You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and dots ('.'), can be up to 35 characters long. Letters must be lowercase.
		
		
		
		
		
			
		
			
				
					
					
						
							906 lines
						
					
					
						
							26 KiB
						
					
					
				
			
		
		
	
	
							906 lines
						
					
					
						
							26 KiB
						
					
					
				#include <glm/gtc/bitfield.hpp> | 
						|
#include <glm/gtc/type_precision.hpp> | 
						|
#include <glm/vector_relational.hpp> | 
						|
#include <glm/integer.hpp> | 
						|
#include <ctime> | 
						|
#include <cstdio> | 
						|
#include <vector> | 
						|
 | 
						|
namespace mask | 
						|
{ | 
						|
	template<typename genType> | 
						|
	struct type | 
						|
	{ | 
						|
		genType		Value; | 
						|
		genType		Return; | 
						|
	}; | 
						|
 | 
						|
	inline int mask_zero(int Bits) | 
						|
	{ | 
						|
		return ~((~0) << Bits); | 
						|
	} | 
						|
 | 
						|
	inline int mask_mix(int Bits) | 
						|
	{ | 
						|
		return Bits >= sizeof(int) * 8 ? 0xffffffff : (static_cast<int>(1) << Bits) - static_cast<int>(1); | 
						|
	} | 
						|
 | 
						|
	inline int mask_half(int Bits) | 
						|
	{ | 
						|
		// We do the shift in two steps because 1 << 32 on an int is undefined. | 
						|
 | 
						|
		int const Half = Bits >> 1; | 
						|
		int const Fill = ~0; | 
						|
		int const ShiftHaft = (Fill << Half); | 
						|
		int const Rest = Bits - Half; | 
						|
		int const Reversed = ShiftHaft << Rest; | 
						|
 | 
						|
		return ~Reversed; | 
						|
	} | 
						|
 | 
						|
	inline int mask_loop(int Bits) | 
						|
	{ | 
						|
		int Mask = 0; | 
						|
		for(int Bit = 0; Bit < Bits; ++Bit) | 
						|
			Mask |= (static_cast<int>(1) << Bit); | 
						|
		return Mask; | 
						|
	} | 
						|
 | 
						|
	int perf() | 
						|
	{ | 
						|
		int const Count = 100000000; | 
						|
 | 
						|
		std::clock_t Timestamp1 = std::clock(); | 
						|
 | 
						|
		{ | 
						|
			std::vector<int> Mask; | 
						|
			Mask.resize(Count); | 
						|
			for(int i = 0; i < Count; ++i) | 
						|
				Mask[i] = mask_mix(i % 32); | 
						|
		} | 
						|
 | 
						|
		std::clock_t Timestamp2 = std::clock(); | 
						|
 | 
						|
		{ | 
						|
			std::vector<int> Mask; | 
						|
			Mask.resize(Count); | 
						|
			for(int i = 0; i < Count; ++i) | 
						|
				Mask[i] = mask_loop(i % 32); | 
						|
		} | 
						|
 | 
						|
		std::clock_t Timestamp3 = std::clock(); | 
						|
 | 
						|
		{ | 
						|
			std::vector<int> Mask; | 
						|
			Mask.resize(Count); | 
						|
			for(int i = 0; i < Count; ++i) | 
						|
				Mask[i] = glm::mask(i % 32); | 
						|
		} | 
						|
 | 
						|
		std::clock_t Timestamp4 = std::clock(); | 
						|
 | 
						|
		{ | 
						|
			std::vector<int> Mask; | 
						|
			Mask.resize(Count); | 
						|
			for(int i = 0; i < Count; ++i) | 
						|
				Mask[i] = mask_zero(i % 32); | 
						|
		} | 
						|
 | 
						|
		std::clock_t Timestamp5 = std::clock(); | 
						|
 | 
						|
		{ | 
						|
			std::vector<int> Mask; | 
						|
			Mask.resize(Count); | 
						|
			for(int i = 0; i < Count; ++i) | 
						|
				Mask[i] = mask_half(i % 32); | 
						|
		} | 
						|
 | 
						|
		std::clock_t Timestamp6 = std::clock(); | 
						|
 | 
						|
		std::clock_t TimeMix = Timestamp2 - Timestamp1; | 
						|
		std::clock_t TimeLoop = Timestamp3 - Timestamp2; | 
						|
		std::clock_t TimeDefault = Timestamp4 - Timestamp3; | 
						|
		std::clock_t TimeZero = Timestamp5 - Timestamp4; | 
						|
		std::clock_t TimeHalf = Timestamp6 - Timestamp5; | 
						|
 | 
						|
		printf("mask[mix]: %d\n", static_cast<unsigned int>(TimeMix)); | 
						|
		printf("mask[loop]: %d\n", static_cast<unsigned int>(TimeLoop)); | 
						|
		printf("mask[default]: %d\n", static_cast<unsigned int>(TimeDefault)); | 
						|
		printf("mask[zero]: %d\n", static_cast<unsigned int>(TimeZero)); | 
						|
		printf("mask[half]: %d\n", static_cast<unsigned int>(TimeHalf)); | 
						|
 | 
						|
		return TimeDefault < TimeLoop ? 0 : 1; | 
						|
	} | 
						|
 | 
						|
	int test_uint() | 
						|
	{ | 
						|
		type<glm::uint> const Data[] = | 
						|
		{ | 
						|
			{ 0, 0x00000000}, | 
						|
			{ 1, 0x00000001}, | 
						|
			{ 2, 0x00000003}, | 
						|
			{ 3, 0x00000007}, | 
						|
			{31, 0x7fffffff}, | 
						|
			{32, 0xffffffff} | 
						|
		}; | 
						|
 | 
						|
		int Error = 0; | 
						|
/* mask_zero is sadly not a correct code | 
						|
		for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) | 
						|
		{ | 
						|
			int Result = mask_zero(Data[i].Value); | 
						|
			Error += Data[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
*/ | 
						|
		for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) | 
						|
		{ | 
						|
			int Result = mask_mix(Data[i].Value); | 
						|
			Error += Data[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) | 
						|
		{ | 
						|
			int Result = mask_half(Data[i].Value); | 
						|
			Error += Data[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) | 
						|
		{ | 
						|
			int Result = mask_loop(Data[i].Value); | 
						|
			Error += Data[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		for(std::size_t i = 0; i < sizeof(Data) / sizeof(type<int>); ++i) | 
						|
		{ | 
						|
			int Result = glm::mask(Data[i].Value); | 
						|
			Error += Data[i].Return == Result ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int test_uvec4() | 
						|
	{ | 
						|
		type<glm::ivec4> const Data[] = | 
						|
		{ | 
						|
			{glm::ivec4( 0), glm::ivec4(0x00000000)}, | 
						|
			{glm::ivec4( 1), glm::ivec4(0x00000001)}, | 
						|
			{glm::ivec4( 2), glm::ivec4(0x00000003)}, | 
						|
			{glm::ivec4( 3), glm::ivec4(0x00000007)}, | 
						|
			{glm::ivec4(31), glm::ivec4(0x7fffffff)}, | 
						|
			{glm::ivec4(32), glm::ivec4(0xffffffff)} | 
						|
		}; | 
						|
 | 
						|
		int Error(0); | 
						|
 | 
						|
		for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::ivec4>); i < n; ++i) | 
						|
		{ | 
						|
			glm::ivec4 Result = glm::mask(Data[i].Value); | 
						|
			Error += glm::all(glm::equal(Data[i].Return, Result)) ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int test() | 
						|
	{ | 
						|
		int Error(0); | 
						|
 | 
						|
		Error += test_uint(); | 
						|
		Error += test_uvec4(); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
}//namespace mask | 
						|
 | 
						|
namespace bitfieldInterleave3 | 
						|
{ | 
						|
	template<typename PARAM, typename RET> | 
						|
	inline RET refBitfieldInterleave(PARAM x, PARAM y, PARAM z) | 
						|
	{ | 
						|
		RET Result = 0;  | 
						|
		for(RET i = 0; i < sizeof(PARAM) * 8; ++i) | 
						|
		{ | 
						|
			Result |= ((RET(x) & (RET(1U) << i)) << ((i << 1) + 0)); | 
						|
			Result |= ((RET(y) & (RET(1U) << i)) << ((i << 1) + 1)); | 
						|
			Result |= ((RET(z) & (RET(1U) << i)) << ((i << 1) + 2)); | 
						|
		} | 
						|
		return Result; | 
						|
	} | 
						|
 | 
						|
	int test() | 
						|
	{ | 
						|
		int Error(0); | 
						|
 | 
						|
		glm::uint16 x_max = 1 << 11; | 
						|
		glm::uint16 y_max = 1 << 11; | 
						|
		glm::uint16 z_max = 1 << 11; | 
						|
 | 
						|
		for(glm::uint16 z = 0; z < z_max; z += 27) | 
						|
		for(glm::uint16 y = 0; y < y_max; y += 27) | 
						|
		for(glm::uint16 x = 0; x < x_max; x += 27) | 
						|
		{ | 
						|
			glm::uint64 ResultA = refBitfieldInterleave<glm::uint16, glm::uint64>(x, y, z); | 
						|
			glm::uint64 ResultB = glm::bitfieldInterleave(x, y, z); | 
						|
			Error += ResultA == ResultB ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
} | 
						|
 | 
						|
namespace bitfieldInterleave4 | 
						|
{ | 
						|
	template<typename PARAM, typename RET> | 
						|
	inline RET loopBitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w) | 
						|
	{ | 
						|
		RET const v[4] = {x, y, z, w}; | 
						|
		RET Result = 0;  | 
						|
		for(RET i = 0; i < sizeof(PARAM) * 8; i++) | 
						|
		{ | 
						|
			Result |= ((((v[0] >> i) & 1U)) << ((i << 2) + 0)); | 
						|
			Result |= ((((v[1] >> i) & 1U)) << ((i << 2) + 1)); | 
						|
			Result |= ((((v[2] >> i) & 1U)) << ((i << 2) + 2)); | 
						|
			Result |= ((((v[3] >> i) & 1U)) << ((i << 2) + 3)); | 
						|
		} | 
						|
		return Result; | 
						|
	} | 
						|
 | 
						|
	int test() | 
						|
	{ | 
						|
		int Error(0); | 
						|
 | 
						|
		glm::uint16 x_max = 1 << 11; | 
						|
		glm::uint16 y_max = 1 << 11; | 
						|
		glm::uint16 z_max = 1 << 11; | 
						|
		glm::uint16 w_max = 1 << 11; | 
						|
 | 
						|
		for(glm::uint16 w = 0; w < w_max; w += 27) | 
						|
		for(glm::uint16 z = 0; z < z_max; z += 27) | 
						|
		for(glm::uint16 y = 0; y < y_max; y += 27) | 
						|
		for(glm::uint16 x = 0; x < x_max; x += 27) | 
						|
		{ | 
						|
			glm::uint64 ResultA = loopBitfieldInterleave<glm::uint16, glm::uint64>(x, y, z, w); | 
						|
			glm::uint64 ResultB = glm::bitfieldInterleave(x, y, z, w); | 
						|
			Error += ResultA == ResultB ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
} | 
						|
 | 
						|
namespace bitfieldInterleave | 
						|
{ | 
						|
	inline glm::uint64 fastBitfieldInterleave(glm::uint32 x, glm::uint32 y) | 
						|
	{ | 
						|
		glm::uint64 REG1; | 
						|
		glm::uint64 REG2; | 
						|
 | 
						|
		REG1 = x; | 
						|
		REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); | 
						|
		REG1 = ((REG1 <<  8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); | 
						|
		REG1 = ((REG1 <<  4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); | 
						|
		REG1 = ((REG1 <<  2) | REG1) & glm::uint64(0x3333333333333333); | 
						|
		REG1 = ((REG1 <<  1) | REG1) & glm::uint64(0x5555555555555555); | 
						|
 | 
						|
		REG2 = y; | 
						|
		REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); | 
						|
		REG2 = ((REG2 <<  8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); | 
						|
		REG2 = ((REG2 <<  4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); | 
						|
		REG2 = ((REG2 <<  2) | REG2) & glm::uint64(0x3333333333333333); | 
						|
		REG2 = ((REG2 <<  1) | REG2) & glm::uint64(0x5555555555555555); | 
						|
 | 
						|
		return REG1 | (REG2 << 1); | 
						|
	} | 
						|
 | 
						|
	inline glm::uint64 interleaveBitfieldInterleave(glm::uint32 x, glm::uint32 y) | 
						|
	{ | 
						|
		glm::uint64 REG1; | 
						|
		glm::uint64 REG2; | 
						|
 | 
						|
		REG1 = x; | 
						|
		REG2 = y; | 
						|
 | 
						|
		REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); | 
						|
		REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); | 
						|
 | 
						|
		REG1 = ((REG1 <<  8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); | 
						|
		REG2 = ((REG2 <<  8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); | 
						|
 | 
						|
		REG1 = ((REG1 <<  4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); | 
						|
		REG2 = ((REG2 <<  4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); | 
						|
 | 
						|
		REG1 = ((REG1 <<  2) | REG1) & glm::uint64(0x3333333333333333); | 
						|
		REG2 = ((REG2 <<  2) | REG2) & glm::uint64(0x3333333333333333); | 
						|
 | 
						|
		REG1 = ((REG1 <<  1) | REG1) & glm::uint64(0x5555555555555555); | 
						|
		REG2 = ((REG2 <<  1) | REG2) & glm::uint64(0x5555555555555555); | 
						|
 | 
						|
		return REG1 | (REG2 << 1); | 
						|
	} | 
						|
/* | 
						|
	inline glm::uint64 loopBitfieldInterleave(glm::uint32 x, glm::uint32 y) | 
						|
	{ | 
						|
		static glm::uint64 const Mask[5] =  | 
						|
		{ | 
						|
			0x5555555555555555, | 
						|
			0x3333333333333333, | 
						|
			0x0F0F0F0F0F0F0F0F, | 
						|
			0x00FF00FF00FF00FF, | 
						|
			0x0000FFFF0000FFFF | 
						|
		}; | 
						|
 | 
						|
		glm::uint64 REG1 = x; | 
						|
		glm::uint64 REG2 = y; | 
						|
		for(int i = 4; i >= 0; --i) | 
						|
		{ | 
						|
			REG1 = ((REG1 << (1 << i)) | REG1) & Mask[i]; | 
						|
			REG2 = ((REG2 << (1 << i)) | REG2) & Mask[i]; | 
						|
		} | 
						|
 | 
						|
		return REG1 | (REG2 << 1); | 
						|
	} | 
						|
*/ | 
						|
#if GLM_ARCH & GLM_ARCH_SSE2_BIT | 
						|
	inline glm::uint64 sseBitfieldInterleave(glm::uint32 x, glm::uint32 y) | 
						|
	{ | 
						|
		__m128i const Array = _mm_set_epi32(0, y, 0, x); | 
						|
 | 
						|
		__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); | 
						|
		__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); | 
						|
		__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); | 
						|
		__m128i const Mask1 = _mm_set1_epi32(0x33333333); | 
						|
		__m128i const Mask0 = _mm_set1_epi32(0x55555555); | 
						|
 | 
						|
		__m128i Reg1; | 
						|
		__m128i Reg2; | 
						|
 | 
						|
		// REG1 = x; | 
						|
		// REG2 = y; | 
						|
		Reg1 = _mm_load_si128(&Array); | 
						|
 | 
						|
		//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); | 
						|
		//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); | 
						|
		Reg2 = _mm_slli_si128(Reg1, 2); | 
						|
		Reg1 = _mm_or_si128(Reg2, Reg1); | 
						|
		Reg1 = _mm_and_si128(Reg1, Mask4); | 
						|
 | 
						|
		//REG1 = ((REG1 <<  8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); | 
						|
		//REG2 = ((REG2 <<  8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); | 
						|
		Reg2 = _mm_slli_si128(Reg1, 1); | 
						|
		Reg1 = _mm_or_si128(Reg2, Reg1); | 
						|
		Reg1 = _mm_and_si128(Reg1, Mask3); | 
						|
 | 
						|
		//REG1 = ((REG1 <<  4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); | 
						|
		//REG2 = ((REG2 <<  4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); | 
						|
		Reg2 = _mm_slli_epi32(Reg1, 4); | 
						|
		Reg1 = _mm_or_si128(Reg2, Reg1); | 
						|
		Reg1 = _mm_and_si128(Reg1, Mask2); | 
						|
 | 
						|
		//REG1 = ((REG1 <<  2) | REG1) & glm::uint64(0x3333333333333333); | 
						|
		//REG2 = ((REG2 <<  2) | REG2) & glm::uint64(0x3333333333333333); | 
						|
		Reg2 = _mm_slli_epi32(Reg1, 2); | 
						|
		Reg1 = _mm_or_si128(Reg2, Reg1); | 
						|
		Reg1 = _mm_and_si128(Reg1, Mask1); | 
						|
 | 
						|
		//REG1 = ((REG1 <<  1) | REG1) & glm::uint64(0x5555555555555555); | 
						|
		//REG2 = ((REG2 <<  1) | REG2) & glm::uint64(0x5555555555555555); | 
						|
		Reg2 = _mm_slli_epi32(Reg1, 1); | 
						|
		Reg1 = _mm_or_si128(Reg2, Reg1); | 
						|
		Reg1 = _mm_and_si128(Reg1, Mask0); | 
						|
 | 
						|
		//return REG1 | (REG2 << 1); | 
						|
		Reg2 = _mm_slli_epi32(Reg1, 1); | 
						|
		Reg2 = _mm_srli_si128(Reg2, 8); | 
						|
		Reg1 = _mm_or_si128(Reg1, Reg2); | 
						|
	 | 
						|
		__m128i Result; | 
						|
		_mm_store_si128(&Result, Reg1); | 
						|
		return *reinterpret_cast<glm::uint64*>(&Result); | 
						|
	} | 
						|
 | 
						|
	inline glm::uint64 sseUnalignedBitfieldInterleave(glm::uint32 x, glm::uint32 y) | 
						|
	{ | 
						|
		__m128i const Array = _mm_set_epi32(0, y, 0, x); | 
						|
 | 
						|
		__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); | 
						|
		__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); | 
						|
		__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); | 
						|
		__m128i const Mask1 = _mm_set1_epi32(0x33333333); | 
						|
		__m128i const Mask0 = _mm_set1_epi32(0x55555555); | 
						|
 | 
						|
		__m128i Reg1; | 
						|
		__m128i Reg2; | 
						|
 | 
						|
		// REG1 = x; | 
						|
		// REG2 = y; | 
						|
		Reg1 = _mm_loadu_si128(&Array); | 
						|
 | 
						|
		//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); | 
						|
		//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); | 
						|
		Reg2 = _mm_slli_si128(Reg1, 2); | 
						|
		Reg1 = _mm_or_si128(Reg2, Reg1); | 
						|
		Reg1 = _mm_and_si128(Reg1, Mask4); | 
						|
 | 
						|
		//REG1 = ((REG1 <<  8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); | 
						|
		//REG2 = ((REG2 <<  8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); | 
						|
		Reg2 = _mm_slli_si128(Reg1, 1); | 
						|
		Reg1 = _mm_or_si128(Reg2, Reg1); | 
						|
		Reg1 = _mm_and_si128(Reg1, Mask3); | 
						|
 | 
						|
		//REG1 = ((REG1 <<  4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); | 
						|
		//REG2 = ((REG2 <<  4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); | 
						|
		Reg2 = _mm_slli_epi32(Reg1, 4); | 
						|
		Reg1 = _mm_or_si128(Reg2, Reg1); | 
						|
		Reg1 = _mm_and_si128(Reg1, Mask2); | 
						|
 | 
						|
		//REG1 = ((REG1 <<  2) | REG1) & glm::uint64(0x3333333333333333); | 
						|
		//REG2 = ((REG2 <<  2) | REG2) & glm::uint64(0x3333333333333333); | 
						|
		Reg2 = _mm_slli_epi32(Reg1, 2); | 
						|
		Reg1 = _mm_or_si128(Reg2, Reg1); | 
						|
		Reg1 = _mm_and_si128(Reg1, Mask1); | 
						|
 | 
						|
		//REG1 = ((REG1 <<  1) | REG1) & glm::uint64(0x5555555555555555); | 
						|
		//REG2 = ((REG2 <<  1) | REG2) & glm::uint64(0x5555555555555555); | 
						|
		Reg2 = _mm_slli_epi32(Reg1, 1); | 
						|
		Reg1 = _mm_or_si128(Reg2, Reg1); | 
						|
		Reg1 = _mm_and_si128(Reg1, Mask0); | 
						|
 | 
						|
		//return REG1 | (REG2 << 1); | 
						|
		Reg2 = _mm_slli_epi32(Reg1, 1); | 
						|
		Reg2 = _mm_srli_si128(Reg2, 8); | 
						|
		Reg1 = _mm_or_si128(Reg1, Reg2); | 
						|
 | 
						|
		__m128i Result; | 
						|
		_mm_store_si128(&Result, Reg1); | 
						|
		return *reinterpret_cast<glm::uint64*>(&Result); | 
						|
	} | 
						|
#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT | 
						|
 | 
						|
	int test() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
/* | 
						|
		{ | 
						|
			for(glm::uint32 y = 0; y < (1 << 10); ++y) | 
						|
			for(glm::uint32 x = 0; x < (1 << 10); ++x) | 
						|
			{ | 
						|
				glm::uint64 A = glm::bitfieldInterleave(x, y); | 
						|
				glm::uint64 B = fastBitfieldInterleave(x, y); | 
						|
				//glm::uint64 C = loopBitfieldInterleave(x, y); | 
						|
				glm::uint64 D = interleaveBitfieldInterleave(x, y); | 
						|
 | 
						|
				assert(A == B); | 
						|
				//assert(A == C); | 
						|
				assert(A == D); | 
						|
 | 
						|
#				if GLM_ARCH & GLM_ARCH_SSE2_BIT | 
						|
					glm::uint64 E = sseBitfieldInterleave(x, y); | 
						|
					glm::uint64 F = sseUnalignedBitfieldInterleave(x, y); | 
						|
					assert(A == E); | 
						|
					assert(A == F); | 
						|
 | 
						|
					__m128i G = glm_i128_interleave(_mm_set_epi32(0, y, 0, x)); | 
						|
					glm::uint64 Result[2]; | 
						|
					_mm_storeu_si128((__m128i*)Result, G); | 
						|
					assert(A == Result[0]); | 
						|
#				endif//GLM_ARCH & GLM_ARCH_SSE2_BIT | 
						|
			} | 
						|
		} | 
						|
*/ | 
						|
		{ | 
						|
			for(glm::uint8 y = 0; y < 127; ++y) | 
						|
			for(glm::uint8 x = 0; x < 127; ++x) | 
						|
			{ | 
						|
				glm::uint64 A(glm::bitfieldInterleave(glm::uint8(x), glm::uint8(y))); | 
						|
				glm::uint64 B(glm::bitfieldInterleave(glm::uint16(x), glm::uint16(y))); | 
						|
				glm::uint64 C(glm::bitfieldInterleave(glm::uint32(x), glm::uint32(y))); | 
						|
 | 
						|
				Error += A == B ? 0 : 1; | 
						|
				Error += A == C ? 0 : 1; | 
						|
 | 
						|
				glm::int64 D(glm::bitfieldInterleave(glm::int8(x), glm::int8(y))); | 
						|
				glm::int64 E(glm::bitfieldInterleave(glm::int16(x), glm::int16(y))); | 
						|
				glm::int64 F(glm::bitfieldInterleave(glm::int32(x), glm::int32(y))); | 
						|
 | 
						|
				Error += D == E ? 0 : 1; | 
						|
				Error += D == F ? 0 : 1; | 
						|
			} | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int perf() | 
						|
	{ | 
						|
		glm::uint32 x_max = 1 << 11; | 
						|
		glm::uint32 y_max = 1 << 10; | 
						|
 | 
						|
		// ALU | 
						|
		std::vector<glm::uint64> Data(x_max * y_max); | 
						|
		std::vector<glm::u32vec2> Param(x_max * y_max); | 
						|
		for(glm::uint32 i = 0; i < Param.size(); ++i) | 
						|
			Param[i] = glm::u32vec2(i % x_max, i / y_max); | 
						|
 | 
						|
		{ | 
						|
			std::clock_t LastTime = std::clock(); | 
						|
 | 
						|
			for(std::size_t i = 0; i < Data.size(); ++i) | 
						|
				Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y); | 
						|
 | 
						|
			std::clock_t Time = std::clock() - LastTime; | 
						|
 | 
						|
			std::printf("glm::bitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			std::clock_t LastTime = std::clock(); | 
						|
 | 
						|
			for(std::size_t i = 0; i < Data.size(); ++i) | 
						|
				Data[i] = fastBitfieldInterleave(Param[i].x, Param[i].y); | 
						|
 | 
						|
			std::clock_t Time = std::clock() - LastTime; | 
						|
 | 
						|
			std::printf("fastBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); | 
						|
		} | 
						|
/* | 
						|
		{ | 
						|
			std::clock_t LastTime = std::clock(); | 
						|
 | 
						|
			for(std::size_t i = 0; i < Data.size(); ++i) | 
						|
				Data[i] = loopBitfieldInterleave(Param[i].x, Param[i].y); | 
						|
 | 
						|
			std::clock_t Time = std::clock() - LastTime; | 
						|
 | 
						|
			std::printf("loopBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); | 
						|
		} | 
						|
*/ | 
						|
		{ | 
						|
			std::clock_t LastTime = std::clock(); | 
						|
 | 
						|
			for(std::size_t i = 0; i < Data.size(); ++i) | 
						|
				Data[i] = interleaveBitfieldInterleave(Param[i].x, Param[i].y); | 
						|
 | 
						|
			std::clock_t Time = std::clock() - LastTime; | 
						|
 | 
						|
			std::printf("interleaveBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); | 
						|
		} | 
						|
 | 
						|
#		if GLM_ARCH & GLM_ARCH_SSE2_BIT | 
						|
		{ | 
						|
			std::clock_t LastTime = std::clock(); | 
						|
 | 
						|
			for(std::size_t i = 0; i < Data.size(); ++i) | 
						|
				Data[i] = sseBitfieldInterleave(Param[i].x, Param[i].y); | 
						|
 | 
						|
			std::clock_t Time = std::clock() - LastTime; | 
						|
 | 
						|
			std::printf("sseBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); | 
						|
		} | 
						|
 | 
						|
		{ | 
						|
			std::clock_t LastTime = std::clock(); | 
						|
 | 
						|
			for(std::size_t i = 0; i < Data.size(); ++i) | 
						|
				Data[i] = sseUnalignedBitfieldInterleave(Param[i].x, Param[i].y); | 
						|
 | 
						|
			std::clock_t Time = std::clock() - LastTime; | 
						|
 | 
						|
			std::printf("sseUnalignedBitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); | 
						|
		} | 
						|
#		endif//GLM_ARCH & GLM_ARCH_SSE2_BIT | 
						|
 | 
						|
		{ | 
						|
			std::clock_t LastTime = std::clock(); | 
						|
 | 
						|
			for(std::size_t i = 0; i < Data.size(); ++i) | 
						|
				Data[i] = glm::bitfieldInterleave(Param[i].x, Param[i].y, Param[i].x); | 
						|
 | 
						|
			std::clock_t Time = std::clock() - LastTime; | 
						|
 | 
						|
			std::printf("glm::detail::bitfieldInterleave Time %d clocks\n", static_cast<unsigned int>(Time)); | 
						|
		} | 
						|
 | 
						|
#		if(GLM_ARCH & GLM_ARCH_SSE2_BIT && !(GLM_COMPILER & GLM_COMPILER_GCC)) | 
						|
		{ | 
						|
			// SIMD | 
						|
			std::vector<__m128i> SimdData; | 
						|
			SimdData.resize(static_cast<std::size_t>(x_max * y_max)); | 
						|
			std::vector<__m128i> SimdParam; | 
						|
			SimdParam.resize(static_cast<std::size_t>(x_max * y_max)); | 
						|
			for(std::size_t i = 0; i < SimdParam.size(); ++i) | 
						|
				SimdParam[i] = _mm_set_epi32(static_cast<int>(i % static_cast<std::size_t>(x_max)), 0, static_cast<int>(i / static_cast<std::size_t>(y_max)), 0); | 
						|
 | 
						|
			std::clock_t LastTime = std::clock(); | 
						|
 | 
						|
			for(std::size_t i = 0; i < SimdData.size(); ++i) | 
						|
				SimdData[i] = glm_i128_interleave(SimdParam[i]); | 
						|
 | 
						|
			std::clock_t Time = std::clock() - LastTime; | 
						|
 | 
						|
			std::printf("_mm_bit_interleave_si128 Time %d clocks\n", static_cast<unsigned int>(Time)); | 
						|
		} | 
						|
#		endif//GLM_ARCH & GLM_ARCH_SSE2_BIT | 
						|
 | 
						|
		return 0; | 
						|
	} | 
						|
}//namespace bitfieldInterleave | 
						|
 | 
						|
namespace bitfieldInterleave5 | 
						|
{ | 
						|
	GLM_FUNC_QUALIFIER glm::uint16 bitfieldInterleave_u8vec2(glm::uint8 x, glm::uint8 y) | 
						|
	{ | 
						|
		glm::uint32 Result = (glm::uint32(y) << 16) | glm::uint32(x); | 
						|
		Result = ((Result <<  4) | Result) & 0x0F0F0F0F; | 
						|
		Result = ((Result <<  2) | Result) & 0x33333333; | 
						|
		Result = ((Result <<  1) | Result) & 0x55555555; | 
						|
		return static_cast<glm::uint16>((Result & 0x0000FFFF) | (Result >> 15)); | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER glm::u8vec2 bitfieldDeinterleave_u8vec2(glm::uint16 InterleavedBitfield) | 
						|
	{ | 
						|
		glm::uint32 Result(InterleavedBitfield); | 
						|
		Result = ((Result << 15) | Result) & 0x55555555; | 
						|
		Result = ((Result >>  1) | Result) & 0x33333333; | 
						|
		Result = ((Result >>  2) | Result) & 0x0F0F0F0F; | 
						|
		Result = ((Result >>  4) | Result) & 0x00FF00FF; | 
						|
		return glm::u8vec2(Result & 0x0000FFFF, Result >> 16); | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave_u8vec4(glm::uint8 x, glm::uint8 y, glm::uint8 z, glm::uint8 w) | 
						|
	{ | 
						|
		glm::uint64 Result = (glm::uint64(w) << 48) | (glm::uint64(z) << 32) | (glm::uint64(y) << 16) | glm::uint64(x); | 
						|
		Result = ((Result << 12) | Result) & 0x000F000F000F000Full; | 
						|
		Result = ((Result <<  6) | Result) & 0x0303030303030303ull; | 
						|
		Result = ((Result <<  3) | Result) & 0x1111111111111111ull; | 
						|
 | 
						|
		const glm::uint32 a = static_cast<glm::uint32>((Result & 0x000000000000FFFF) >> ( 0 - 0)); | 
						|
		const glm::uint32 b = static_cast<glm::uint32>((Result & 0x00000000FFFF0000) >> (16 - 3)); | 
						|
		const glm::uint32 c = static_cast<glm::uint32>((Result & 0x0000FFFF00000000) >> (32 - 6)); | 
						|
		const glm::uint32 d = static_cast<glm::uint32>((Result & 0xFFFF000000000000) >> (48 - 12)); | 
						|
 | 
						|
		return a | b | c | d; | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER glm::u8vec4 bitfieldDeinterleave_u8vec4(glm::uint32 InterleavedBitfield) | 
						|
	{ | 
						|
		glm::uint64 Result(InterleavedBitfield); | 
						|
		Result = ((Result << 15) | Result) & 0x9249249249249249ull; | 
						|
		Result = ((Result >>  1) | Result) & 0x30C30C30C30C30C3ull; | 
						|
		Result = ((Result >>  2) | Result) & 0xF00F00F00F00F00Full; | 
						|
		Result = ((Result >>  4) | Result) & 0x00FF0000FF0000FFull; | 
						|
		return glm::u8vec4( | 
						|
			(Result >> 0) & 0x000000000000FFFFull, | 
						|
			(Result >> 16) & 0x00000000FFFF0000ull, | 
						|
			(Result >> 32) & 0x0000FFFF00000000ull, | 
						|
			(Result >> 48) & 0xFFFF000000000000ull); | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave_u16vec2(glm::uint16 x, glm::uint16 y) | 
						|
	{ | 
						|
		glm::uint64 Result = (glm::uint64(y) << 32) | glm::uint64(x); | 
						|
		Result = ((Result <<  8) | Result) & static_cast<glm::uint32>(0x00FF00FF00FF00FFull); | 
						|
		Result = ((Result <<  4) | Result) & static_cast<glm::uint32>(0x0F0F0F0F0F0F0F0Full); | 
						|
		Result = ((Result <<  2) | Result) & static_cast<glm::uint32>(0x3333333333333333ull); | 
						|
		Result = ((Result <<  1) | Result) & static_cast<glm::uint32>(0x5555555555555555ull); | 
						|
		return static_cast<glm::uint32>((Result & 0x00000000FFFFFFFFull) | (Result >> 31)); | 
						|
	} | 
						|
 | 
						|
	GLM_FUNC_QUALIFIER glm::u16vec2 bitfieldDeinterleave_u16vec2(glm::uint32 InterleavedBitfield) | 
						|
	{ | 
						|
		glm::uint64 Result(InterleavedBitfield); | 
						|
		Result = ((Result << 31) | Result) & 0x5555555555555555ull; | 
						|
		Result = ((Result >>  1) | Result) & 0x3333333333333333ull; | 
						|
		Result = ((Result >>  2) | Result) & 0x0F0F0F0F0F0F0F0Full; | 
						|
		Result = ((Result >>  4) | Result) & 0x00FF00FF00FF00FFull; | 
						|
		Result = ((Result >>  8) | Result) & 0x0000FFFF0000FFFFull; | 
						|
		return glm::u16vec2(Result & 0x00000000FFFFFFFFull, Result >> 32); | 
						|
	} | 
						|
 | 
						|
	int test() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
		for(glm::size_t j = 0; j < 256; ++j) | 
						|
		for(glm::size_t i = 0; i < 256; ++i) | 
						|
		{ | 
						|
			glm::uint16 A = bitfieldInterleave_u8vec2(glm::uint8(i), glm::uint8(j)); | 
						|
			glm::uint16 B = glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j)); | 
						|
			Error += A == B ? 0 : 1; | 
						|
 | 
						|
			glm::u8vec2 C = bitfieldDeinterleave_u8vec2(A); | 
						|
			Error += C.x == glm::uint8(i) ? 0 : 1; | 
						|
			Error += C.y == glm::uint8(j) ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		for(glm::size_t j = 0; j < 256; ++j) | 
						|
		for(glm::size_t i = 0; i < 256; ++i) | 
						|
		{ | 
						|
			glm::uint32 A = bitfieldInterleave_u8vec4(glm::uint8(i), glm::uint8(j), glm::uint8(i), glm::uint8(j)); | 
						|
			glm::uint32 B = glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j), glm::uint8(i), glm::uint8(j)); | 
						|
			Error += A == B ? 0 : 1; | 
						|
/* | 
						|
			glm::u8vec4 C = bitfieldDeinterleave_u8vec4(A); | 
						|
			Error += C.x == glm::uint8(i) ? 0 : 1; | 
						|
			Error += C.y == glm::uint8(j) ? 0 : 1; | 
						|
			Error += C.z == glm::uint8(i) ? 0 : 1; | 
						|
			Error += C.w == glm::uint8(j) ? 0 : 1; | 
						|
*/ | 
						|
		} | 
						|
 | 
						|
		for(glm::size_t j = 0; j < 256; ++j) | 
						|
		for(glm::size_t i = 0; i < 256; ++i) | 
						|
		{ | 
						|
			glm::uint32 A = bitfieldInterleave_u16vec2(glm::uint16(i), glm::uint16(j)); | 
						|
			glm::uint32 B = glm::bitfieldInterleave(glm::uint16(i), glm::uint16(j)); | 
						|
			Error += A == B ? 0 : 1; | 
						|
		} | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int perf_old_u8vec2(std::vector<glm::uint16>& Result) | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
		const std::clock_t BeginTime = std::clock(); | 
						|
		 | 
						|
		for(glm::size_t k = 0; k < 10000; ++k) | 
						|
		for(glm::size_t j = 0; j < 256; ++j) | 
						|
		for(glm::size_t i = 0; i < 256; ++i) | 
						|
			Error += Result[j * 256 + i] == glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j)) ? 0 : 1; | 
						|
 | 
						|
		const std::clock_t EndTime = std::clock(); | 
						|
 | 
						|
		std::printf("glm::bitfieldInterleave<u8vec2> Time %d clocks\n", static_cast<unsigned int>(EndTime - BeginTime)); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int perf_new_u8vec2(std::vector<glm::uint16>& Result) | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
		const std::clock_t BeginTime = std::clock(); | 
						|
 | 
						|
		for(glm::size_t k = 0; k < 10000; ++k) | 
						|
		for(glm::size_t j = 0; j < 256; ++j) | 
						|
		for(glm::size_t i = 0; i < 256; ++i) | 
						|
			Error += Result[j * 256 + i] == bitfieldInterleave_u8vec2(glm::uint8(i), glm::uint8(j)) ? 0 : 1; | 
						|
 | 
						|
		const std::clock_t EndTime = std::clock(); | 
						|
 | 
						|
		std::printf("bitfieldInterleave_u8vec2 Time %d clocks\n", static_cast<unsigned int>(EndTime - BeginTime)); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int perf_old_u8vec4(std::vector<glm::uint32>& Result) | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
		const std::clock_t BeginTime = std::clock(); | 
						|
 | 
						|
		for(glm::size_t k = 0; k < 10000; ++k) | 
						|
		for(glm::size_t j = 0; j < 256; ++j) | 
						|
		for(glm::size_t i = 0; i < 256; ++i) | 
						|
			Error += Result[j * 256 + i] == glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j), glm::uint8(i), glm::uint8(j)) ? 0 : 1; | 
						|
 | 
						|
		const std::clock_t EndTime = std::clock(); | 
						|
 | 
						|
		std::printf("glm::bitfieldInterleave<u8vec4> Time %d clocks\n", static_cast<unsigned int>(EndTime - BeginTime)); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int perf_new_u8vec4(std::vector<glm::uint32>& Result) | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
		const std::clock_t BeginTime = std::clock(); | 
						|
 | 
						|
		for(glm::size_t k = 0; k < 10000; ++k) | 
						|
		for(glm::size_t j = 0; j < 256; ++j) | 
						|
		for(glm::size_t i = 0; i < 256; ++i) | 
						|
			Error += Result[j * 256 + i] == bitfieldInterleave_u8vec4(glm::uint8(i), glm::uint8(j), glm::uint8(i), glm::uint8(j)) ? 0 : 1; | 
						|
 | 
						|
		const std::clock_t EndTime = std::clock(); | 
						|
 | 
						|
		std::printf("bitfieldInterleave_u8vec4 Time %d clocks\n", static_cast<unsigned int>(EndTime - BeginTime)); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int perf_old_u16vec2(std::vector<glm::uint32>& Result) | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
		const std::clock_t BeginTime = std::clock(); | 
						|
 | 
						|
		for(glm::size_t k = 0; k < 10000; ++k) | 
						|
		for(glm::size_t j = 0; j < 256; ++j) | 
						|
		for(glm::size_t i = 0; i < 256; ++i) | 
						|
			Error += Result[j * 256 + i] == glm::bitfieldInterleave(glm::uint16(i), glm::uint16(j)) ? 0 : 1; | 
						|
 | 
						|
		const std::clock_t EndTime = std::clock(); | 
						|
 | 
						|
		std::printf("glm::bitfieldInterleave<u16vec2> Time %d clocks\n", static_cast<unsigned int>(EndTime - BeginTime)); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int perf_new_u16vec2(std::vector<glm::uint32>& Result) | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
		const std::clock_t BeginTime = std::clock(); | 
						|
 | 
						|
		for(glm::size_t k = 0; k < 10000; ++k) | 
						|
		for(glm::size_t j = 0; j < 256; ++j) | 
						|
		for(glm::size_t i = 0; i < 256; ++i) | 
						|
			Error += Result[j * 256 + i] == bitfieldInterleave_u16vec2(glm::uint16(i), glm::uint16(j)) ? 0 : 1; | 
						|
 | 
						|
		const std::clock_t EndTime = std::clock(); | 
						|
 | 
						|
		std::printf("bitfieldInterleave_u16vec2 Time %d clocks\n", static_cast<unsigned int>(EndTime - BeginTime)); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
	int perf() | 
						|
	{ | 
						|
		int Error = 0; | 
						|
 | 
						|
		std::printf("bitfieldInterleave perf: init\r"); | 
						|
 | 
						|
		std::vector<glm::uint16> Result_u8vec2(256 * 256, 0); | 
						|
		for(glm::size_t j = 0; j < 256; ++j) | 
						|
		for(glm::size_t i = 0; i < 256; ++i) | 
						|
			Result_u8vec2[j * 256 + i] = glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j)); | 
						|
 | 
						|
		Error += perf_old_u8vec2(Result_u8vec2); | 
						|
		Error += perf_new_u8vec2(Result_u8vec2); | 
						|
 | 
						|
		std::vector<glm::uint32> Result_u8vec4(256 * 256, 0); | 
						|
		for(glm::size_t j = 0; j < 256; ++j) | 
						|
		for(glm::size_t i = 0; i < 256; ++i) | 
						|
			Result_u8vec4[j * 256 + i] = glm::bitfieldInterleave(glm::uint8(i), glm::uint8(j), glm::uint8(i), glm::uint8(j)); | 
						|
		 | 
						|
		Error += perf_old_u8vec4(Result_u8vec4); | 
						|
		Error += perf_new_u8vec4(Result_u8vec4); | 
						|
 | 
						|
		std::vector<glm::uint32> Result_u16vec2(256 * 256, 0); | 
						|
		for(glm::size_t j = 0; j < 256; ++j) | 
						|
		for(glm::size_t i = 0; i < 256; ++i) | 
						|
			Result_u16vec2[j * 256 + i] = glm::bitfieldInterleave(glm::uint16(i), glm::uint16(j)); | 
						|
 | 
						|
		Error += perf_old_u16vec2(Result_u16vec2); | 
						|
		Error += perf_new_u16vec2(Result_u16vec2); | 
						|
 | 
						|
		std::printf("bitfieldInterleave perf: %d Errors\n", Error); | 
						|
 | 
						|
		return Error; | 
						|
	} | 
						|
 | 
						|
}//namespace bitfieldInterleave5 | 
						|
 | 
						|
int main() | 
						|
{ | 
						|
	int Error = 0; | 
						|
/* Tests for a faster and to reserve bitfieldInterleave | 
						|
	Error += ::bitfieldInterleave5::test(); | 
						|
	Error += ::bitfieldInterleave5::perf(); | 
						|
*/ | 
						|
	Error += ::mask::test(); | 
						|
	Error += ::bitfieldInterleave3::test(); | 
						|
	Error += ::bitfieldInterleave4::test(); | 
						|
	Error += ::bitfieldInterleave::test(); | 
						|
 | 
						|
#	ifdef NDEBUG | 
						|
		Error += ::mask::perf(); | 
						|
		Error += ::bitfieldInterleave::perf(); | 
						|
#	endif//NDEBUG | 
						|
 | 
						|
	return Error; | 
						|
}
 | 
						|
 |