001f) != 0) | 
						|
		error = failReport(__LINE__); | 
						|
	if(testEigenvectors<4, double, glm::defaultp>(0.0000001) != 0) | 
						|
		error = failReport(__LINE__); | 
						|
	if(error != 0) | 
						|
		return error; | 
						|
 | 
						|
	// Final tests with randomized data | 
						|
#if GLM_HAS_CXX11_STL == 1 | 
						|
	if(rndTest(12345) != 0) | 
						|
		error = failReport(__LINE__); | 
						|
	if(rndTest(42) != 0) | 
						|
		error = failReport(__LINE__); | 
						|
	if (error != 0) | 
						|
		return error; | 
						|
#endif // GLM_HAS_CXX11_STL == 1 | 
						|
 | 
						|
	return error; | 
						|
}
 | 
						|
 |